
CONCENTRATION INEQUALITIES

STEVEN P. LALLEY
UNIVERSITY OF CHICAGO

1. THE MARTINGALE METHOD

1.1. Azuma-Hoeffding Inequality. Concentration inequalities are inequalities that bound prob-
abilities of deviations by a random variable from its mean or median. Our interest will be in
concentration inequalities in which the deviation probabilities decay exponentially or super-
exponentially in the distance from the mean. One of the most basic such inequality is the
Azuma-Hoeffding inequality for sums of bounded random variables.

Theorem 1.1. (Azuma-Hoeffding) Let Sn be a martingale (relative to some sequence Y0,Y1, . . . )
satisfying S0 = 0 whose increments ξn = Sn −Sn−1 are bounded in absolute value by 1. Then for
any α> 0 and n ≥ 1,

(1) P {Sn ≥α} ≤ exp{−α2/2n}.

More generally, assume that the martingale differences ξk satisfy |ξk | ≤σk . Then

(2) P {Sn ≥α} ≤ exp

{
−α2/2

n∑
j=1

σ2
j

}
.

In both cases the denominator in the exponential is the maximum possible variance of Sn

subject to the constraints |ξn | ≤σn , which suggests that the worst case is when the distributions
of the increments ξn are as spread out as possible. The following lemma suggests why this
should be so.

Lemma 1.2. Among all probability distributions on the unit interval [0,1] with mean p, the most
spread-out is the Bernoulli-p distribution. In particular, for any probability distribution F on
[0,1] with mean p and any convex function ϕ : [0,1] →R,∫ 1

0
ϕ(x)dF (x) ≤ pϕ(1)+ (1−p)ϕ(0).

Proof. This is just another form of Jensen’s inequality. Let X be a random variable with distri-
bution F , and let U be an independent uniform-[0,1] random variable. The indicator 1{U ≤ X }
is a Bernoulli r.v. with conditional mean

E(1{U ≤ X } |X ) = X ,

and so by hypothesis the unconditional mean is EE(1{U ≤ X } |X ) = E X = p. Thus, 1{U ≤ X } is
Bernoulli-p. The conditional version of Jensen’s inequality implies that

E(ϕ(1{U ≤ X }) |X ) ≥ϕ(E(1{U ≤ X } |X )) =ϕ(X ).
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Taking unconditional expectation shows that

Eϕ(1{U ≤ X }) ≥ Eϕ(X ),

which, since 1{U ≤ X } is Bernoulli-p, is equivalent to the assertion of the lemma. �

Rescaling gives the following consequence (exercise).

Corollary 1.3. Among all probability distributions on the interval [−A,B ] with mean zero, the
most spread out is the two-point distribution concentrated on −A and B that has mean zero.
In particular, if ϕ is convex on [−A,B ] then for any random variable X satisfying E X = 0 and
−A ≤ X ≤ B,

(3) Eϕ(X ) ≤ϕ(−A)]
B

A+B
+ϕ(B)

A

A+B
.

In particular, if A = B > 0 then for any θ > 0,

(4) EeθX ≤ cosh(θA)

Proof. The first statement follows from Lemma 1.2 by rescaling, and the cosh bound in (4) is
just the special case ϕ(x) = eθx . �

Lemma 1.4. cosh x ≤ ex2/2.

Proof. The power series for 2cosh x can be gotten by adding the power series for ex and e−x .
The odd terms cancel, but the even terms agree, so

cosh x =
∞∑

n=0

x2n

(2n)!
≤

∞∑
n=0

x2n

2n(n!)
= exp{x2/2}.

�

Conditional versions of Lemma 1.2 and Corollary 1.3 can be proved by virtually the same
arguments (which you should fill in). Here is the conditional version of the second inequality in
Corollary 1.3.

Corollary 1.5. Let X be a random variable satisfying −A ≤ X ≤ A and E(X |Y ) = 0 for some
random variable or random vector Y . Then for any θ > 0,

(5) E(eθX |Y ) ≤ cosh(θA) ≤ eθ
2 A2/2.

Proof of Theorem 1.1. The first inequality (1) is obviously a special case of the second, so it suf-
fices to prove (2). By the Markov inequality, for any θ > 0 and α> 0,

(6) P {Sn ≥α} ≤ EeθSn

eθα
.

Since eθx is a convex function of x, the expectation on the right side can be bounded using
Corollary 1.5, together with the hypothesis that E(ξk |Fk−1) = 0. (As usual, the notation Fk is
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just shorthand for conditioning on Y0,Y1,Y2, . . . ,Yk .) The result is

EeθSn = EE(eθSn |Fn−1)(7)

≤ EeθSn−1 E(eθξn |Fn−1)

≤ EeθSn−1 cosh(θσn)

≤ EeθSn−1 exp{θ2σ2
n/2}

Now the same procedure can be used to bound EeθSn−1 , and so on, until we finally obtain

EeθSn ≤
n∏

k=1
exp{θ2σ2

n/2}

Thus,

P {Sn ≥α} ≤ e−θα n∏
k=1

exp{θ2σ2
n/2}

for every value θ > 0. A sharp inequality can now be obtained by choosing the value of θ that
minimizes the right side, or at least a value of θ near the min. A bit of calculus shows that the
minimum occurs at

θ =α/
n∑

k=1
σ2

k .

With this value of θ, the bound becomes

P {Sn ≥α} ≤ exp

{
−α2/2

n∑
j=1

σ2
j

}
.

�

1.2. McDiarmid’s Inequality. One of the reasons that the Azuma-Hoeffding inequality is useful
is that it leads to concentration bounds for nonlinear functions of bounded random variables.
A striking example is the following inequality of McDiarmid.

Theorem 1.6. (McDiarmid) Let X1, X2, . . . , Xn be independent random variables such that Xi ∈
Xi , for some (measurable) sets Xi . Suppose that f :

∏n
i=1 Ai → R is “Lipschitz” in the following

sense: for each k ≤ n and any two sequences x, x ′ ∈∏n
i=1 Xi that differ only in the kth coordinate,

(8) | f (x)− f (x ′)| ≤σk .

Let Y = f (X1, X2, . . . , Xn). Then for any α> 0,

(9) P {|Y −EY | ≥α} ≤ 2exp

{
−2α2/

n∑
k=1

σ2
k

}
.

Proof. We will want to condition on the first k of the random variables Xi , so we will denote by
Fk the σ−algebra generated by these r.v.s. Let

Yk = E(Y |Fk ) = E(Y |X1, X2, . . . , Xk ).

Then the sequence Xk is a martingale (by the “tower property” of conditional expectations).
Furthermore, the successive differences satisfy |Yk−Yk−1| ≤σk . To see this, let Y ′ = f (X ′), where
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X ′ is obtained from X by replacing the kth coordinate Xk with an independent copy X ′
k and

leaving all of the other coordinates alone. Then

E(Y ′ |Fk ) = E(Y |Fk−1) = Yk−1

But by hypothesis, |Y ′−Y | ≤σk . This implies that

|Yk −Yk−1| = |E(Y −Y ′ |Fk )| ≤σk .

Given this, the result follows immediately from the Azuma-Hoeffding inequality, because Y =
E(Y |Fn) and EY = E(Y |F0). �

In many applications the constants σk in (8) will all be the same. In this case the hypothesis
(8) is nothing more than the requirement that f be Lipschitz, in the usual sense, relative to
the Hamming metric dH on the product space

∏n
i=1 Xi . (Recall that the Hamming distance

dH (x, y) between two points x, y ∈∏n
i=1 Xi is just the number of coordinates i where xi 6= yi . A

function f : Y → Z from one metric space Y to another Z is any function for which there is a
constant C <∞ such that dZ ( f (y), f (y ′)) ≤ C dY (y, y ′) for all y, y ′ ∈ Y . The minimal such C is
the Lipschitz constant for f .) Observe that for any set A ⊂∏n

i=1 Xi , the distance function

dH (x, A) := min
y∈A

dH (x, y)

is itself Lipschitz relative to the metric dH , with Lipschitz constant ≤ 1. Hence, McDiarmid’s
inequality implies that if Xi are independent Xi−valued random variables then for any set A ⊂∏n

i=1 Xi ,

(10) P {|dH (X, A)−E dH (X, A)| ≥ t } ≤ 2exp{−2t 2/n},

where X = (X1, X2, . . . , Xn). Obviously, if x ∈ A then dH (x, A) = 0, so if P {X ∈ A} is large then the
concentration inequality implies that E dH (X, A) cannot be much larger than

p
n. In particular,

if P {X ∈ A} = ε> 0 then (10) implies that

(11) E dH (X, A) ≤
√
−(n/2) log(ε/2).

Substituting in (10) gives

(12) P {dH (X, A) ≥p
n(t +α)} ≤ 2exp{−2t 2} where α=

√
−1

2
log(P {X ∈ A}/2).

2. GAUSSIAN CONCENTRATION

2.1. McDiarmid’s inequality and Gaussian concentration. McDiarmid’s inequality holds in
particular when the random variables Xi are Bernoulli, for any Lipschitz function f : {0,1}n →R.
There are lots of Lipschitz functions, especially when the number n of variables is large, and at
the same time there are lots of ways to use combinations of Bernoullis to approximate other ran-
dom variables, such as normals. Suppose, for instance, that g : Rn → R is continuous (relative
to the usual Euclidean metric on Rn) and Lipschitz in each variable separately, with Lipschitz
constant 1 (for simplicity), that is,

(13) |g (x1, x2, . . . , xi−1, xi , xi+1, . . . , xn)− g (x1, x2, . . . , xi−1, x ′
i , xi+1, . . . , xn)| ≤ |xi −x ′

i |.
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Define f : {−1,1}mn → R by setting f (y) = g (x(y)) where x(y) ∈ Rn is obtained by summing the
yi s in blocks of size m and scaling by

p
m, that is,

(14) x(y)k = 1p
m

km∑
i=(k−1)m+1

yi .

Since g is Lipschitz, so is f (relative to the Hamming metric on {−1,1}mn), with Lipschitz con-
stant 1/

p
m. Therefore, McDiarmid’s inequality applies when the random variables Yi are i.i.d.

Rademacher (i.e., P {Yi =±1} = 1/2). Now as m →∞ the random variables in (14) approach nor-
mals. Hence, McDiarmid implies a concentration inequality for Lipschitz functions of Gaussian
random variables:

Corollary 2.1. Let X1, X2, .., Xn be independent standard normal random variables, and let g :
Rn → R be continuous and Lipschitz in each variable separately, with Lipschitz constant 1. Set
Y = g (X1, X2, .., Xn). Then

(15) P {|Y −EY | ≥ t } ≤ 2e−2t 2/n .

2.2. The duplication trick. You might at first think that the result of Corollary 2.1 should be a
fairly tight inequality in the special case where g is Lipschitz with respect to the usual Euclidean
metric onRn , because your initial intuition is probably that there isn’t much difference between
Hamming metrics and Euclidean metrics. But in fact the choice of metrics makes a huge dif-
ference: for functions that are Lipschitz relative to the Euclidean metric on Rn a much sharper
concentration inequality than (15) holds.

Theorem 2.2. (Gaussian concentration) Let γ be the standard Gaussian probability measure on
Rn (that is, the distribution of a N (0, I ) random vector), and let F :Rn →R be Lipschitz relative to
the Euclidean metric, with Lipschitz constant 1. Then for every t > 0,

(16) γ{F −EγF ≥ t } ≤ exp{−t 2/π2}

Notice that the bound in this inequality does not depend explicitly on the dimension n. Also,
if F is 1−Lipschitz then so are −F and F − c, and hence (16) yields the two-sided bound

(17) γ{|F −EγF | ≥ t } ≤ 2exp{−t 2/π2}.

In section ?? below we will show that the constant 1/π2 in the bounding exponential can be
improved. In proving Theorem 2.2 – and a number of other concentration inequalities to come
– we will make use of the following simple consequence of the Markov-Chebyshev inequality,
which reduces concentration inequalities to bounds on moment generating functions.

Lemma 2.3. Let Y be a real random variable. If there exist constants C , A <∞ such that EeλY ≤
Ce Aλ2

for all λ> 0, then

(18) P {Y ≥ t } ≤C exp

{−t 2

4A

}
.

Proof of Theorem 2.2. This relies on what I will call the duplication trick, which is often useful
in connection with concentration inequalities. (The particulars of this argument are due to
Maurey and Pisier, but the duplication trick, broadly interpreted, is older.) The basic idea is to
build an independent copy of the random variable or random vector that occurs in an inequality
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and somehow incorporate this copy in an expectation along with the original. By Lemma 2.3,
to prove a concentration inequality it suffices to establish bounds on the Laplace transform
EeλF (X ). If EF (X ) = 0, then Jensen’s inequality implies that the value of this Laplace transform
must be ≥ 1 for all values of λ ∈R. Consequently, if X ′ is an independent copy of X then for any
λ ∈R,

(19) E exp{λF (X )−λF (X ′)} ≤Ce Aλ2 =⇒ E exp{λF (X )} ≤Ce Aλ2
;

hence, to establish the second inequality it suffices to prove the first. If F is Lipschitz, or smooth
with bounded gradient, the size of the difference F (X )−F (X ′) will be controlled by dist(X , X ′),
which is often easier to handle.

Suppose, then, that X and X ′ are independent n− dimensional standard normal random vec-
tors, and let F be smooth with gradient |∇F | ≤ 1 and mean EF (X ) = 0. (If (16) holds for smooth
functions F with Lipschitz constant 1 then it holds for all Lipschitz functions, by a standard
approximation argument.) Our objective is to prove the first inequality in (19), with A = 1/2.
To accomplish this, we will take a smooth path X t between X0 = X and X1 = X ′ and use the
fundamental theorem of calculus:

F (X )−F (X ′) =
∫ 1

0
∇F (X t )T d X t

d t
d t

The most obvious path is the straight line segment connecting X , X ′, but it will be easier to use

X t = cos(πt/2)X + sin(πt/2)X ′ =⇒
d X t /d t =−(π/2)sin(πt/2)X + (π/2)cos(πt/2)X ′

=:
π

2
Yt

because each X t along this path is a standard normal random vector, and the derivative Yt is
also standard normal and independent of X t . By Jensen’s inequality (using the fact that the path
integral is an average),

E exp{λF (X )−λF (X ′)} = E exp

{
λ

∫ 1

0
∇F (X t )T d X t

d t
d t

}
≤

∫ 1

0
E exp{(λπ/2)∇F (X t )T Yt }d t .

For each t the random vectors Yt and X t are independent, so conditional on X t the scalar ran-
dom variable ∇F (X t )T Yt is Gaussian with mean zero and variance |∇F (X t )|2 ≤ 1. Consequently,

E exp{(λπ/2)∇F (X t )T Yt } ≤ exp{λ2π2/4}.

This proves that inequality (19) holds with C = 1 and A =π2/4. Hence, for any t > 0 and λ

P {F (X ) ≥ t } ≤ e−λt EeλF (X ) ≤ e−λt eλ
2π2/4.

By Lemma 2.3, the concentration bound (16) follows. �

The preceding proof makes explicit use of the hypothesis that the underlying random vari-
ables are Gaussian, but a closer look reveals that what is really needed is rotational symmetry
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and sub-Gaussian tails. As an illustration, we next prove a concentration inequality for the uni-
form distribution ν= νn on the n−sphere

Sn := {x ∈Rn : |x| = 1}.

Theorem 2.4. Let ν = νn be the uniform probability measure on the unit sphere Sn . There exist
constants C , A <∞ independent of n such that for any function F : Sn → R that is 1−Lipschitz
relative to the Riemannian metric on Sn ,

(20) ν{F −EνF ≥ t } ≤Ce−nt 2/A ∀ t > 0.

Proof. Once again, we use the duplication trick to obtain a bound on the moment generating
function of F . Let U ,U ′ be independent random vectors, each with the uniform distribution or-
thonormal basisSn , and let {Ut }t∈[0,1] be the shortest constant-speed geodesic path onSn from
U0 = U ′ to U1 = U (thus, the path follows the “great circle” on Sn). Since the uniform distri-
bution on the sphere is invariant under orthogonal transformations, for each fixed t ∈ [0,1] the
random vector Ut is uniformly distributed on Sn . Moreover, Vt := the normalized velocity vec-
tor Vt to the path {Ut }t∈[0,1] (defined by Vt = (dUt /d t )/|dUt /d t |) is also uniformly distributed,
and its conditional distribution given Ut is uniform on the (n − 2)−dimensional sphere con-
sisting of all unit vectors in Rn orthogonal to Ut . Consequently, if Nt = ∇F (Ut )/|∇F (Ut )| is the
normalized gradient of F at the point Ut , then

E exp{λF (U )−λF (U ′)} = E exp{λ
∫ 1

0
∇F (Ut )T (d X t /d t )d t }

≤
∫ 1

0
E exp{λ∇F (Ut )T (d X t /d t )}

≤
∫ 1

0
E exp{AλN T

t Vt },

where 0 < A <∞ is an upper bound on |∇F (Ut )||d X t /d t |. (Here we use the hypothesis that F is
1−Lipschitz relative to the Riemannian metric. The choice A = π2 = Riemannian diameter2 of
Sn will work.)

The rest of the argument is just calculus. For each t the normalized gradient vector Nt =
∇F (Ut )/|∇F (Ut )| is a fixed unit vector in the (n −2)−dimensional sphere of unit vectors in Rn

orthogonal to Ut . But conditional on Ut the random vector Vt is uniformly distributed on this
sphere. Consequently, the joint distribution of Nt and Vt is the same as the distribution of the
first coordinate of a random vector uniformly distributed on the (n−2)−dimensional sphere in
Rn−1, and so for any λ> 0,

E exp{AλN T
t Vt } = 2

π

∫ π/2

−π/2
e Aλsinθ cosn−2θdθ

≤ 4

π

∫ π/2

0
e Aλsinθ cosn−2θdθ

Now use the crude bounds

sinθ ≤ θ and cosθ ≤ 1−Bθ2
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for a suitable constant B > 0 to conclude∫ π/2

0
e Aλsinθ cosn−2θdθ ≤

∫ π/2

0
e Aλθ(1−Bθ2)n−2 dθ

≤
∫ π/2

0
e Aλθe−B(n−2)θ2

≤ exp{Aλ2/(2B(n −2))}.

This proves that

E exp{λF (U )−λF (U ′)} ≤ 4

π
exp{Aλ2/(2B(n −2))},

and by Lemma 2.3 the concentration inequality (20) follows. �

2.3. Johnson-Lindenstrauss Flattening Lemma. The concentration inequality for the uniform
distribution on the sphere has some interesting consequences, one of which has to do with data
compression. Given a set of m data points in Rn , an obvious way to try to compress them is to
project onto a lower dimensional subspace. How much information is lost? If the only features
in the original data points of interest are the pairwise distances, then the relevant measure of
information is the maximal distortion of (relative) distance under the projection.

Proposition 2.5. (Johnson-Lindenstrauss) There is a universal constant D <∞ independent of
dimension n such that the following is true. Given m points x j in Rn and ε > 0, for any k ≥
Dε−2 logm there exists a k−dimensional projection A : Rn → Rk that distorts distances by no
more than 1+ε, that is, for any two points xi , x j in the collection,

(21) (1+ε)−1|xi −x j | ≤
p

n/k|Axi − Ax j | ≤ (1+ε)|xi −x j |.
Furthermore, with probability approaching 1 as m → ∞ the projection A can be obtained by
choosing randomly from the uniform distribution on k−dimensional linear subspaces.

The uniform distribution on k−dimensional linear subspaces can be defined (and sampled
from) using independent standard Gaussian random vectors Y1,Y2, . . . ,Yk in Rn . Let V be the
linear subspace spanned by these k random vectors. With probability one, the subpsace V will
be k−dimensional [Exercise: Prove this], and for any fixed orthogonal transformation U :Rn →
Rn the distribution of the random subspace UV will be the same as that of V .

Lemma 2.6. Let A be the orthogonal projection of Rn onto a random k−dimensional subspace.
Then for every fixed x 6= 0 ∈Rn ,

(22) P

−ε
√

k

n
≤

∣∣∣∣∣∣ |Ax|
|x| −

√
k

n

∣∣∣∣∣∣≤ ε
√

k

n

≥ 1−C exp{−B ′kε2}

for constants C ′,B ′ that do not depend on n, k, or the projection A.

Proof. The proof will rely on two simple observations. First, for a fixed orthogonal projection
A, the mapping x 7→ |Ax| is 1−Lipschitz on Rn , so the concentration inequality (20) is appli-
cable. Second, by the rotational invariance of the uniform distribution νn , the distribution of
|Ax| when A is fixed and x is random (with spherically symmetric distribution) is the same as
when x is fixed and A is random. Hence, it suffices to prove (22) when A is a fixed projection

8



FIGURE 1. Data Compression by Orthogonal Projection

and x is chosen randomly from the uniform distribution on the unit sphere. Since x 7→ |Ax| is
1−Lipschitz, the inequality (20) for the uniform distribution νn on Sn implies that for suitable
constants B ,C <∞ independent of dimension, if Z ∼ νn

(23) P {||AZ |−E |AZ || ≥ t } ≤Ce−Bnt 2
.

To proceed further we must estimate the distance between
p

k/n and E |AZ |, where Z ∼ ν is
uniformly distributed on the sphere. It is easy to calculate E |AZ |2 = k/n (Hint: by rotational
symmetry, it is enough to consider only projections A onto subspaces spanned by k of the stan-
dard unit vectors.) But inequality (23) implies that the variance of |AZ | can be bounded, using
the elementary fact that for a nonnegative random variable Y the expectation EY can be com-
puted by

EY =
∫ ∞

0
P {Y ≥ y}d y.

This together with (23) implies that

var(|AZ |) ≤
∫ ∞

0
Ce−Bny d y = C

Bn
.

But var(|AZ |) = E |AZ |2 − (E |AZ |)2, and E |AZ |2 = k/n, so it follows that∣∣∣∣(E |A|)2 − k

n

∣∣∣∣≤ C

Bn
=⇒∣∣∣∣∣∣E |A|−

√
k

n

∣∣∣∣∣∣≤ Dp
nk

where D = C /B does not depend on n or k. Using this together with (23) and the triangle in-
equality, one obtains that for a suitable B ′,

P {||AZ |−
p

k/n| ≥ t } ≤ P {||AZ |−E |AZ || ≥ t −D/
p

nk} ≤C exp{−Bn(t −D/
p

nk)2}.
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The substitution t = εpk/n now yields, for any 0 < ε< 1,

P {||AZ |−
p

k/n| ≥ ε
p

k/n} ≤C exp{−Bn(ε
p

k/n −D/
p

nk)2} ≤C ′ exp{−Bε2k}

for a suitable constant C ′. �

Proof of Proposition 2.5. Let X be a set of m distinct nonzero points in Rn , and let Y be the set
of

(m
2

)
pairwise differences (which are all nonzero). Let A be the orthogonal projection onto a

k−dimensional subspace of Rn , and set T =p
n/k A. For y ∈Y say that T distorts in direction y

if
||T y |− |y || ≥ ε|y |.

Our aim is to show that if k ≤ ε−2 logm and if A is chosen randomly from the uniform distribu-
tion on k−dimensional projections then with high probability there will be no y ∈Y such that
T distorts in direction y . Now by Lemma 2.6, for each y ∈Y the probability that T distorts in di-
rection y is bounded above by C exp{−B ′kε2}. Consequently, by the Bonferroni (union) bound,
the probability that T distorts in the direction of some y ∈ Y is bounded by C

(m
2

)
exp{−B ′kε2}.

The proposition follows, because if k ≤ Dε−2 logm then

C
(m

2

)
exp{−B ′kε2} ≤C

(
m

2

)
m−B ′D ;

this converges to 0 as m →∞ provided B ′D > 2. �

3. GEOMETRY AND CONCENTRATION

3.1. The Concentration Function. Concentration inequalities for Lipschitz functions, such as
McDiarmid’s inequality and the Gaussian concentration inequality, can be reformulated in geo-
metric terms, using the concentration function of the underlying probability measure.

Definition 3.1. Let µ be a Borel probability measure on a metric space (X ,d). The concentra-
tion function of µ (relative to the metric d) is defined by

αµ(r ) : = sup{µ(Ac
r ) : µ(A) ≥ 1

2
} where(24)

Ar : = {x ∈X : d(x, A) ≥ r }.(25)

Proposition 3.2. Let F : X → R be Lipschitz, with Lipschitz constant C . If mF is a median of F
with respect to the Borel probability measure µ then

µ{F ≥ mF +C t } ≤αµ(t ) and(26)

µ{|F −m f | ≥C t } ≤ 2αµ(t )(27)

Proof. Let A = {F ≤ mF }. By definition of a median, µ(A) ≥ 1/2. The set {F ≥ mF +C t } is con-
tained in Ac

t , since F has Lipschitz constant C , so (26) follows from the definition of the concen-
tration function. �

Corollary 3.3. For any two nonempty Borel sets A,B ⊂X ,

(28) µ(A)µ(B) ≤ 4αµ(d(A,B)/2).
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Proof. Let F (x) = d(x, A) and 2r = d(A,B); then F is 1−Lipschitz, takes the value 0 on A, and sat-
isfies F ≥ 2r on B . Let X , X ′ be independent X−valued random variables each with distribution
µ. Then

µ(A)µ(B) = P {X ∈ A ; X ′ ∈ B}

≤ P {F (X ′)−F (X ) ≥ 2r }

≤ 2P {|F (X )−mF | ≥ r }

≤ 4αµ(r ).

�

3.2. Isoperimetric constants and concentration. For any connected graph G = (V ,E ) there is
a natural metric d on the set V of vertices: for any two vertices x, y define d(x, y) to be the
length of the shortest path connecting x and y . A function F : V → R is 1−Lipschitz relative to
this metric if and only if |F (x)−F (y)| ≤ 1 for any two nearest neighbors x, y ∈ V . The Cheeger
constant (sometimes called the isoperimetric ratio) of G is defined to be

(29) hG = inf

{ |∂A|
|A| : A ⊂V , |A| ≤ |V |/2, |A| <∞

}
,

where ∂A is the set of all vertices x 6∈ A at distance 1 from A.

Proposition 3.4. Let G = (V ,E ) be a finite graph with Cheeger constant hG > 0 and let ν be the
uniform distribution on V . Then for every integer m ≥ 1

(30) αν(m) ≤ 1

2
(1+hG )−m .

Proof. Let A ⊂ V be a subset of cardinality ≥ |V |/2, and let B ⊂ V be such that d(A,B) > m,
equivalently, A ∩Bm = ; where Bm is the set of all vertices at distance ≤ m from B . Thus, in
particular |Bm | ≤ |V |/2. By definition of the Cheeger constant, |Bm | ≥ (1+hG )m |B |, and hence

|B | ≤ 2|V |(1+hG )−m .

�

A family Gn = (Vn ,En) of graphs is said to be an expander family with expansion constant ε if
(a) there exists d <∞ such that in each graph Gn every vertex has no more than d edges, and
(b) the Cheeger constant of each Gn is at lest ε. Expanders are extremely important, both in
computer science and in mathematics. For us, as probabilists, the most important feature of
an expanders family is that the simple random walks on the graphs Gn in the family are rapidly
mixing, in the sense that the number of steps necessary for the TV distance to uniformity to
drop below e−1 is of order O(|Vn | log |Vn |).

Example: For each n ≥ d+1 let Gn,d be the set of all connected, d−regular graphs with vertex set
[n]. Let Gn be chosen randomly from the uniform distribution on Gn,d . Then with probability
one, the family Gn is an ε−expander family for some ε> 0. �

The concentration inequality (30) implies that for any expander family, the concentration
function of the uniform distribution is bounded above by a geometric distribution that does
not depend on the size of the graph. (Recall that the standard Gaussian distributions on Rn also
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have this property.) This has some interesting consequences about the geometric structure
of an expander graph. Suppose, for instance, that Gn = (Vn ,En) is an expander family with
|Vn | →∞, and for each Gn fix a distinguished vertex v∗

n . For each n define fn on Vn by setting
fn(x) = d(x, v∗

n); these functions are clearly 1−Lipschitz. Thus, if mn is the median of fn relative
to the uniform distribution νn on Vn , then

νn{| fn −mn | ≥ t } ≤ 2ανn (t ) ≤ 4(1+ε)−t .

In particular, nearly 100% of the vertices in Vn are at approximately the same distance from v∗
n .

3.3. Reversible Markov chains and concentration. The Cheeger constant “controls” the mix-
ing rate of the simple random walk on a finite graph: the larger the Cheeger constant, the faster
the simple random walk tends to equilibrium. (There are explicit bounds, but we won’t use
these here.) This suggests that more generally the mixing rate of a Markov chain (or at any rate
a reversible Markov chain) might be tied up with concentration properties of its stationary dis-
tribution. This is in fact the case, as we will show in section ??. In this section we will show
that the concentration function of the stationary distribution µ of a reversible Markov chain is
also controlled by the spectral gap of the transition probability matrix. You may recall that the
spectral gap is closely related to the the rate of mixing of a reversible Markov chain.

Assume now that µ is the stationary distribution of an ergodic, reversible Markov chain on
a finite set X . Denote by π(x, y) or πx,y the one-step transition probabilities, and let a(x, y) =
ax,y = µxπx,y be the conductances associated with the transition probabilities. The Dirichlet
form associated with the Markov chain is the quadratic form on functions f : X →R defined by

(31) D( f , f ) = 1

2

∑∑
x,y ax,y ( f (x)− f (y))2,

that is, the quadratic form associated with the symmetric X ×X−matrix with entries ax,y . Be-
cause the Markov chain is assumed to be ergodic, this matrix has a simple eigenvalue 0 (the
associated eigenfunction is f ≡ 1), and all other eigenvalues are strictly positive. The smallest
nonzero eigenvalue β1 is called the spectral gap; it is determined by the variational formula

(32) β1 = min
f

D( f , f )

Varµ( f )

where the minimum is over all nonconstant functions f : X → R and Varµ( f ) denotes the vari-
ance of the random variable f with respect to µ.

For any function f : X →R, define the pseudo-Lipschitz norm∣∣∣∣∣∣ f
∣∣∣∣∣∣∞ = max

x

∑
y

( f (y)− f (x))2πx,y .

Theorem 3.5. For every 0 <λ< 2
√
β1 there exists Cλ <∞ such that for any f : X →Rwith mean

Eµ f = 0 and pseudo-Lipschitz norm
∣∣∣∣∣∣ f

∣∣∣∣∣∣∞ ≤ 1,

(33) µ{ f ≥ t } ≤Cλexp{−λt } ∀ t > 0.

NOTE. The constants Cλ depend only on the spectral gap β1, so for any two reversible Markov
chains with the same spectral gap the same bounds hold. It can be shown that Cp

β1/2
≤ 3.
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Proof. This argument is due to Aida and Stroock. The objective is to bound the moment gen-
erating function ϕ(λ) = Eµeλ f ; the concentration inequality will then follow by the Chebyshev-
Markov inequality. The key to obtaining a bound here is that Varµ(eλ f /2) =ϕ(λ)−ϕ(λ/2)2, so the
variational formula (32) will provide an upper bound forϕ(λ)−ϕ(λ/2)2 in terms of the Dirichlet
form D(eλ f /2,eλ f /2). The terms in the Dirichlet form can be partitioned into those for which
f (x) > f (y) and those for which f (y) ≥ f (x); by symmetry, and the convexity of the exponential
function,

D(eλ f /2,eλ f /2) =∑∑
f (x)> f (y)ax,y eλ f (x)(1−exp{−λ( f (x)− f (y)/2)})2

≤∑∑
f (x)> f (y)µxπx,y eλ f (x)λ2( f (x)− f (y))2/4

≤∑
xµxeλ f (x)

∣∣∣∣∣∣ f
∣∣∣∣∣∣∞λ2/4

=λ2ϕ(λ)/4

Hence,

ϕ(λ)−ϕ(λ/2)2 = Varµ(eλ f /2)

≤β−1
1 D(eλ f /2,eλ f /2)

≤ λ2

4β1
ϕ(λ).

Consequently, for 0 <λ< 2
√
β1,

ϕ(λ) ≤ (1−λ2/4β1)ϕ(λ/2)2 =⇒

ϕ(λ) ≤
{

n∏
k=1

(1−λ2/4kβ1)2k

}
ϕ(λ/2n)2n

.

Since Eµ f = 0, by hypothesis, the derivative of ϕ at λ= 0 is 0. Thus, limn→∞ϕ(λ/2n)2n = 1, and
so we obtain the bound

ϕ(λ) ≤
∞∏

k=1
(1−λ2/4kβ1)2k <∞.

Set Cλ =ϕ(λ) and use the Chebyshev-Markov inequality to obtain (33). �

3.4. Mixing rates and concentration. Let πn(x, y) be the n−step transition probabilities of an
ergodic Markov chain on a finite or countable state space X with stationary probability dis-
tribution µ. If the state space is finite, then for any 0 < α < 1 there exists a (smallest) positive
integer m = m(α), the α−mixing time, such that for any two states x, y ∈X ,

(34) πm(x, y) ≥αµ(y).

Say that a function F : X → R is 1−Lipschitz (relative to the natural digraph structure of the
Markov chain) if |F (y)−F (x)| ≤ 1 for any two states x, y such that p1(x, y) > 0.

Theorem 3.6. Let F be 1−Lipschitz with mean EµF = 0, and let m = m(α) be an α−mixing time
(that is, an integer m for which the inequalities (34) hold). Then for any λ > 0 such that λm <
− log(1−α),

(35) EµeλF ≤Ceλm where C =α/(1−eλm(1−α)).
13



Consequently, for any λ> 0 such that λm <− log(1−α) there exists Cλ <∞ such that

(36) µ{F ≥ t } ≤Cλe−λt

REMARK. The final inequality (36) indicates that fluctuations of F are of size O(m) or smaller.
The α−mixing time will in general be larger than the total variation mixing time, which is more
closely related to the geometric quantities (Cheeger constant and spectral gap) discussed ear-
lier, so the concentration inequality (36) need not be as sharp as the earlier bounds. The main
point of Theorem 3.6 is that there is a direct connection between the mixing properties of an er-
godic Markov chain and the concentration function of its stationary distribution, and that this
is so even for irreversible Markov chains.

Example 3.7. Consider the Ehrenfest random walk on the hypercube Zn
2 . This is defined to

be the Markov chain whose one-step moves are made by first choosing a coordinate j ∈ [n] at
random and then replacing the j th coordinate of the current configuration by a Bernoulli-1/2
random variable. The stationary distribution is the uniform distribution on Zn

2 , and α−mixing
time is Cα+n logn (Exercise: Check this.) Thus, in this case the concentration inequality (36)
is weaker, by an extraneous factor of logn in the exponential, than McDiarmid’s concentration
inequality.

Proof of Theorem 3.6. By the duplication trick, to prove (35) it suffices to prove that if X , X ′ are
independent, both with distribution µ, then

EeλF (X )−λF (X ′) ≤Ceλm .

Suppose that the Markov chain reached equilibrium in precisely m steps, that is that the in-
equalities (34) held with α = 1. Then one could build independent X , X ′ with distribution µ

by first choosing X = X0 ∼ µ, then running the Markov chain X j from the initial state X0, and
finally setting X ′ = Xm . It would then follow from the hypothesis that F is 1−Lipschitz that for
any λ> 0,

EeλF (X )−λF (X ′) = E exp{λ
m∑

j=1
(F (X j )−F (X j−1))} ≤ eλm .

Unfortunately, very few Markov chains reach equilibrium exactly in finitely many steps. Nev-
ertheless, the foregoing argument suggests a way to proceed when there is an α > 0 for which
the α−mixing time m = m(α) is finite. Assume that the underlying probability space is large
enough to support independent X , X ′ and countably many independent U [0,1] random vari-
ables for auxiliary randomization. Let ξ be Bernoulli-α, independent of X , X ′. Set X0 = X , and
construct Xm by setting Xm = X ′ when ξ= 1 and otherwise, on ξ= 0, choosing from the condi-
tional distribution

P (Xm = y |X0 = x,ξ= 0) = πm(x, y)−αµ(y)

1−α .

Complete the construction by choosing X1, X2, . . . , Xm−1 from the conditional distribution of the
first m −1 steps of the Markov chain given the values of X0 and Xm .

By construction, the joint distribution of X0, Xm is the same as if the Markov chain were run
for m steps beginning at the initial state X0, that is,

P (X0 = x, Xm = y) =µ(x)πm(x, y).
14



Hence, the marginal distribution of Xm is µ, because X0 ∼µ and µ is the stationary distribution
of the Markov chain. This implies that the conditional distribution of Xm given that ξ = 0 is
also µ, because by construction the conditional distribution of Xm given ξ = 1 is µ. Therefore,
setting

ϕ(λ) = EeλF (X )−λF (X ′),

we have

ϕ(λ) = EeλF (X0)−λF (Xm )eλF (Xm )−λF (X ′)

= EeλF (X0)−λF (Xm )1{ξ= 1}+EeλF (X0)−λF (Xm )eλF (Xm )−λF (X ′)1{ξ= 0}

≤ eλm(α+ (1−α)ϕ(λ)).

If eλm(1−α) < 1 then this inequality implies that

ϕ(λ) ≤αeλm/(1−eλm(1−α)).

�

4. LOG-SOBOLEV INEQUALITIES

4.1. The Herbst argument. Proving an exponential concentration inequality for a random vari-
able Y is tantamount to obtaining a bound on the moment generating function ϕ(λ) = EeλY .
One strategy for doing this is to bound the derivative ϕ′(λ) = EY eλY for each value of λ in a
neighborhood of 0. This derivative is an entropy-like quantity: except for normalization, ϕ′(λ)
is just the usual Shannon entropy of the probability density proportional to eλY .

Definition 4.1. Let (X ,F ,µ) be a probability space and let f : X → [0,∞] be a nonnegative,
integrable function. Define the entropy of f relative to µ by

(37) Entµ( f ) = Eµ( f log f )− (Eµ f )(logEµ f ).

Definition 4.2. A Borel probability measure µ on Rm is said to satisfy a log-Sobolev inequality
with log-Sobolev constant C if for every smooth, bounded, compactly supported function f :
Rm →R,

(38) Entµ( f 2) ≤C Eµ|∇ f |2.

We will prove a bit later, for instance, that the standard Gaussian probability measure µ = γ

on Rn satisfies a log-Sobolev inequality with log-Sobolev constant independent of dimension
n (in fact, C = 2, but we will not prove this). It is also true that for any probability density on
Rn of the form exp{−U (x)}, where U is a smooth, convex function whose Hessian matrix (i.e.,
the matrix H of second partial derivatives) is such that H − cI is positive definite, there is a
log-Sobolev inequality with log-Sobolev constant c.

Theorem 4.3. Ifµ satisfies a log-Sobolev inequality with log-Sobolev constant C then every 1−Lipschitz
function f is integrable with respect to µ and satisfies the concentration inequality

(39) µ{ f ≥ Eµ f + t } ≤ exp{−t 2/4C }.
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Proof. This is due to Herbst. First, by Lemma 2.3, it suffices to prove that for any 1−Lipschitz
function f with expectation Eγ f = 0,

Eeλ f ≤ eCλ2
.

To prove this, it suffices, by a routine truncation and smoothing argument, to prove it for bounded,
smooth, compactly supported functions f such that |∇ f | ≤ 1. Assume that f is such a function.
Then for every real λ≥ 0, the log-Sobolev inequality

Entµ(eλ f ) ≤C Eµ|∇eλ f /2|2
can be written explicitly as

Eµλ f eλ f −Eµeλ f logEµeλ f ≤ Cλ2

4
Eµ|∇ f |2eλ f ,

or alternatively, using the notation ϕ(λ) = Eλ f and ψ(λ) = logϕ(λ) for the moment generating
function and cumulative generating function of f ,

λϕ′(λ) ≤ϕ(λ) logϕ(λ)+ Cλ2

2
Eµ|∇ f |2eλ f

≤ϕ(λ) logϕ(λ)+ Cλ2

4
ϕ(λ).

The last step uses the hypothesis that |∇ f | ≤ 1. Dividing both sides by λϕ(λ) gives

λψ′(λ) ≤ψ(λ)+Cλ2/4.

This differential inequality implies that for λ> 0 the function ψ(λ) remains below the solution
(with the same initial value) of the differential equation obtained by replacing the ≤ by = (see
the following lemma). But the solution of the differential equation λu′(λ) = u(λ)+Cλ2/4 with
initial condition u(0) = 0 is u(λ) =Cλ2/4; thus,

ψ(λ) ≤ Cλ2

4
=⇒ ϕ(λ) ≤ exp{Cλ2/4}.

The concentration inequality (39) now follows by the usual argument. �

Lemma 4.4. Let g (s) and h(s) be smooth, nonnegative functions of s ≥ 0. Then any function f (s)
that satisfies f (0) ≥ 0 and the differential inequality

(40) f ′(s) ≤ g (s) f (s)+h(s)

for s ≥ 0 is bounded above by the unique function F (s) that satisfies F (0) = f (0) and the differen-
tial equation

(41) F ′(s) = g (s)F (s)+h(s).

This remains true if g (s) has a singularity at s = 0 such that lims→0 sg (s) = γ> 0 provided f (0) =
F (0) = 0.

Proof. (Sketch) I will only sketch the proof of the first statement; the extension to singular cases
is left as an exercise. If f satisfies (40) then by integration

f (t )− f (0) ≤
∫ t

0
g (s) f (s)d s +

∫ t

0
h(s)d s.
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This inequality can be iterated, and since the functions f , g ,h are all nonnegative,

f (t )− f (0) ≤
∫ t

0
h(s)d s +

∫ t

0
g (s)

∫ s

0
h(r )dr d s +·· · .

This series converges (exercise – see, e.g., the proof of Gronwall’s inequality in my Stochastic
Differential Equations notes). Furthermore, none of the terms on the right involves the function
f , so the series converges to a function F (x)− f (0) such that F satisfies (41). �

4.2. Log-Sobolev inequalities on graphs. Let’s now return to the setting of reversible Markov
chains on finite graphs. As in section 3.3, assume that µ is the stationary distribution of an
ergodic, reversible Markov chain on a finite state space X with one-step transition probabilities
π(x, y), and let D be the corresponding Dirichlet form, defined by (31); thus, D is the quadratic
form associated with the matrix ax,y =µxπx,y of conductances for the Markov chain.

Definition 4.5. The log-Sobolev constant C > 0 of the Markov chain with transition probabili-
ties πx,y (or equivalently, the Dirichlet form with conductances ax,y ) is defined to be

(42) C = min
D( f , f )

Entµ( f 2)

where the minimum is over the set of all non-constant functions f : X →R and

(43) Entµ( f 2) = ∑
x∈X

µ(x) f (x)2 log( f (x)2/‖ f ‖2
2) with ‖ f ‖2

2 =
∑

x∈X

µ(x) f (x)2.

Theorem 4.6. If C is the log-Sobolev constant of an ergodic, reversible Markov chain with Dirich-
let form D and stationary distribution µ then for every function f : X →Rwith pseudo-Lipschitz
norm

∣∣∣∣∣∣ f
∣∣∣∣∣∣∞ ≤ 1,

(44) µ{ f ≥ Eµ f + t } ≤ exp{−t 2/C }.

Proof. This is nearly identical to the proof of Theorem 4.3, but using the Aida-Stroock bound
on the Dirichlet form obtained in the proof of Theorem 3.6 in place of the simpler bound on
the gradient used in Herbst’s argument. Assume without loss of generality that Eµ f = 0, and for
λ ∈R set ϕ(λ) = Eµeλ f . Then by the Aida-Stroock argument (see the proof of Theorem 3.6),

D(eλ f /2,eλ f 2/) ≤λ2ϕ(λ)/4.

Hence, for λ> 0 the log-Sobolev inequality for the function eλ f /2 reads

Entµ(eλ f ) ≤CD(eλ f /2,eλ f 2/) ≤Cλ2ϕ(λ)/4.

The rest of the proof is identical to that of Theorem 4.3. �

Example 4.7. (Gross) Consider the special case of the 2−point space {−1,+1} with the uniform
distribution µ and the Dirichlet form

(45) D( f , f ) = 1

4
( f (+1)− f (−1))2

corresponding to the trivial Markov chain on X with transition probabilities π(x, y) = 1/2 for all
x, y ∈X . Let C be the log-Sobolev constant of µ with respect to D. EXERCISE: Show that this is
finite and if possible evaluate it. Hint: It is enough to consider functions of the form f (−1) = a
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and f (+1) = a+1, by homogeneity. The answer is in Gross’ original paper (Amer. J. Math. v. 97),
cf. Theorem 3.

4.3. Entropy. By Theorems 4.3-4.6, log-Sobolev inequalities imply concentration inequalities.
To make use of this principle we must have a way of proving log-Sobolev inequalities, and for
this, some basic properties of entropy will be needed. To keep the discussion elementary we
restrict attention to the case of discrete probability spaces; however, many of the results carry
over without much change to continuous settings.

Definition 4.8. Let µ and ν be probability measures on a finite set X . The relative entropy of ν
relative to µ (also called the information divergence or the Kullback-Leibler distance, although
it is not a metric) is defined by

(46) Entµ(ν) = ∑
x∈X

νx log
νx

µx
.

More generally, if µ and ν are probability measures on a common measurable space (X ,F )
such that ν is absolutely continuous with respect to µ, then

(47) Entµ(ν) = Eν log
dν

dµ
.

If ν is not absolutely continuous with respect to µ then define Entµ(ν) =∞.

Although the notation Entµ conflicts with the earlier use of Entµ, the meaning is the same:
if f is a nonnegative function such that Eµ f = 1 then f is the likelihood ratio (i.e., Radon-
Nikodym derivative) of a probability measure ν with respect to µ, and Entµ(ν) = Entµ( f ). The
earlier definition (37) extends to all nonnegative, integrable functions f by homogeneity, that
is, Entµ( f ) = ‖ f ‖1Entµ( f /‖ f ‖1).

In general, the relative entropy of ν relative to µ measures the rate of exponential decay of
the likelihood ratio of ν to µ for a sequence of i.i.d. random variables X1, X2, . . . with common
distribution ν: in particular, by the strong law of large numbers,

(48) exp{Entµ(ν)} = lim
n→∞

{
n∏

i=1

dν

dµ
(Xi )

}1/n

a.s.(ν).

For this reason, it should be clear that Entµ(ν) ≥ 0, with equality if and only if µ = ν. This can
be proved formally using Jensen’s inequality (exercise). Another way to characterize relative
entropy is by the Gibbs Variational Principle, whose proof is left as another exercise:

(49) Entµ(ν) = max{Eνg : Eµeg = 1}.

Consider now a product measure µ×ν on X ×Y , where µ,ν are probability measures on
X ,Y respectively. For simplicity assume that X and Y are finite sets. Let α,β be probability
measures on X and Y , respectively, and consider the set P (α,β) of all probability measures
λ= (λx,y )x,y∈X×Y with X− and Y −marginals α and β.

Lemma 4.9. The minimum relative entropy Entµ×ν(λ) overλ ∈P (α,β) is attained at the product
measure λ=α×β. Thus, for any λ ∈P (α,β),

(50) Entµ×ν(λ) ≥ Entµ(α)+Entν(β),

and equality holds if and only if λ=α×β.
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Proof. There are probably at least 5 different ways to do this. A mundane but straightforward
approach is by calculus: (i) verify that the mapping (λx,y ) 7→ Entµ×ν(λ) is a convex function of
the vector λ, so the only critical points are minima; and (ii) use Lagrange multipliers to verify
that the only critical points are at product measures. A longer but more illuminating argument
uses the characterization (48) of relative entropy. For any probability measure λ ∈ P (α,β) the
margins are α and β, so if

(X1,Y1), (X2,Y2), . . .

are i.i.d. λ, then marginally X1, X2, . . . , Xn are i.i.d. α and Y1,Y2, . . . ,Yn are i.i.d. β. Consequently,{
n∏

i=1

dλ

dµ×ν (Xi ,Yi )

}1/n

=
{

n∏
i=1

dα×β
dµ×ν (Xi ,Yi )

}1/n {
n∏

i=1

dλ

α×β (Xi ,Yi )

}1/n

=
{

n∏
i=1

dα

dµ
(Xi )

}1/n {
n∏

i=1

dβ

dν
(Yi )

}1/n {
n∏

i=1

dλ

α×β (Xi ,Yi )

}1/n

→exp{Entµ(α)+Entν(β)+Entα×β(λ)}.

The final exponential is minimized when λ=α×β, for which choice Entα×β(λ) = 0. But

exp{Entµ×ν(λ)} = lim
n→∞

{
n∏

i=1

dλ

dµ×ν (Xi ,Yi )

}1/n

,

by (48), so the result (50) follows. �

Given a function f : X ×Y →R, denote by fx : Y →R and fy : X →R the functions obtained
by “freezing” the first and second arguments of f , respectively, that is, fx(y) = f (x, y) = fy (x).
Write fx+ =∑

y f (x, y) and f+y =∑
x f (x, y).

Corollary 4.10. Let µ and ν be probability measures on X and Y , respectively, and let f be a
probability density on X ×Y relative to µ×ν. Then

(51) Entµ×ν( f ) ≤∑
x
µxEntν( fx)+∑

y
νy Entµ( fy )

Proof. The right side of the inequality can be written as∑
x

∑
y
µxνy fx(y) log( fx(y)/ fx+)+∑

y

∑
x
νyµx fy (x) log( fy (x)/ f+y )

=∑
x

∑
y
µxνy fx,y log( f 2

x,y / fx+ f+y ),

and the left side of the inequality (51) is

Entµ×ν( f ) =∑
x

∑
y
µxνy fx,y log fx,y .

Hence, the inequality (51) is equivalent to

0 ≤∑
x

∑
y
µxνy fx,y log( fx,y / fx+ f+y ).

But this follows from Lemma 4.9. �
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4.4. Product measures and log-Sobolev inequalities. Assume now that X ,Y are finite sets
endowed with Dirichlet forms DX and DY , each associated with a reversible, irreducible, ape-
riodic Markov chain. Let µ and ν be the stationary distributions of these chains. Define the
product Dirichlet form D =DX ×DY as follows: for any f : X ×Y →R,

(52) D( f , f ) =∑
x
µxDY ( fx , fx)+∑

y
µyDX ( fy , fy ).

Corollary 4.11. Suppose that both µ and ν satisfy log-Sobolev inequalities relative to the Dirich-
let forms DX and DY , with log-Sobolev constants CX and CY , respectively. Then µ×ν satisfies
a log-Sobolev inequality with respect to the product Dirichlet form D defined by (52), with log-
Sobolev constant ≤ max(CX ,CY ), that is, for every non-constant function f : X ×Y →R,

(53) Entµ×ν( f 2) ≤ max(CX ,CY )D( f , f ).

Proof. This is an immediate consequence of Corollary 4.10 and the definition (52). �

NOTE. This clearly extends to products with more than two factors, by induction. Thus, in
particular, if DN is the product of N copies of a Dirichlet form D on X , then the log-Sobolev
constant C of DN is independent of the number N of factors.

Example 4.12. (Ehrenfest Urn) Let D be the Dirichlet form on the two-point space X = {−1,1}
defined in Example 4.7, and consider the product Dirichlet form DN on X N , as defined by
(52), but with N factors instead of only 2. Then N−1DN is the Dirichlet form associated with the
Ehrenfest random walk on the hypercube X N . (Note: The reason for the factor 1/N is that in the
Ehrenfest random walk, at each time only one of the coordinate variables is reset.) Therefore,
by Corollary 4.11, the log-Sobolev constant of the Ehrenfest chain is bounded above by C N ,
where C is the log-Sobolev constant of the two-point chain (Example 4.7). By Theorem 4.6, it
follows that the uniform probability distribution µ = µN on the hypercube {−1,1}N satisfies a
concentration inequality (44), with C replaced by C N . In particular, for every f : {−1,1}N → R

with pseudo-Lipschitz norm ≤ 1,

(54) µN { f ≥ EµN f + t } ≤ exp{−t 2/C N }.

This should be compared with McDiarmid’s inequality: McDiarmid gives a better constant C ,
but requires that the function f be 1−Lipschitz, whereas (54) requires only that f be pseudo-
Lipschitz.

4.5. Log-Sobolev inequalities for Gaussian measures.

Theorem 4.13. The standard Gaussian probability measure γ on Rn satisfies a log-Sobolev in-
equality with log-Sobolev constant independent of dimension n.

A number of different proofs are known. Perhaps the most elegant uses the fact that the
Ornstein-Uhlenbeck process has a spectral gap independent of dimension, and uses this to de-
duce log-Sobolev via integration by parts. See the book by LEDOUX, ch. 5 for details. The proof
to follow, due to Gross, avoids use of either stochastic calculus or semigroup theory, instead
relying on the Ehrenfest random walk (Example 4.12) together with the central limit theorem.
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Proof. We will deduce this from Example 4.12 and the central limit theorem. Consider first the
case n = 1. Let f : R→ R be a smooth function with compact support. For each N ≥ 1 define a
function F : {−1,1}N →R on the N−dimensional hypercube by setting

FN (x1, x2, . . . , xN ) = f

(
1p
N

N∑
j=1

x j

)
.

By Corollary 4.11 (see also Examples 4.7–4.12), there is a constant C <∞ independent of N such
that

EntµN (F 2
N ) ≤CDN (FN ,FN )

where DN is the product Dirichlet form for D = the Dirichlet form on the two point space {−1,1}
and µN is the uniform distribution on {−1,1}N . By the central limit theorem, the distribution of∑N

i=1 xi /N 1/2 converges to the standard normal distribution γ, so

lim
N→∞

EntµN (F 2
N ) = Entγ f 2

(because f 2 log f 2 is a bounded, continuous function). Thus, to establish the log-Sobolev in-
equality (38), it suffices to show that

lim
N→∞

DN (FN ,FN ) = 1p
2π

∫
f ′(y)2 exp{−y2/2}d y.

For any sequence x = (x1, x2, . . . , xN ) ∈ {−1,1}N denote by xi+ and xi− the elements of {−1,1}N

obtained from x by replacing the entry xi with +1 (for xi+) or with −1 (for xi−). Then

DN (FN ,FN ) = 2−N
∑

x∈{−1,1}N

N∑
i=1

1

4
(FN (xi+)−FN (xi−))2

= 2−N
∑

x∈{−1,1}N

N∑
i=1

(N−1 f ′(
n∑

i=1
xi /

p
N )2 +o(N−1))

= 2−N
∑

x∈{−1,1}N

f ′(
n∑

i=1
xi /

p
N )2 +o(1)

−→ 1p
2π

∫
f ′(y)2 exp{−y2/2}d y,

by the central limit theorem. �
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