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Chapter 7. Chi Squared Tests.

Example 7.A (Weldon’s Dice). In 1894 the biologist Frank Weldon sent to
several British statisticians the results of a large number of tosses of a set of dice.
Weldon and his assistants had tossed a set of 12 ordinary six-sided dice and counted the
number of the 12 exhibiting an up-face of 5 or 6. They had repeated this process 26,306
times; the results are shown in column two of Table 7.1.

Table 7.1. Weldon’s Dice Data. The results derived from 26,306 rolls of a set of 12
ordinary dice, compared to the counts expected under the hypothesis that the dice are fair.

No. of Dice X
showing 5 or 6 Observed Theory Difference
0 185 203 -18
1 1149 1217 —68
2 3265 3345 -80
3 5475 5576 -101
4 6114 6273 -159
5 5194 5018 176
6 3067 2927 140
7 1331 1254 77
8 403 392 11
9 105 87 18
10 14 13 1
11 4 1 3
12 0 0 0
Total 26,306 26,306 0

The chance that a fair die will show 5 or 6 is 1/3; if 12 dice are tossed
independently of one another, the number X of 5’s or 6’s will have a Binomial (12, 1/3)
distribution. The “Theory” column gives the expected counts under this hypothesis. For

12
example, for X = 2 we have 26,306 x( 5 )(%)2(%)10 =3,345.366 = 3,345. Weldon

thought the agreement was acceptable; one of his correspondents, Karl Pearson,
disagreed. Pearson would reject the “fair dice” hypothesis. This testing problem is not a
simple problem; if only one question is asked (“does the observed count for the outcome
X=2 agree with the theory?”) then an answer can be fashioned without difficulty along

12
the lines of Example 6.D, with n = 26,306 and 6 = ( 5 )(%)2(%)10 =0.12717. To that

question, Weldon’s answer would be the correct one (the observed difference is but 1.48
standard deviations away from “Theory”). But there are evidently 13 different tests to be
performed simultaneously, and they are not independent of one another — the sum of all
the differences is zero.

The problem is one of testing a simple hypothesis (the dice are fair and tossed
independently) against a composite alternative (they are not). The data are the list of
observed values, and they are dependent (since the total 26,306 is considered fixed). In
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order to specify a model we will need to introduce a multivariate distribution appropriate
to this situation (and to others, such as the contingency table problem of Example 6.C).

7.1. The Multinomial Distribution.

The multinomial distribution is, as its name suggests, a generalization of the
binomial. Suppose an experiment may be viewed as consisting of n independent trials,
where in each trial there are k = 2 possible outcomes A,, A,, ..., A,. The outcomes are
assumed to be mutually exclusive (no two could occur on the same trial) and exhaustive
(one of them must occur each trial). On each single trial we suppose the probabilities of
the k outcomes are the same and denote these probabilities by 0,, 0,, ..., 0,, where of

course 0, + 0, + ... + 6, = 1. After completing n trials, the counts for each of the k

outcomes are recorded as X, X,, X;, ... X,, where X, + X, + ...+ X, =n. The list (X,
X5, X3, ... X,) is said to have a Multinomial (n; 6,, 6,, ..., 6,) distribution.

Example 7.B (Binomial). The simplest example of a multinomial experiment is in
fact a binomial experiment: Here k =2, A| = “Success”, A, = “Failure”, X, = #Successes,
X, = #Failures. Here X, is redundant since it can be calculated as X, =n — X, and we do
not bother listing it.

Example 7.C (Roulette Wheel). An American Roulette Wheel spun for n times
will result each turn in the ball dropping into one of 38 slots, thus producing each time
one of the k = 38 different outcomes, A, =“17, ..., A;s =“36", A5, =“0”, A;s =007,
with probabilities 0,,i =1, ... , 38. If the wheel is perfectly balanced 6, = 1/38 for each i.

the count X; is the number of times the ball lands in the slot A;, and X, + X, + ... + Xy =
n.

Example 7.A (Weldon’s Dice, continued). Weldon’s Dice are an example of a
multinomial experiment. Each of the n = 26,306 rolls of 12 dice is one trial, and there are
k = 13 possible outcomes in a trial, with A; = “exactly i of the 12 dice show a 5 or a 6”,

12, i/ ) yiz-i
and under Weldon’s hypothesis 6, =( . )(%) (%)12 ,fori=0,1,2,...,12. Here X, is the
i

number out of the 26,306 trials where a “5 or 6” occurs i times, and X, + X, + X, + ... +
X, =26,306.

The list (X, X,, Xj, ... X,) has a multivariate distribution, and the components are
clearly dependent: they sum to n and if one or more is known that restricts the possible
values of those that remain. For an extreme example, if X, = n, all the remaining X’s
must be 0. The multivariate probability function can be derived by the same argument
(slightly generalized) used in Chapter 1 to derive the binomial probability function. The
distribution is given by

n!

p(x,x,,+,x,16,,0,,---,0,) :ﬁOIX‘Q;z B ifx, +x, 4+ x, =n
x el x, ! (7.1)

=0 otherwise.

The marginal distribution of a single component X (say X;) can be found by a
simple observation: Just call A; a “success” and all other outcomes are grouped together
as “failures”; then X, is the count of the number of successes in n trials with probability
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0, of success on each trial, and probability 1- 6, = 0,+0,+60,... + 6, of failure. And so X,

has a Binomial (n, 0,) distribution! In general,

n!
X 10,6, .0)=—""6°(1-0)" if0<x <n
P 10000 = e T O %) (7.2)
=0 otherwise.

Then, from Section 3.11, we have
E(X;) = n0, and Var(X,) = n6,(1-6,). (7.3)
7.2 Estimation for the Multinomial Distribution.

The principle of maximum likelihood applies to multiple dimensional parameters,
and it give a simple answer for the case of the multinomial distribution. The likelihood
function is

k
L(6,,6,,--,6,) = ﬁe;‘lagz @ for0<@, < 1,;@ =1, 7.4
=0 otherwise.
Eliminating the redundant 6,=1 -0, — 6, — ... — 0, , and taking partial derivatives of the
loglikelihood with respect to each remaining 6, gives
i1og L(6,.6,,--,0,) = ix.log 0, + ixklog (1-6,-6,—---6,_)
20, ¢ 0. " T 06, ¢
X, X,
"6 1-6,-6,——-6,,
XX
6. 6,

Setting these equations equal to zero and solving, we see the maximum likelihood

. ) A X .
estimates are the sample fractions, 6, = —, fori=12,---k.
n

7.3 Testing Simple Null Hypotheses.

Consider the setting of Example 7.C, where we are interested in testing whether
or not the roulette wheel is fairly balanced, based upon a long record of prior results. The
problem is, are all the 38 probabilities equal to 1/38, or are they not? There are in effect
38 separate hypotheses, one of them being redundant (if slots #1 through #37 have
probability 1/38, so does #38). The null hypothesis is simple — it completely specifies the
distribution of the counts as being a particular multinomial distribution — but the
alternative of “unfairness” is highly composite. Any attempt to break the problem down
into 37 or 38 components runs afoul of the multiple testing phenomenon: the chance of
an erroneous conclusion in at least one of 37 tests is certainly not the same as the chance
of being wrong in a particular single one, and the relationship of these chances is hard to
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determine when the tests are, as they would be here, dependent. The general likelihood
ratio test can be applied here, however, and it leads to an interesting result: a test that
Karl Pearson introduced in 1900, partially in response to Weldon’s question about his
dice.

Consider the general problem of testing a simple null hypothesis for a
multinomial distribution. That is, we wish to test

H,: 0,=a,, 0,=a,, ... , 6, = a, where the a, are known pre-specified probabilities, vs.
H,: “otherwise”, meaning at least one of the equalities in H, fails to hold.

For the roulette example we would have all a, = 1/38; for Weldon’s dice we would have

12 i
a;, = ( ) ](3) ( )12 fori=0, 1, ..., 12. The maximum likelihood estimates under H, are
i

obvious (there is only one choice!), and the maximum likelihood estimates with no
restrictions are the sample fractions as given in Section 7.3. The likelihood ratio test will
then reject for small values of

_ L(a,,a,,--,a;) _ L(a,,a,,--,a;)
L(el’ez"“’ek) L(J;I ’)Cn2 50t ’XTk

X X Xk
b
X Xy Xk

where m, = na, = E(XIH,). Now “reject if A is small” is equivalent to “reject if —log.A is

large,” and the likelihood ratio test can be seen to have the form: Reject if

—loge/l——ZIOg ( J ZX log, ( )> C. (7.5)

i=1

The test can indeed be carried out in this form, as we shall see, but a different form, one
that approximates this, has become much more popular. That test is the Chi-squared test;
it rejects Hy if

k

_ 2
xzzz—(xi m) .

i=1 m,

1

The derivation of this approximation to be given here is only sketched, intended
to show how two apparently dissimilar expressions can in fact be approximations to one
another. The argument uses the Taylor Series expansion of a function f(x) about a value
m,

(x -

Jx) = fm)+(x —m) f*(m) + ———— f"(m)+Rem (7.6)

where the remainder will be small for x near m if f(x) is smooth in that neighborhood.

k
And it uses the identity » (X, —m)=n-n=0. (7.7)

i=1
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We apply (7.6) with f(x) = xlog,(x/m), noting in that case f(m) = 0, f'(m) = 1, and f’(m) =

1/m, and so f(x):(x_m)_i_%(X—m)

k X
—log, A = ZX,. log,| —+
m.

i=1 i

+ Rem. We then have

k k _ 2 k
=N (X, —m)+ 52M +Y Rem(i), using (7.6),
i=1 i=1 m, i=1

L

k _ 2
=0+ %ZM +Rem,, using (7.7),
i=1 m;

_ 142
=5X +Rem2.

It can be shown using advanced methods that under the null hypothesis H,, the
remainder Rem, is (with high probability) small relative to either of the other terms, and
so we have that

—2log, A= x°. (7.8)

The two terms will be numerically nearly the same if both are small, and when one or the
other is large the other will be so also, although then the numeric values of the two may
be quite different. In any event, the likelihood ratio test (which rejects H, when —log.A is
large, or equivalently when —2log A > C), has nearly the same performance characteristics
— the same probabilities of error and power — as the Chi-squared test which rejects when
%’ > C. The Chi-squared test is therefore a close approximation to the likelihood ratio
test. It remains to find the cutoff value C.

7.4 The Distribution of the Chi-Squared Test Statistic.

In order to fully specify the Chi-squared test we need C so that P(y*> > CIH,) = a.

The Chi-squared distributions were introduced in Chapter 5 (Example 5.G), and at first
appearance they would seem unlikely to describe the distribution of this statistic: They
are a family of continuous probability distributions, and this statistic, since it is derived
from a list of counts, must have a discrete distribution. The distribution of %> under the
hypothesis H, is indeed discrete, and while in principle it could be evaluated, it would
depend upon the hypothesized values for the 0’s and the computation would be an
enormous headache, one that would require revision with every new application.
Fortunately the coincidence of names is no accident: The (discrete) distribution of
under the null hypothesis is indeed approximately a (continuous) Chi-squared distribution
with k—1 degrees of freedom, in the sense that probabilities such as P(y> > CIH,) can be
approximated closely if n is large by the corresponding area under the Chi-squared

density with k—1 degrees of freedom, and that area may be conveniently found from
tables or simple computer routines.
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The proof that %* has approximately a Chi-squared distribution with k-1 degrees

of freedom will only be given here for k = 2. In this case the data are (X,, X,) which we
may write as (X, n—X), as in Example 7.B. Write the null hypothesis values as (a,, a,) =
(a, 1-a). Then

2 2
2 _ (Xi_mi)

— (Xl _m1)2 + (Xz _m2)2

m n,
_ (X—nay’ L =X)—n(- a))’
na n(l—a)
_ (X — na)? N (X — na)?
na n(l—a)
(X - na)2
na(l-a)

| X-na ’

Ly na(l-a)
Now, the Central Limit Theorem tells us (since X is an aggregate based upon n trials,
E(X)=na, and Var(X)=na(1-a)) that the variable in parentheses has approximately a
N(0,1) distribution. It follows that ” is the square of an approximately N(0,1) random
variable, and thus itself has approximately a Chi-squared distribution with 1 degree of
freedom. A proof for larger k can be constructed in a similar manner, by re-expressing %’
as the sum of the squares of k—1 random variables that are uncorrelated and each
approximately N(0,1). One consequence of that result can be easily verified. The

expectation of a Chi-squared distributed random variable is equal to its degrees of
freedom, and

As a consequence of this fact, the tables of the Chi-squared distribution can be
used to find the cutoff C for the Chi-squared test. And from the approximation (7.7) the
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same cutoff value can be used for the likelihood ratio test in the form —2log A > C. In
either case,

P(x? > CIH,) = P(-2log.\ > CIH,) = a1,

if C is taken as the value such that the probability of a Chi-squared random variable with
k-1 degrees of freedom exceeding C is o.. The approximation is, like the Central Limit
Theorem, the more accurate the larger nis. As a “rule of thumb,” statisticians usually
regard n “large” if all m; are at least 5, or even if they exceed 3.5. When one or more m,
are smaller than that, it is customary to group values in performing the test, as illustrated
in this example.

Example 7.A (Weldon’s Dice, continued). The data Weldon sent to Karl Pearson
and others have two low expected counts, in categories 11 and 12. We may combine
them with the value in category 10 to get:

Table 7.2. Weldon’s dice data with the last three categories grouped together.

No. of Dice X

showing 5 or 6 | Observed Theory Difference
0 185 203 -18
1 1149 1217 —68
2 3265 3345 —-80
3 5475 5576 -101
4 6114 6273 —-159
5 5194 5018 176
6 3067 2927 140
7 1331 1254 77

8 403 392 11

9 105 87 18
10-12 18 14 4
Total 26,306 26,306 0

In this form, k = 11, and > = (=18)*/203 + (=68)*/1217 + ... + 4*/14 = 35.9 (35.5 if full

accuracy is carried in computing the m;). For k—1 = 10 degrees of freedom the chance a
Chi-squared distributed random variable exceeds 35.5 is nearly equal to 0.0001, hence for
any o .0001 or larger we should reject the hypothesis H,: Karl Pearson’s initial

assessment in 1894 that H, was “intrinsically incredible” was correct.
7.5 Testing Composite Hypotheses.

In Sections 7.3 and 7.4 we considered the likelihood ratio and Chi-squared tests
for testing simple null hypotheses, null hypotheses that completely specify the
distribution of the list of counts. Most applications of these techniques require one or
more parameters to be determined under the null hypothesis, to be estimated using the
same data as are at hand to test the hypothesis.

Example 7.A (Weldon’s Dice, Continued). When Weldon was confronted with
the results of Pearson’s analysis, he suggested that perhaps the dice may in fact be
slightly weighted towards 5 and 6; they may be independently tossed with the same
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chance 0 of a 5 or 6, but that chance is not exactly 1/3. Weldon was in effect suggesting
that Pearson should test the null hypothesis that the table represents count from a
Binomial (n, 0) distribution, rather than a Binomial (n, 1/3) distribution, where 6 would

be determined from the data. Weldon found from the data of Table 7.1 that the total
number of 5°s and 6’s in the entire 12x26,306 = 315,672 dice tossed is
0x185+1x1149+2x3265+ ... +11x4+12x0 = 106,602. Then if we consider the entire data
set as a gigantic experiment where 315,672 dice produce a count of 106,602 showing 5’s
or 6’s, the maximum likelihood estimate of 0 is 106,602/315,672 = 0.33769862, slightly

larger than 1/3. Table 7.2 shows Weldon’s data with the “Theory” column recomputed

12 | .
according to m, = 26,306 x( _ )(.33769862)’(.66230138)12_’ fori=0,1,2,...,12.
l

Table 7.2. Weldon’s Dice Data. The Theory column has been recomputed using the
maximum likelihood estimate of the probability of a 5 or 6, namely 0.33769862.

No. of Dice X

showing 5 or 6 Observed Theory Difference

0 185 187.4 -2.4

1 1149 1146.5 2.5

2 3265 3215.2 49.8

3 5475 5464.7 10.3

4 6114 6269.3 -155.3

5 5194 5114.7 79.3

6 3067 3042.5 24.5

7 1331 1329.7 1.3

8 403 423.8 -20.8

9 105 96.0 9.0

10 14 14.7 -0.7

11 4 1.4 2.6

12 0 0.1 -0.1

Total 26,306 26,306 0.0

If * is recomputed from these numbers, grouping the last three categories

together, we find X2 = 8.2, much smaller than the value 35.5 found before. Is this

procedure legitimate? Can we allow the data to play a role in choosing the null
hypothesis? And if we do, is the comparison with a Chi-squared distribution with k—1

29 ¢

degrees of freedom still valid? The answers turn out to be “yes”, “yes”, and “not quite”.
The testing problem we are faced with here can be described formally as follows:
The data consist of observed counts (X, X,, Xj, ... X,) modeled by a multinomial (n; 0,,
0,, ..., 0, distribution. We wish to test a composite null hypothesis vs. a composite
alternative. In particular, we wish to test
H,: 6,=a,(0), 6,=a,(0), ... , 0, = a,(0) where the a,(0) are known functions of an

unknown parameter 6, which may be one or more dimensional, vs.
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H,: “otherwise”, meaning at least one of the equalities in H,, fails to hold.
We emphasize that this is testing a different hypothesis than before; we no longer insist
the dice be perfectly balanced and now only test if the data are characteristic of some
binomial distribution, not necessarily one with 6 = 1/3. We allow the data to select the
value of 6 by maximum likelihood, as provided for by the general likelihood ratio test.
We then compute the Chi-squared statistic from

(X, — m,(6))’
; m(6)

where ml.(é) = nal.(é) are the maximum likelihood estimates of the expected counts. The
theory of these tests is more complicated than for the simple case (indeed, Karl Pearson
got the wrong answer in his initial publication in 1900), but the correct answer is simple
nonetheless: If the maximum likelihood estimate of 0 is calculated as assumed for
Fisher’s Approximation Theorem in Chapter 5 (i.e. from differentiating the likelihood
function or loglikelihood function), then under the null hypothesis > has approximately a
Chi-squared distribution as before, but with only k — 1 — m degrees of freedom, where m
is the number of parameters estimated under the null hypothesis.

In the case of Weldon’s dice data, m = 1 and after grouping k = 11, so the value ¥

= 8.2 should be compared with a Chi-squared distribution with 11 — 1 — 1 =9 degrees of
freedom, rather than 10 as was the case for testing a completely specified hypothesis.
The value 8.2 is very nearly the median of the Chi-squared distribution with 9 degrees of
freedom; Weldon’s second hypothesis cannot be rejected.

Strictly speaking, to use this approximation the estimate 6 should be found from
the same data used to compute *. With Weldon’s data we found 6 from the original
data, but computed x° for the grouped data. As long as the grouping is not severe the
effect is minimal, however.

The intuitive rationale for this adjustment for an estimated 0 should be clear: As

long as the data are allowed to choose the closest from among a class of null hypotheses,
we should expect the fit to be closer. In the case of Weldon’s data, choosing 0.33768862
instead of 1/3 as the value for 0 reduced ” from 35.5 to 8.2. In that case there does
appear to be a slight bias to the dice, but even if the dice had been absolutely perfectly
balanced there would have been a reduction in % unless exactly 1/3 of the 315,672 dice
showed 5 or 6. To allow for this anticipated improvement, we compensate by reducing

the standard for comparison, by reducing the degrees of freedom. In the example, before
reduction the expected value of the comparison distribution is 10; after reduction it is 9.

7.6 Testing Independence in Contingency Tables.

Galton’s data on the heights of married couples was introduced in Chapter 6; they
are given again here, with the addition of the marginal totals.
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Table 7.3. Galton’s data on the relative heights of husbands and wives for 205 married
couples (Galton, 1889, p. 206)

Wife: Tall Medium Short Totals
Tall 18 28 14 60
Husband:  Medium 20 51 28 99
Short 12 25 9 46
Totals 50 104 51 205

These data are an example of a contingency table, a cross-classification of a
number n (=205, here) of “individual cases” (couples, here) according to two different
classificatory criteria. These data are then a list of counts, but because of their
relationship to the classifying factors they are a “rectangular list” that is best described
with double indices. Accordingly, let us denote the count in the (i,j)th “cell” — the entry
in row 1 and column j — by Xj;, and so if we have r rows and ¢ columns, there will be rxc

counts in the list, and we will have ZZXU = n. If the two criteria for classification are
i=1 j=1

A (atlevels A, A,, ..., A) and B (at levels B, B,, ..., B_), and we let the marginal totals

be given by X,, = ZXU and X, ; = ZXU , we have the general two-way rxc table,

j=1 i=1

Factor B:
B, B, .. .. B, Totals
A, X X, Xie Xy
A, X5 X5 .. .. X X,
Factor A:
A, X, X, .. .. X, X.,
Totals X4 X, e e X,e n=X,,

Under some circumstances tables such as these can be modeled by a multinomial
distribution; for example, if the n individual cases are distributed at random among the
rxc table cells according to the same probability distribution. Essentially, it as if the table
represents the outcomes from n “spins” of a rectangular roulette wheel. Let 6, =

P(A;MB,) be the probability that an individual case is assigned to the (i,j)th cell. Then

ZZOU =1 and we can arrange the probabilities in the same pattern as the data:

i=1 j=1
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B, B, . . B. Totals
A1 e11 e12 elc e1+
A2 e21 e22 tee tee eZC e2+
Factor A:
A, 0, 0, .. e 0,. 0,
Totals 0, " e s 0,. 1=0,,

We may then test the hypothesis that the categories are independent of one
another; that is, that P(A;"B;) = P(A)P(B)) for all i and . In terms of our notation this

becomes
Hy: 0;=a,(0,,.0,,,...0,,,6,,,0,, .0,)=0,.x6,;foralliand j, vs.

H,: “otherwise”.

This formulation places the problem exactly in the class considered in Section 7.5, with
the known functions a;; depending upon the marginal probabilities
9,..9,,,...0,,,0,,,0,, .0,., which must then be estimated, based upon the data using the

method of maximum likelihood.
The estimation of the marginal probabilities is a simple matter, since, for

example, the row marginal total counts X,,,X,,,...X,, have a multinomial (n;
0,,.9,,,...0,,) distribution, we have from Section 7.2 that the maximum likelihood

estimates are the fractions X,,/n, X,,/n,..., X,,/n. Similarly, the maximum likelihood
estimates of the column marginal probabilities are X, ,/n, X,,/n,..., X, /n. The under the
null hypothesis H, the maximum likelihood estimates of the cell probabilities 6, are the

products (X,/n)(X,;/n), and the maximum likelihood estimates of the expected counts are

i, = n(X_) e R
v n n n

The Chi-squared statistic then becomes

( (X'+X+ | )Jz
X - =%
c y n

%222,21 (XX) ’

<

i=1 j i+ +j

n

While at first it may appear that r 4+ ¢ parameters are being estimated under the
null hypothesis, in fact since the row margins and the column margins each sum to 1.0, in
each case one parameter is redundant (e.g. the first r—1 row marginal probabilities
determine the rth). And so there are but (r—1) + (c—1) parameters being estimated. The
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degrees of freedom for this Chi-squared statistic is therefore rc — 1 — [(r—1) + (c—1)] =
(r=1)(c-1).
Example 7.D (Galton’s data, continued). Here we find that

L) (50

= Xi+X+j B (60 : 50)
n 205
=291

with (r—1)(c—1) = 2x2 = 4 degrees of freedom. Thus % is even smaller than its expected

+...’

-3

r
i=1j

value of 4, and this test supplies no grounds for rejecting the hypothesis that in Galton’s
society marriage partners were selected without regard to height.

7.7 Tests of Homogeneity.

Any statistical analysis involves an assumed model. Sometimes, as with
scientifically randomized surveys, the appropriateness of the model can be guaranteed by
design. More often the model will represent a plausible reference frame and the strength
of the conclusions will vary according to the degree of model plausibility and the
sensitivity of the inferences to departures from the model. The contingency test analysis
of the previous section was based upon the multinomial model: the n individual cases are
modeled as being distributed among the rxc cells of the table independently according to
rxc probabilities, which may or may not correspond to the null hypothesis of
independence. This is referred to as Full Multinomial Sampling.

If one set of marginal totals is fixed, either by design or after conditioning, the
Product Multinomial Sampling model may be appropriate. If both marginal totals are
fixed, the Hypergeometric Sampling model may be a reasonable basis for analysis. We
shall introduce these models through examples. Both of these models are intimately
related mathematically to the Full Multinomial Sampling model (and all are related to
another model, the Poisson model, to be introduced later). This mathematical
relationship will permit us to perform the same formal analysis in all cases, although the
terms we employ in describing the hypotheses and the interpretations we make are subtly
different.

Example 7.E (The Draft Lottery). In 1970, the US conducted a draft lottery to
determine the order of induction of males aged 19 — 26. The 366 possible birthdates
(including February 29) were put in capsules and drawn “at random” from a bowl; the
order in which they were selected was their “drawing number.” The following table
summarizes the results (from S. E. Fienberg, “Randomization and Social Affairs: The
1970 Draft Lottery,” Science (1971), Vol. 171, pp. 255-261). The question at issue is,
was the lottery fairly conducted?
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Table 7.4.
Drawing Months
numbers [Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec | Totals
1-122 9 7 5 8 9 11 12 13 10 9 12 17 |122
123-244 (12 12 10 8 7 7 7 7 15 15 12 10 |122
245-366 |10 10 16 14 15 12 12 11 5 7 6 4 122
Totals 31 29 31 30 31 30 31 31 30 31 30 31 |366

Example 7.F (Right-Handedness). To what degree is the propensity to be right-
handed socially determined? Is it the same in different cultures? In different historical
epochs? Two psychologists addressed this question by examining works of art that
portrayed activities that could be judged as being done right- or left-handedly. (Stanley
Coren and Clare Porac, "Fifty Centuries of Right-Handedness: The Historical Record"
Science (1977), Vol. 198, pp. 631-632.) The following tables summarize their findings,

looking at the data in two different ways.

Table 7.5. Counts of 1180 art works showing activity that can be categorized as
left- or right-handed, (a) by geographical area, and (b) by historical epoch.

(a)

Central Europe
Medit. Europe
Middle East
Africa

Central Asia
Far East
Americas
Total

(b)

Pre 3000 BC
2000 BC
1000 BC
500 BC
~0 BC
AD 500
AD 1000
AD 1200
AD 1400
AD 1500
AD 1600
AD 1700
AD 1800
AD 1850
AD 1900
AD 1950
Total

Right Left Total % Right
312 23 335 93%
300 17 317 95%

85 4 89 96%
105 12 117 90%
93 8 101 92%
126 13 139 91%
72 10 82 88%
1093 87 1180 92.6%
35 4 39 90%
44 7 51 86%
89 10 99 90%
134 8 142 94%
130 4 134 97%
39 3 42 93%
57 7 64 89%
40 1 41 98%
44 6 50 88%
63 5 68 93%
68 4 72 94%
66 5 71 93%
95 6 101 94%
38 1 39 97%
71 6 77 92%
80 10 90 89%
1093 87 1180 92.6%
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Example 7.G. (First Word Usage). In a study of literary characteristics, samples
of prose from the British economists James Mill and his son John Stuart Mill were
examined, and a count was made of the choices of the words they used to start sentences.
Do the two have the same propensity to choose initial words for sentences?

Table 7.6 (O’Brien and Darnell, 1982, p. 116)

This/It/
First Word: But Where Thus/And  A/By  Allothers  Totals
James Mill 39 26 339 33 638 1075
John Stuart Mill | 38 16 112 11 274 451
Totals 77 42 451 44 912 1526

Example 7.H (Severity of Smallpox and its Relationship to Vaccination) Here is
a data set published by Karl Pearson in 1910 (in Biometrika, Vol. 7, p. 257), that gives
data collected by Dr. John Brownlee on the relationship between the severity of an attack
of smallpox and the length of time since vaccination. Is there evidence here for a
beneficial effect of vaccination? There are five degrees of severity, from most severe
(Haemorrhagic) to least (very sparse).

Table 7.7
Severity of Attack

Years since  Hamorrhagic Confluent Abundant Sparse Very Totals

Vaccination Sparse
0-10 0 1 6 11 12 30
10 -25 5 37 114 165 136 457
25 -45 29 155 299 268 181 932
Over 45 11 35 48 33 28 155
Unvaccinated 4 61 41 7 2 115
Totals 49 289 508 484 359 1689

7.8 Sampling Models for the Examples.

In the case of Galton’s table (Table 7.3), the data were gathered as a part of a
larger study of human heredity. He published an account book (the “Record of Family
Faculties”) that people might use for recording their family history, and he offered £500
in prizes (a very large sum then) for the best and most complete records he received. He
obtained 205 families’ data in this way, and those data included the married couple’s
heights. Was this a truly random sample from a population of married couples? If we
consider that it effectively was, and that Galton classified their heights according to a pre-
specified definition of the categories “Tall”, “Medium”, and “Short” (the definition was
different for the two sexes), the assumption of full multinomial sampling would be amply
justified. The actual sample probably missed this ideal, but not by much, unless
willingness in Victorian society to record personal data were related to height. The
categories may have been pre-specified, but they more likely were simply a convenient
grouping of data he collected: the marginal totals would then be approximately fixed by
definition. In that case there is hardly a random distribution of heights among categories,
even if choices of mates were made completely without regard to height. Since rigorous
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fulfillment of the full multinomial model is rare, and knowledge of the exact conditions
under which data are gathered even rarer, it is useful to ask how such departures might
influence the conclusions.

Example 7.E (The Draft Lottery) presents one extreme case of a departure from
Full Multinomial Sampling. The row totals are fixed by definition (each row consists of
a third of the data), and while the column totals vary slightly, the lengths of months are
historically and astronomically pre-determined. A skeptic might ask, why divide the
drawing numbers into thirds and the year into months, why not sixths and quarters? But
if we assume (as seems reasonable) that the grouping was not dependent upon the data,
and was not done to mask or accentuate features of the association of the two factors,
then this example represents an extreme case in that both margins are fixed by design.
This is called the Hypergeometric Sampling model because the probability distribution of
the list of counts under the null hypothesis is called a hypergeometric distribution; the
name is derived from the use of the term in the branch of mathematics called “special
functions”, where the null hypothesis probabilities appear. The null hypothesis here is
clear: all possible assignments of the numbers 1 to 366 to birthdates are equally likely.
The counting arguments of Chapter 1 can be used to find the probabilities of these
assignments; for example, the probability under H, that the counts would arise exactly as
given in Table 7.4 is

P(Table) = P(Jan)P(Feb| Jan)P(Mar | Jan,Feb)--- P(Dec | Jan — Nov)
122122 \(122\ (113110112 17\ 10 4
L i) e i) (o)
366 335 31
I ) B
122!122!1122!
_ (9!12!10!7!12!10!~--17!10!4!)

( 366! )
31129!---31!

The analysis of this table will be discussed later.

On the other hand, Examples 7.F, 7.G, and 7.H might be viewed as belonging to
an important class of problems where only one of the table’s set of marginal totals is
reasonably treated as fixed by sample design, and where it is convenient to do the
analysis conditionally on the marginal totals. The artists’ choices of “models” might
plausibly be considered to be effectively random with regard to handedness, so each row
in Tables 7.5 (a) and (b) would then be a multinomial experiment (with k=2); the
question then would be, is P(Right-handed) the same in every row? The choice by a
writer of the first word of a sentence might be considered essentially random (according
to that writer’s propensities) and the question there is, are the propensities the same for
the two writers? Given the date and fact of vaccination, the severity of a subsequent
smallpox attack might follow a multinomial distribution (with k=5), but the probabilities
of the degrees of severity might differ with age of vaccination. In all three cases the row
counts might be considered to be multinomial distributed, and the independence of the
rows could be defended, but the distribution of counts between rows is another matter.
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The choices for the row totals may even have been predetermined (say if the art works
resulted from a stratified sample that guaranteed a certain representation for each area,
epoch). But even if not pre-determined, we cannot in any case consider the counts to
have arisen from randomly allocating individual artists, sentences, or vaccinees to
different rows; we cannot reasonably say the individuals were randomly row-assigned,
and an analysis that treats the row margins as given has appeal.

Let us then consider the Product Multinomial Sampling model, where a table of
counts {X;;1=1,2, ..., 1, j=1, 2, ..., c} satisfies

ij®

(1) Each row i, (X;;, X,, ..., X,.), has a multinomial (c; 6,,, 0, ..., 0,) distribution,

and
(2) The rows are mutually independent; note that now 6, + 6,, +... + 6,, =1 for

each row.

Categories B: B, B, B, Totals
A, 6, | 6, 0, 1
A, 6, | 6, 6, 1

Rows A:
A, 0, 0, 0, 1
Averages 0, ) 0. 1

The hypotheses to be tested are
H,: (6;,0,, ...,0,) =(0,,6,, ...,0,) for all i, vs. H;: “otherwise”.

That is, we test if the probabilities are the same for each row. For example, that
P(Right-handed|Pre-3000 BC) = P(Right-handedlAD 1800), or
P(“Where”lJ. Mill) = P(“Where”lJ. S. Mill), or
P(*“Confluent”l0-10 years) = P(“Confluent”lunvaccinated).

The name of this model comes from the form of the likelihood function:
Under H,;:

4 X!
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With no restrictions:

1(6,,,6,,,--,6..) :ﬁ X! ﬁ(eifnggiz 6%

C
i=1 1 |i=1
[1x;!
j=1

It follows from Section 7.2 that the respective maximum likelihood estimates are, under

N X+j ~ Xi+X+j o
H,. 6 = and m; =————:; under no restrictions,
++ ++

A X, A
6, = —* and the MLE of the mean is X, 6, = X;,. The likelihood ratio becomes

ij i+
i+

A Xif
r c m.. '
A=TITT1 2 |
i=1 j=1 Xij
This is the same as for the Full Multinomial Sampling model, and so it will lead to the
same test, the Chi-squared test! With row totals fixed there are c—1 “freely varying” cells
in each of r rows, for a total of (c—1)r, and there are (c—1) estimated parameters, leading
to (c—1)r — (c—1) = (r—1)(c—1) degrees of freedom, just as in the case of full multinomial
sampling. This means that both models use exactly the same test!

For the Hypergeometric Sampling model the Chi-squared test statistic can be
shown under the null hypothesis to also have approximately a Chi-squared distribution
with (r—1)(c—1) degrees of freedom; that is, the same test can be used for all three models
and in this important sense we do not have to worry as to which of the three models is
appropriate. Whether Galton fixed the numbers of heights for wives, for husbands, for
both, or for neither, his hypothesis that mates are selected without regard to height cannot
be rejected.

While the tests are the same in the three cases, the hypotheses are different. With
product multinomial sampling we test the hypothesis of homogeneity, that is, the row
probabilities are all the same — the rows are homogeneous in that they all reflect samples
from the same distribution. With the row classification being assigned by design, it
would simply not make sense to talk about the probability of the being in the ith row, and
so the hypothesis of independence does not apply here. With hypergeometric sampling
neither row nor column probabilities apply; we test the hypothesis that all of the possible
arrangements of the n individuals among the tables cells are equally likely, among those
consistent with the marginal totals. Sometimes this is called the hypothesis of no
association between row and column factors.

The mathematical relationship among the models is simple: The conditional
distribution of a full multinomial table of counts, given a set of marginal totals, is product
multinomial. The conditional distribution of a product multinomial table of counts, given
the remaining set of marginal totals, is hypergeometric. These claims are easy to verify
and left for an exercise.
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In summary, we have a general class of tests for counted data, all derived from the
likelihood ratio test. These Chi-squared tests are all of the form

observed count — expected)’
1= Z ( p )

all categories

expected

where “expected” = E(observed countlH,), or, when this is incompletely specified, the
maximum likelihood estimate of E(observed countlH,).

The test is accomplished by comparing this statistic with a percentage point of a
Chi-squared distribution with the appropriate number of degrees of freedom. The
situations we have encountered are

1) Test of goodness of fit, completely specified H,, k categories, and k-1 df.
(Example: Roulette)

2) Test of goodness of fit, incompletely specified H,, k categories, and k-1 —
(#parameters estimated) df. (Example: Testing for a binomial distribution)

3) Testing independence with an rxc contingency table with full multinomial
sampling, and (r—1)(c-1) df.

4) Testing homogeneity with an rxc contingency table with product multinomial
sampling, and (r—1)(c-1) df.

5) Testing no association with an rxc contingency table and hypergeometric
sampling, and (r—1)(c-1) df.

It is important to bear in mind that while the likelihood ratio idea can be applied
for any size sample, the use of a Chi-squared distribution for reference is an
approximation to a discrete distribution and will only give serviceable answers if the size
n of the sample is at least moderately large. As a rule of thumb we look for “expected”=
3.5 in all cells, but the larger n is, the better the approximation. The Chi-squared
statistics are derived from the likelihood ratio test and the test can as well be applied in
the form, reject if —2log,A > K, K taken from the same Chi-squared reference distribution.

The tests will give similar but not necessarily identical results; there is no clear
preference between them on the basis of power. The study of which is more powerful for
which alternatives is an ongoing research problem. These tests are sometimes described
as “omnibus” tests, in that they test a fairly specific null hypothesis against a very broad
class of alternatives, and thereby guard against a sort of “data dredging” where one
searches out a largest deviation (there always will be one!) and tests as if it were the only
one that was ever of interest.

7.9 P- Values.

The approach to testing that has been outlined is the so-called classical approach,
where a particular level o is specified, often at 5% or 1%, and on that basis a simple

“accept or reject” decision is made. This approach was developed at a time when the use
of tabled values was a practical necessity, but it has the unattractive feature of elevating
unimportant differences to a decisive level. For example, for a Chi-squared distribution
with 6 df, a table will tell you that the upper 5% point is 12.5916. Taken literally, this
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would mean we should reject H, with %> = 12.60 but accept H, with 12.50. This would

be unpalatable even if we were not employing the Chi-squared distribution only as an
approximation. Not only is “5%” only a social convention, but the evidence against the
null hypothesis is about the same in both cases, and a way of expressing this as the slight
difference it is would be desirable. With the ability to compute an exact percentage point
easily the practice of quoting “P-values” has grown. For a given test statistic (say x°) and

form of test (say “reject if > > K”), the P-value of the observed test statistic is the
smallest level o at which the null hypothesis would be rejected. In the above example, )
= 12.60 would have P = 0.0498, while xz = 12.50 would have P = 0.0516, making the

slight difference visible. When tables are used, P is often reported through inequalities:
as with “P> .05, or “P <.05”, or “P<<.01” (meaning P is much less than .01).

7.10 A Further Discussion of the Examples.

Most applications of a statistical method encounter peculiarities. Either aspects of
a study’s design do not quite fit with statistical theory, or the scientific questions are not
quite answered by the analysis provided by that theory. In the case of Galton’s data, we
have already discussed potential problems with the sampling method and category
definition, but neither of these seems like a decisive challenge to the analysis. One other
point is worth remarking on, however. The Chi-squared test is an omnibus test of a null
hypothesis against a bewildering variety of alternatives. This can be seen as a virtue; it is
also a limitation. The statistic and the test are completely insensitive to the ordering of
the categories: The test is unaffected if “Tall” is placed between “Short” and “Medium”.
A consequence is that the test, by protecting against all possibilities, may have lower
power than others for some alternatives. We have seen one example of this phenomenon
in Chapter 6, with the test for a normal distribution mean of H,: pu=p, vs. H;: u#u,. That

test achieved its goal at the expense of lower power against H,: u>,, lower than a test

designed for that specific set of alternatives. In the case of contingency tables with
ordinal categories, such as Galton’s, directed tests are available that can have greater
power for ordered alternatives. (See Agresti, 1984, for example.) In Galton’s case such
an analysis does not change the conclusion. Interestingly, Galton himself tried an ordinal
analysis. He focussed upon the Table’s corners, noting that a total of 32 couples were
“Short” married to “Tall”, and there were 27 couples with both husband and wife in the
extreme groups. These numbers were so close as to be statistically indistinguishable (if a
coin produced 32 heads and 27 tails no one would question its fairness). Galton’s
conclusion was “There are undoubtedly sexual preferences for moderate contrast in
height, but marriage choice is guided by so many and more important considerations that
questions of stature appear to exert no perceptible influence upon it.” (Galton, 1886, p.
251) The effect, if present, is sufficiently small that it would require much more data to
reliably detect it.

Low drawing numbers in the Draft Lottery put young men at serious risk in 1970,
and the lottery was carefully scrutinized for signs of unfairness. The data appeared to
show lower numbers assigned to later birthdates (e.g December) than to earlier (e.g.
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January). The hypothesis of hypergeometric sampling does seem like the reasonable one
to entertain here. The Chi-squared statistic for Table 7.4 is x> 32.16, with 2x11 = 22 df,

corresponding to a P-value of 2%. Thus the lottery does not seem to have achieved the
desired level of randomness. This is discussed and confirmed by other analyses by
Fienberg (1971).

The data on right-handedness can at best be considered as an essentially random
sample of the way artists choose to depict people, and that choice itself could be socially
influenced. In addition, the propensity of artists to copy one another could introduce a
dependence among the trials, making even the product multinomial sampling model
suspect. If we accept (as seems plausible) that such dependence is weak, then the values
¥’ = 8.14 (6 df) and x* = 17.04 (15 df) for Table 7.5 suggest homogeneity in the right-

handedness propensity both geographically and historically. An analysis of Table 7.5(b)
that incorporated time order would not lead to a different conclusion. It would be
interesting to examine the three-way classification for which Tables 7.5(a) and (b) are
marginal totals, but those data were not published.

On the face of it, the data of Table 7.6 show a strong indication of very different
styles for the two Mills: * = 21.34 (4 df) and P<<.005. To first appearances, either they

have different styles or a very rare fluke has occurred in these passages. A closer
investigation of the sampling and presentation of these data shows this conclusion
unfounded. One possible criticism would be that sentences are not independent, that each
Mill would avoid too many similar sentence beginnings in close proximity. But that
effect (which might in the aggregate be expected to be weak) would tend to spread out
the distribution in rows and make the styles appear more similar. The real problem with
the analysis lies elsewhere. The data were collected to help decide which Mill wrote an
anonymous book review of the time. The question would have been hopeless if the two
had exhibited the same style. To accentuate differences, the investigators sought out a
way of grouping first words that made the two men look quite different, with the
unfortunate result that the validity of the analysis was destroyed. Indeed, if you take any
two extensive prose selections by the same author (even alternate paragraphs from the
same book) and experiment with ways of grouping “first words™ into five groups, you
can invariably produce the appearance of two quite dissimilar styles! This is discussed
further in a review of the source of Table 7.6, (S. M. Stigler, Review of Authorship
Puzzles in the History of Economics: A Statistical Approach, by D. P. O’Brien and A. C.
Darnell, in Journal of Economic History, June 1983, Vol. 43, pp. 547-550).

The data of Table 7.7 show a strong beneficial influence of vaccination; y* =

214.06 (16 df) and P=0. No doubt the conclusion that vaccination is beneficial is correct,

but there is potentially serious “confounding” here. These data are confined to people
who have experienced some form of attack, and the ages of the people are not given.
Given the time of the study we would expect a strong relationship between age and years-
since-vaccination (no young people could have been vaccinated 45 years before the
attack, and it is conceivable that older people are over-represented in the unvaccinated
group). Modern studies would include age in the analysis and would try to use
longitudinal data — data on the same people followed through time.
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