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Chapter 5. Estimation.

A large class of statistical problems can be formulated as parametric statistical problems: We think of
the data, which may be a univariate X or a multivariate X1, X2, . . . , Xn, as the outcome of an experiment.
Before the experiment is performed, or before the data are observed, their values are uncertain, and they
may therefore be considered as random variables. Our goal is to describe the process that produces the
data; in our formulation that means describing their probability distribution. What makes the problem a
parametric statistical problem is that we are willing to adopt, at least provisionally, a parametric model for
the class of possible probability distributions. In the univariate case this would mean that we are willing to
assume, at least until experience has shown the assumption to be wrong or inadequate, that X has one of a
class of distributions p(x|θ) (in the discrete case) or f(x|θ) (in the continuous case), where the form of the
function describing the distribution is known, and the only remaining question is to determine the value of
θ. In some cases θ may have a natural interpretation as a “state of nature” or a “cause”, but in general we
will simply refer to it as the parameter of the family. If the data were multivariate, the model would be of
the form p(x1, . . . , xn|θ) or f(x1, . . . , xn|θ). We will encounter several examples later where both the data
and the parameter are multivariate, but to fix ideas it is useful to start with simpler situations.

Example 5.A (The Survey, continued). In Chapter 4 we considered an example that fits within the
present framework (Example 4.C), where the data, X, is a count of the number of Chicago Democrats for
the incumbent out of n = 100 interviewed, and by the fact of random sampling we are willing to assume

p(x|θ) = b(x; n, θ)

=
(n

x

)
θx(1− θ)n−x for x = 0, 1, . . . , n

= 0 otherwise,

where θ is a parameter of the distribution p(x|θ); in this case we can interpret θ as the fraction of all Chicago
Democrats for the incumbent. If θ were known, the process that generates the data, as represented by our
model p(x|θ), would be fully specified.

Example 5.B (The Scale, continued). The weighing problem of Example 4.D also fits this framework.
The data X (the recorded weight) has, by our assumptions about the known characteristics of the scale, a
N(θ, τ2) distribution, with τ2 known. Then

f(x|θ) =
1√
2πτ

e−
(x−θ)2

2τ2 for −∞ < x < ∞.

Here the parameter θ can be interpreted as the true weight; if it were known, the distribution of the data
would be fully specified.

It is instructive to contrast our present approach with that of the previous chapter. In both cases, we
assume a model for the probability distribution of the data, or rather we assume a class of models, p(x|θ)
or f(x|θ). There are minor differences in the ways we look at the models. In the previous chapter we
stressed these as conditional (given θ) probability distributions, because we were concerned with modelling
our uncertainty about θ by a probability distribution and finding the “other” conditional distribution (of θ
given X); in this chapter we emphasize considering p(x|θ) and f(x|θ) simply as indexed (by θ) families of
distributions. But these are superficial differences of stress, not real differences of substance: in both cases
this part of the mathematical structure is the same. The real difference is in what we assume about the a
priori probabilities of different values of θ. In this chapter, unlike the previous one, we do not assume the
availability of quantifiable prior information about θ in the form of a probability distribution f(θ).

In effect, dropping this assumption adds generality to our analysis; whatever results we obtain without
assuming an a priori distribution will be accepted by even those scientists who are unable or unwilling
to agree upon a particular f(θ) as representing their prior state of knowledge. But this generality comes
with a cost: we can no longer hope to achieve our ideal goal. With limited data (a small survey, a single
weighing) we will be uncertain about θ, and our ideal goal is to describe this unavoidable uncertainty, that
is, to determine f(θ|x). But without f(θ) or its equivalent, this is impossible. Bayes’s Theorem tells us
f(θ|x) ∝ f(θ)f(x|θ), and we do not have one of the required factors.
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5.1 Point Estimation.

If our ideal goal, determining f(θ|x), is beyond reach without f(θ), we will need to adopt more limited
goals. In this chapter we shall begin to explore what can be done without an a priori distribution, where
our only assumptions involve the family of distributions of the data, f(x|θ). One of the simplest inferential
problems to state, is, which of the distributions f(x|θ) is the right one? Or equivalently, what is our best
guess or estimate of the value of θ that, through the distribution f(x|θ), actually produced the data. A
point estimate is a function of the data, θ̂(X) (or in the multivariate case, θ̂(X1, . . . , Xn) that we hope will
be close to the actual value of θ. We will write θ̂ for θ̂(X) or θ̂(X1, . . . , Xn) when there is no confusion as to
what is meant. Our problem is to choose a function θ̂ and discuss its accuracy.

Ideally, we want an estimate θ̂ that is likely to be near to θ. What does “likely to be near” mean in
this context? The estimate θ̂ = θ̂(X) will be used after the data is at hand, and so we presumably would
want the conditional probability given X to be high that |θ̂(X)− θ| is small. But we cannot calculate that
probability without f(θ|x), we cannot find f(θ|x) without f(θ), and f(θ) is not available. And so we will
fall back upon calculations based on f(x|θ); we will aim to make the conditional probability given θ high
that |θ̂(X)− θ| is small. That is, we will evaluate the accuracy of the function θ̂(X) from the point of view
of “before the experiment,” prior to observing the data. We cannot calculate a posteriori accuracy; we can
find the expected accuracy under several alternative hypotheses. In effect, we consider θ̂(X) as a tool and
judge it by its average effectiveness, since we cannot observe its effectiveness in the single instance when we
use it. To emphasize that θ̂ is being considered as a function of the data, we will refer to it as an estimator
(a tool for estimation), whose particular realized values are called estimates.

Adopting this “before experiment” or “before data” point of view, we have that for each possible hypoth-
esized or given value of θ, X is a random variable with distribution f(X|θ). Hence θ̂(X), a transformation
of X, will have a probability distribution, conceivably a different one for every θ. In principle, we can find
its distribution, say fθ̂(u|θ), and we can check to see if its distribution is concentrated near θ, and if it is
centered at θ. To help us

[Figure 5.1]

discuss accuracy and compare different possible estimators, we will make the following definitions.

We say θ̂ is unbiased if
E(θ̂) = θ, for all possible values of θ. (5.1)

The bias of θ̂ is given by
B(θ) = E(θ̂)− θ. (5.2)

The bias B(θ) represents the average amount by which θ̂ misses θ; positive B(θ) corresponds to overestima-
tion, negative B(θ) to underestimation. We will consider two measures of accuracy; the mean error of θ̂ is
defined to be E|θ̂ − θ|. The mean squared error of θ̂ is

MSE(θ) = E(θ̂ − θ)2. (5.3)

All of these definitions are in terms of the conditional distribution of θ̂ given θ; thus in (5.1) and (5.2),
in the continuous case,

E(θ̂) =
∫ ∞

−∞
ufθ̂(u|θ)du

=
∫ ∞

−∞
θ̂(x)f(x|θ)dx using (2.17),

and the mean error is

E|θ̂ − θ| =
∫ ∞

−∞
|θ̂(x)− θ|f(x|θ)dx,
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while the mean squared error (5.3) is given by

MSEθ̂ =
∫ ∞

−∞
(θ̂(x)− θ)2f(x|θ)dx.

Of the two criteria of accuracy, the mean error may seem the more natural, but mean squared error is
generally the easier to calculate. In fact, we have

MSEθ̂(θ) = E(θ̂ − θ)2

= E[(θ̂ −E(θ̂)) + (E(θ̂)− θ)]2

= E[(θ̂ −E(θ̂))2 + 2(θ̂ − E(θ̂))(E(θ̂)− θ) + (E(θ̂)− θ)2]

= E[θ̂ − E(θ̂)]2 + 2(E(θ̂)− θ)E(θ̂ − E(θ̂)) + (E(θ̂)− θ)2

Now the first term is just Var(θ̂|θ), the third term is (B(θ))2, and the middle term vanishes because E(θ̂ −
E(θ̂)) = E(θ̂)− E(θ̂) = 0, giving us

MSEθ̂(θ) = Var(θ̂|θ) + (B(θ))2, (5.4)

or
Mean Squared Error = Variance + (Bias)2. (5.5)

This simple and elegant relationship captures quantitatively a relationship illustrated in Figure 5.2: there
can be a tradeoff between variance and bias. The total expected error for a particular

[Figure 5.2]

θ, as measured by MSEθ̂(θ), may be considered as due to two sources, the variability of the estimator and
its bias, and we may be faced with a choice between a high bias/low variance estimator and a low bias/high
variance estimator.

Example 5.A (Continued). Suppose X has Binomial (n, θ) distribution. There are many possible
estimators θ̂ that could be used. One obvious choice is the sample fraction,

θ̂1(X) =
X

n
.

Another is to always guess “1/2,” regardless of the data:

θ̂2(X) =
1
2
.

A third, less obvious choice is

θ̂3(X) =
X + 1
n + 2

.

This could be motivated as follows: if we did assume that a priori f(θ) was a Uniform (0, 1) distribution,
then given X = x, a posteriori θ would have a Beta (x+1, n−x+1) distribution, with E(θ|X = x) = x+1

n+2 (by
(4.16)). Now we do not make this assumption, but that does not disqualify us from considering (X+1)/(n+2)
as an estimator on its own merits; as (4.16) shows, θ̂3 is a weighted average of 1/2 and X/n, and hence a
compromise between θ̂1 and θ̂2:

θ̂3 =
(

n

n + 2

)
θ̂1 +

(
2

n + 2

)
θ̂2.
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How do these three estimators compare? How well can we expect them to perform? Now

E(θ̂1) = E(θ̂1(X))

= E

(
X

n

)

=
E(X)

n

=
nθ

n
= θ, using (3.67).

while E(θ̂2) = 1
2 for all θ, next,

E(θ̂3) = E

(
X + 1
n + 2

)

=
E(X) + 1

n + 2

=
nθ + 1
n + 2

.

Clearly θ̂1 is unbiased, while θ̂2 and θ̂3 are biased: θ̂2 has bias B2(θ) = 1/2 − θ, and θ̂3 has bias B3(θ) =
nθ+1
n+2 − θ = 1−2θ

n+2 . Both B2(θ) and B3(θ) are zero only when θ equals 1/2; B3(θ) is small if n is large (that

is, if the data are extensive), while B2(θ) is of course unaffected by n (since θ̂2 ignores the data).

Because θ̂2 does not depend upon the data, it is not random and its mean error and mean squared error
are easy to calculate:

E|θ̂2 − θ| = |1
2
− θ|, (5.6)

MSEθ̂2
(θ) =

(
1
2
− θ

)2

=
1
4
− θ(1− θ). (5.7)

For θ̂1, we have

MSEθ̂1
(θ) = E(θ̂1 − θ)2 (5.8)

= E

(
X

n
− θ

)2

= Var
(

X

n

)

=
Var(X)

n2

=
nθ(1− θ)

n2
using (3.68),

=
θ(1− θ)

n
.

The mean error of θ̂1 is extremely difficult to calculate, although it can, with much clever algebraic work,
be found to be

E|θ̂1 − θ| = 2
(

n− 1
[nθ]

)
θ[nθ]+1(1− θ)n−[nθ], (5.9)

where by [nθ] we mean the largest integer that is still no larger than nθ. For large n we have, approximately,

E|θ̂1 − θ| '
√

2
π
· θ(1− θ)

n
. (5.10)
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Next, for θ̂3, from (5.4),

MSEθ̂3
(θ) = Var(θ̂3|θ) + (B3(θ))2 (5.11)

=
Var(X)
(n + 2)2

+
(1− 2θ)2

(n + 2)2

=
nθ(1− θ) + (1− 2θ)2

(n + 2)2

The remaining measure, E|θ̂3 − θ|, is hard to evaluate in other than numerical terms from

E|θ̂3 − θ| =
n∑

k=0

∣∣∣∣
(

k + 1
n + 2

)
− θ

∣∣∣∣ b(k; n, θ). (5.12)

How do these estimators compare? From our present “given θ” perspective, we put ourselves in the
position of a survey organization, and ask, for what size surveys, and for which types of elections, could we
expect θ̂1 to perform best? θ̂2? θ̂3? Figure 5.3 shows their mean errors and

[Figure 5.3]

mean squared errors for n = 4 and n = 25. Both of the two measures tell us about the estimators’ expected
performance under different conditions. For example, if we want an estimator that produces small errors in
very close elections, when θ is near 1/2, θ̂2 does very well; in fact, perfectly when θ = 1/2, even for small
surveys. But it does poorly in other situations. If n is as large as 25, the mean errors of both θ̂1 and θ̂3 are
lower than that of θ̂2 except for .46 < θ < .54; the mean squared errors are lower except for .40 < θ < .60.
The following table shows the interval of values for θ for which the mean and mean squared errors of θ̂2 are
lower than those for θ̂1.

Interval where θ̂2 is better than θ̂1, when measured by:

n = Mean Error Mean Squared Error

1 .29 < θ < .71 .15 < θ < .85
4 .40 < θ < .60 .28 < θ < .72
25 .46 < θ < .54 .40 < θ < .60
100 .48 < θ < .52 .45 < θ < .55

[Table 5.1]

We can learn several lessons from these comparisons. First, ignoring the data becomes more costly,
the more data there are. If n is at all large, θ̂2 is never much better than θ̂1 or θ̂3 and sometimes much
worse. Second, the performance of θ̂1 improves as n increases and is at its worst when θ is near 1/2. This
reflects the fact that Binomial variability is greatest for θ = 1/2; it is hardest to estimate the outcome of
close elections (if either all Chicago Democrats or no Chicago Democrats are for the incumbent, the survey
with estimator θ̂1 will give perfect accuracy). And third, while mean error and mean squared error give
numerically different answers, they are in qualitative agreement.

Because both of the measures of performance we’ve discussed convey much the same message, we shall
generally adopt mean squared error as our criterion because (5.4) usually makes it simple to calculate and
interpret. If an estimator θ̂ is unbiased,

MSEθ̂ = Var(θ̂|θ), (5.13)

and so the best (in the mean squared error sense) unbiased estimator is the one with the smallest variance,
sometimes called MVUE (for “Minimum Variance Unbiased Estimator”). We should bear in mind, however,
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that many of the best estimators we shall consider are actually slightly biased, with bias that decreases with
large amounts of data. Still, with unbiased estimators in mind we shall define the standard error of an
estimator θ̂ to be its standard deviation:

σθ̂ =
√

Var(θ̂|θ). (5.14)

When θ̂ is approximated unbiased, the standard error may reflect the anticipated accuracy of θ̂; if θ̂ is
unbiased and approximately normally distributed.

P (|θ̂ − θ| ≤ σθ̂|θ) ' 2/3 (5.15)

P (|θ̂ − θ| ≤ 2σθ̂|θ) ' .95 (5.16)

P (|θ̂ − θ| ≤ 3σθ̂|θ) ' .998. (5.17)

5.2 Maximum Likelihood Estimators.

Where do we get estimators? In the binomial example, one estimator (the sample fraction) seemed
like an obvious choice, and another was unreasonable (because it ignored the data) but served as a sort of a
baseline. Only in the third case did we motivate the estimator by a statistical argument, and even then the
argument was based on an entirely hypothetical assumption. While it is true that any scheme for concocting
estimators is permissible, we should expect that the performance of most such ad hoc estimators, as judged
by mean squared error, will range from terrible to mediocre. In this section we discuss one principle for
finding estimators that generally produces very good results, though there is no absolute guarantee it will
yield the best (or even an acceptable) choice. This is the principle of maximum likelihood.

We can best motivate this principle by recalling Bayes’s theorem:

f(θ|x) ∝ f(θ)f(x|θ).
If we had f(θ) available, we would be tempted to look for the “most likely” value of θ, namely the value of θ
for which f(θ|x) is largest. Equivalently, we could look for the value of θ for which f(θ)f(x|θ) is largest. But
f(θ) is not available; what should we do? If f(θ) were relatively constant for θ’s near the value maximizing
f(θ)f(x|θ), then it should make little difference whether we look for the value maximizing this product or
simply for the value maximizing the second factor, f(x|θ), and this is what we propose to do.

We shall denote by L(θ) = f(x|θ) (or if the data are multivariate by L(θ) = f(x1, x2, . . . , xn|θ)), viewed
as a function of θ, the likelihood function. The value of θ, say θ̂, for which L(θ) achieves its maximum is
called a maximum likelihood estimator of θ.

Example 5.A (Continued). For the Binomial example we have

L(θ) = p(x|θ)
=

(n

x

)
θx(1− θ)n−x for 0 ≤ θ ≤ 1

[Figure 5.4]

Previously, we had been looking at p(x|θ) as a function of x for a given θ; here we are looking at it as a
function of θ for a fixed x. We emphasize this by our notation, L(θ), which suppresses the argument x.
Figure 5.4 shows L(θ) for the case n = 100 and x = 40. We are looking for the value of θ for which L(θ) is
maximum. Often this is found from solving

d

dθ
L(θ) = 0

for θ̂, and then verifying that for this choice of θ,

d2

dθ2
L(θ) < 0,
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so θ̂ is at least a relative maximum of L(θ). In this example, the differentiation is cumbersome; we have

d

dθ
L(θ) =

(n

x

) [
d

dθ
θx(1− θ)n−x

]

=
(n

x

) [
θx d

dθ
(1− θ)n−x + (1− θ)n−x d

dθ
θx

]

=
(n

x

) [
θx(n− x)(−1)(1− θ)n−x−1 + (1− θ)n−x · x · θx−1

]

=
(n

x

)
θx−1(1− θ)n−x−1[x(1− θ)− (n− x)θ].

This equals zero when (if x > 1 or n− x > 1) θ = 0 or θ = 1, or when

[x(1− θ)− (n− x)θ] = 0.

From Figure 5.4 it is clear that θ = 0 and θ = 1 generally correspond to minima. We then have

x(1− θ̂) = (n− x)θ̂

or, solving this equation,
θ̂ =

x

n
,

the sample fraction. We could go on to calculate d2

dθ2 L(θ), but there is a simpler route. It is frequently true
that likelihood functions L(θ) involve products and exponentials, making it easier to analyze logL(θ) than
L(θ). Fortunately, for our purposes, this can be done with no loss. Because the logarithm is a monotone
function, we will reach the same answer asking, “for what θ is L(θ) maximum?” as asking, “for what θ is
log L(θ) maximum?” In fact, plotting L(θ) on a logarithmic scale is the same as plotting log L(θ) on a linear
scale. The maximum values of the two functions will of course differ, but these maxima will necessarily be
achieved for the same value of θ, as Figure 5.4 illustrates.

[Figure 5.4]

In our example we have,

log L(θ) = log
(n

x

)
+ x log θ + (n− x) log(1− θ)

and
d

dθ
log L(θ) = 0 +

x

θ
− (n− x)

1− θ
. (5.18)

Setting this equal to zero gives
x

θ̂
=

n− x

1− θ̂
,

or (
x
n

)

θ̂
=

1− (
x
n

)

1− θ̂
,

or
θ̂ =

x

n
,

as before. Next,
d2

dθ2
log L(θ) = − x

θ2
− (n− x)

(1− θ)2
(5.19)

which is negative for θ = θ̂ (indeed, for all 0 < θ < 1).
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5.3 Interpreting the Likelihood Function.

We were led to consider maximum likelihood estimators by the fact that if the a priori density f(θ) is
constant as a function of θ, then the posterior distribution f(θ|x) is proportional to L(θ):

f(θ|x) ∝ f(θ)f(x|θ)
∝ f(x|θ)
= L(θ).

That is, if all values of θ are a priori equally likely, L(θ) is (but for a normalizing constant) the a posteriori
density of θ, and the maximum likelihood estimator is the posterior mode. If f(θ) is only approximately
constant (that is, changes little relative to changes in f(x|θ) as θ varies), this interpretation still holds at
least approximately. Thus one primary interpretation of L(θ) is a Bayesian interpretation.

In the Binomial example, this means that one way of motivating the sample fraction θ̂1(X) = X/n is
that it is the posterior mode for a Uniform (0, 1) a priori distribution, because if f(θ) ≡ 1 for 0 < θ < 1, then
f(θ|x) ∝ p(x|θ). Thus in that case, the argument for θ̂1 is like that for θ̂3(X) = X+1

n+2 ; θ̂1 is the posterior

mode, and θ̂3 is the posterior expectation. This raises a question: why maximize L(θ), why not find the
mean of the density

L(θ)∫∞
−∞ L(u)du

(5.20)

in general? Both procedures work well in the Binomial case; indeed Figure 5.3 even gives some grounds for
preferring θ̂3. The answer is that when f(θ) is not constant (but only approximately constant), the posterior
mode usually differs little from the maximum likelihood estimator, but the posterior expectation may be
quite far from the expectation of (5.20). If f(θ) is relatively flat for θ near the maximum of L(θ), then the
maxima of f(θ|x) and L(θ) occur near the same place, while the expectations of f(θ|x) and (5.20) may not.

[Figure 5.5]

That is, the maximum likelihood estimator will be an approximate posterior mode for a wide range of
plausible priors; the expectation of (5.20) will not generally be so close to the posterior expectation.

While the Bayesian interpretation is one important way of motivating the consideration of L(θ) and
maximum likelihood estimation, it is not the only way. Without any recourse to a prior probability distri-
bution, we still have that L(θ) = p(x|θ) or f(x|θ). If “x” represents the particular data we observe, L(θ)
gives the probability or probability density of our data for the particular θ:

L(θ) = P (observed data | state of nature θ).

Then we can think of L(θ) for two values of θ as giving the relative probability (or “likelihood”) of actually
observing the data we have for these values of θ; if L(θ1)/L(θ2) = 2, we are twice as likely to observe our
data values given θ1 as given θ2. Looking for the maximum of L(θ) amounts, in this view, to looking for the
value of θ that best explains our data. We are more likely to observe 40 out of 100 Chicago Democrats for
the incumbent if the fraction of θ of all Chicago Democrats for the incumbent equals .4 than if θ = .3 or .5.
Observing 40 out of 100 remains unlikely in any event, but it is more likely for θ = .4 than for any other
value of θ.
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5.4 Properties of Maximum Likelihood Estimators.

Whether the motivation of section 5.3 is compelling or not, the principal reasons for actually using
maximum likelihood estimators from our present “before experiment” perspective are that they are feasible
to find in a wide variety of problems, and they have been found usually to perform well.

Example 5.C Estimating Average Failure Time. Under certain hypotheses (which we will present
later), a computer module will last a time X before failure, where X is a continuous random variable with
probability density function

f(x|θ) =
1
θ
e−

x
θ for x > 0 (5.21)

= 0 for x ≤ 0.

That is, X has an Exponential (1/θ) distribution. An easy calculation gives

E(X) =
∫ ∞

0

xf(x|θ)dx

= θ,

so θ (which must be greater than zero) can be interpreted as the expected time to failure. It can also be
easily shown that Var(X) = θ2. The statistical problem we consider is where θ is unknown, but data are
available: n separate modules have been tested independently and found to fail at times X1, X2, . . . , Xn. We
wish to estimate θ. Here the data (X1, X2, . . . , Xn) are multivariate, and since they are independent they
have density

f(x1, x2, . . . , xn|θ) = f(x1|θ) · f(x2|θ) · · · f(xn|θ)
=

1
θ
e−

x1
θ · 1

θ
e−

x2
θ · · · 1

θ
e−

xn
θ

=
1
θn

e−
(x1+···+xn)

θ

=
1
θn

e
−

n∑
i=1

xi/θ

for all xi > 0

= 0 otherwise.

The likelihood function is then

L(θ) =
1
θn

e
−

n∑
i=1

xi/θ

for θ > 0 (5.22)

= 0 for θ ≤ 0;

it may (in the spirit of Section 5.3) be considered as giving the relative likelihood for different values of θ.

[Figure 5.6]

To find the maximum likelihood estimator we maximize

log L(θ) = −n log θ −
n∑

i=1

xi/θ.

Differentiating,

d

dθ
log L(θ) = −n

θ
+

n∑
i=1

xi

θ2
; (5.23)
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setting this equal to zero gives
n

θ̂
=

Σxi

θ̂2

or

θ̂ =
1
n

n∑

i=1

xi = x̄, (5.24)

the sample arithmetic mean. To check that this gives a maximum, we find

d2

dθ2
log L(θ) =

n

θ2
− 2

n∑
i=1

xi

θ3
(5.25)

=
n

θ2

(
1− 2

θ̂

θ

)
,

which is clearly negative when θ = θ̂.

The maximum likelihood estimator is thus θ̂ = X̄. It is unbiased: from (3.56) we have E(θ̂) = E(X̄) =
E(X1) = θ. The mean squared error is then

MSEθ̂ = Var(θ̂|θ) (5.26)

= Var(X̄)

=
Var(X1)

n
from (3.57)

=
θ2

n
.

[Figure 5.7]

The standard error is σθ̂ = θ/
√

n. We see that both of these increase with θ and decrease as n increases.
This means it is harder to pin down with precision the time to failure for long lasting modules, and that
expected accuracy increases as the amount of data available increases.

We first encountered the exponential distribution in a slightly different form, as

f(x|λ) = λe−λx for x > 0.

= 0 for x ≤ 0.

In the present example, where X is the time until failure, we will later see that λ is the expected number of
replacements per unit time, a quantity that is of equal interest to that of θ = E(X). We could now attack
the problem of estimating λ by looking for the maximum likelihood estimator, λ̂, as that value of λ for which

n∏

i=1

f(xi|λ)

is a maximum. But there is a simpler way, for in fact the simple relationship between θ and λ, namely
λ = 1/θ, must also hold for their maximum likelihood estimators:

λ̂ =
1

θ̂
=

1
X̄

. (5.27)

This relation is general and is referred to as the invariance property of maximum likelihood estimators:
If θ̂ is a maximum likelihood estimate of θ, and h(θ) is any function of θ, then h(θ̂) is maximum likelihood
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estimate of h(θ). In symbols, ĥ(θ) = h(θ̂). When, as in the above example, h is a one-to-one function, this
property follows quite simply. In that case, the likelihood function could as well be considered as a function
of h(θ), and if any value h(θ0) produced a higher likelihood than h(θ̂), this would imply L(θ0) > L(θ̂),
contradicting the assumption that θ̂ maximizes L(θ). When h is not one-to-one, we simply define ĥ(θ) = h(θ̂).

It is worth noting that, while the invariance property makes it easy to find maximum likelihood estima-
tors in some situations, it does not guarantee that the properties of θ̂ will carry over to h(θ̂), or even that
the properties of h(θ̂) will be easy to determine. In the above example, θ̂ = X̄ is an unbiased estimator of θ,
but λ̂ = 1/X̄ is not an unbiased estimator of λ (in fact, E(1/X̄) 6= 1/E(X̄) unless Var(X̄) = 0). Also, the
mean squared error of λ̂ is not easy to evaluate.

Example 5.D. The General Normal Distribution. Suppose our data consist of X1, X2, . . . , Xn, where
the Xi’s are assumed independent, each with a N(µ, σ2) distribution, where both µ and σ2 are unknown.
For example, we may have n independent weighings of a single object with true weight µ, made by a scale
whose error variance σ2 is unknown. Thus we wish to estimate two parameters, µ and σ2. The density of a
single Xi is

f(xi|µ, σ2) =
1√
2πσ

e−
1

2σ2 (xi−µ)2 −∞ < x < ∞.

The likelihood function is

L(µ, σ2) =
n∏

i=1

f(xi|µ, σ2) (5.28)

=
(

1√
2πσ

)n

e
− 1

2σ2

n∑
i=1

(xi−µ)2

,

and

log L(µ, σ2) = log(2π)−
n
2 − n

2
log σ2 − 1

2σ2

n∑

i=1

(xi − µ)2.

To simplify notation for the derivation, write θ = σ2, so we have

log L(µ, θ) = log(2π)−
n
2 − n

2
log θ − 1

2θ

n∑

i=1

(xi − µ)2.

We then find

d

dµ
log L(µ, θ) =

1
θ

n∑

i=1

(xi − µ) (5.29)

=
n

θ
(x̄− µ)

d

dθ
log L(µ, θ) = − n

2θ
+

1
2θ2

n∑

i=1

(xi − µ)2. (5.30)

We set both equal to zero and solve the equations simultaneously for µ̂ and θ̂. The first gives

n

θ̂
(x̄− µ̂) = 0

or
µ̂ = x̄, (5.31)

the sample mean. Substituting this in the second gives

− n

2θ̂
+

1

2θ̂2
·

n∑

i=1

(xi − x̄)2 = 0
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θ̂ =
1
n

n∑

i=1

(xi − x̄)2; that is

σ̂2 =
1
n
·

n∑

i=1

(xi − x̄)2. (5.32)

It remains to verify that these give a maximum, and not a minimum or a saddlepoint. We find

d2

dµ2
log L(µ, θ) = −n

θ
< 0, since θ > 0, (5.33)

d2

dθ2
log L(µ, θ) =

n

2θ2
− 1

θ3
Σ(xi − µ)2 (5.34)

so for θ = θ̂ and µ = µ̂,
d2

dθ2
log L(µ, θ) =

n

2θ̂2
− n

θ̂3
· θ̂

= − n

2θ̂2
< 0.

Also,

d2

dθdµ
log L(µ, θ) =

−n

θ2
(x̄− µ) (5.35)

= 0 when µ = µ̂,

since for µ = µ̂ and θ = θ̂

(
d2

dµ2
log L(µ, θ)

)(
d2

dθ2
log L(µ, θ)

)
−

(
d2

dθdµ
log L(µ, θ)

)2

> 0

and
d2

dµ2
log L(µ, θ) < 0,

we have located a maximum.
Let us investigate the properties of µ̂ and σ̂2. First,

E(µ̂) = E(X̄)
= µ from (3.56),

so µ̂ is an unbiased estimator of µ. Next, we can write

σ̂2 =
1
n

n∑

i=1

(Xi − X̄)2 (5.36)

=
1
n

[
n∑

i=1

X2
i − 2X̄

n∑

i=1

Xi + nX̄2

]

=
1
n


ΣX2

i − 2

(
n∑

i=1

Xi

)2

n
+

(
n∑

i=1

Xi

)2

n




=
1
n

[
ΣX2

i −
(ΣXi)2

n

]
.
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Now for any random variable W , we have from (2.26) that

E(W 2) = Var(W ) + (E(W ))2.

Then, since E(Xi) = µ, Var(Xi) = σ2,

E

(
n∑

i=1

X2
i

)
=

n∑

i=1

E(X2
i ) (5.37)

=
n∑

i=1

(σ2 + µ2)

= nσ2 + nµ2.

Also,

E

(
n∑

i=1

Xi

)2

= Var

(
n∑

i=1

Xi

)
+

[
E

(
n∑

i=1

Xi

)]2

(5.38)

= nσ2 + (nµ)2

from (3.51) and (3.31), so from (5.36) we get

E(σ̂2) =
1
n

[
nσ2 + nµ2 − (nσ2 + n2µ2)

n

]
(5.39)

=
(

n− 1
n

)
σ2.

Thus the maximum likelihood estimator of σ2 is slightly biased, with bias

B(σ2) =
(

n− 1
n

)
σ2 − σ2 (5.40)

= −σ2

n
,

which is small if n is large relative to σ2. The expression (5.39) suggests a way to eliminate the bias: multiply
by n

n−1 . This gives us the commonly used estimator, the sample variance

sss2 =
(

n

n− 1

)
σ̂2 (5.41)

=
1

(n− 1)

n∑

i=1

(Xi − X̄)2.

From (5.39), E(sss2) = σ2; sss2 is an unbiased estimator of σ2, though for large n sss2 and σ̂2 differ but little.

We shall generally prefer sss2 to σ̂2 for estimating a normal variance σ2, but the preference is more due to
custom and the form in which certain common tables are presented than the fact that sss2 is unbiased. One
reason unbiasedness is relatively unimportant here is that we are usually interested in the standard deviation
σ, not σ2. To find the maximum likelihood estimator of σ we could consider the likelihood function (5.28)
as a function of σ and go through a full analysis, but it is far simpler to use the invariance property:

σ̂ =
√

σ̂2 =

√√√√ 1
n

n∑

i=1

(Xi − X̄)2.
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Now, it turns out that both σ̂ and sss =
√

s2s2s2, the sample standard deviation, are biased estimators of σ. In
fact, it can be shown that

E(sss) = bnσ

and so

E(σ̂) =

√
n− 1

n
bnσ,

where

bn =

√
2

n− 1
· Γ

(
n
2

)

Γ
(

n−1
2

) . (5.42)

n 4 10 100
bn .921 .973 .997

Table 5.2

For large n, bn is near 1, so while in principle we could “correct” sss to be unbiased, using sss/bn to estimate σ,
this is practically never done.

We will later find that

Var(sss2) =
2σ4

(n− 1)
; (5.43)

we can exploit that here to compare the mean squared errors of σ̂2 and sss2. We have, since sss2 is unbiased,

MSEsss2(σ2) = Var(sss2)

=
2σ4

n− 1

while from (5.40) and (5.4)

MSE
σ̂2(σ2) = Var

((
n− 1

n

)
sss2

)
+

(
−σ2

n

)2

=
(

n− 1
n

)2

· 2σ4

(n− 1)
+

σ4

n2

=
(

2n− 1
n2

)
σ4

Since (
2n−1

n2

)
(

2
n−1

) = 1−
(

3n− 1
2n2

)
< 1,

we see that
MSE

σ̂2(σ2) < MSEsss2(σ2)

[Figure 5.8]

for all σ2, although for large n their ratio is nearly 1. Thus despite its bias, σ̂2 has a smaller mean squared
error than sss2.
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5.5 The Distribution of Sums.

The properties of any estimator θ̂ depend upon its distribution, fθ̂(x|θ). For some purposes we do not
need to know this distribution in detail; the bias and mean squared error can be determined knowing only
E(θ̂) and Var(θ̂). But for more detailed assessments of accuracy we will need to know more.

Since an estimator θ̂ = θ̂(X) or θ̂(X1, X2, . . . , Xn) is a transformation of the data, its distribution can
be quite complicated, even analytically intractable. In some cases, though, the distribution can be rather
simply described.

Example 5.E. The Binomial Estimators. For the estimator θ̂1(X) = X
n of the parameter θ of a binomial

distribution, we can apply (1.28) directly. If h(x) = x/n, g(y) = ny and

pθ̂1
(y) = P (θ̂1 = y)

= pX(ny)

= b(ny; n, θ).

This is just a rescaled binomial distribution.

[Figure 5.9]

Other such estimators can be handled in equally simple ways directly: the distribution of θ̂3(X) =
(X + 1)/(n + 2) is

pθ̂2
(y) = P (θ̂2 = y)

= b((n + 2)y − 1; n, θ).

Many of the estimates we have encountered are based on sums of independent random variables; for

example, X̄ = 1
n

n∑
i=1

Xi appeared as a maximum likelihood estimator both for the exponential mean θ and

the normal mean µ. In many cases it is easy to handle the distribution of sums directly, using the following
general result: If (X, Y ) is a bivariate random variable with density f(x, y), then the density of

Z = X + Y

is given by

fZ(z) =
∫ ∞

−∞
f(z − y, y)dy. (5.44)

If X and Y are independent, f(x, y) = fX(x)fY (y) and we have

fZ(z) =
∫ ∞

−∞
fX(z − y)fY (y)dy. (5.45)

It is not hard to prove (5.44); since FZ(z) = P (Z ≤ z) = P (X + Y ≤ z) is the probability (X, Y ) is in the
shaded region of Figure 5.10, it is found by integrating f(x, y) over that region:

FZ(z) =
∫ ∞

−∞

∫ z−y

−∞
f(x, y)dxdy.

[Figure 5.10]

Then
fZ(z) =

d

dz
FZ(z)

=
∫ ∞

−∞

d

dz

(∫ z−y

−∞
f(x, y)dx

)
dy

=
∫ ∞

−∞
f(z − y, y)dy,
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and (5.45) follows directly.
Example 5.F. The Sum of Independent Normal Random Variables. One easy and extremely useful

application of (5.45) is to show that if X and Y are independent and each is normally distributed, then
Z = X + Y has a normal distribution. This is sometimes called the reproductive property of the normal
distribution. Suppose X has a N(µ, σ2) distribution and Y has a N(θ, τ2) distribution. Then (5.45) gives
us

fZ(z) =
∫ ∞

−∞

1√
2πσ

e−
1

2σ2 (z−y−µ)2 · 1√
2πτ

e−
1

2τ2 (y−θ)2dy (5.46)

=
1

2πστ

∫ ∞

−∞
e−

1
2 [(z−y−µ)2/σ2+(y−θ)2/τ2]dy.

Now the part of the exponent in brackets is a quadratic function of y and z, and so it can be written in the
form

A(z −B)2 + C(y −Dz)2 + E. (5.47)

(The algebra involved in evaluating A,B, C, D, and E is straightforward but tedious, and as we will see,
unnecessary.) Thus

fZ(z) =
1√

2πστ
√

C
e−

E
2 · e−A

2 (z−B)2 ·
∫ ∞

−∞

√
C

2π
e−

C
2 (y−Dz)2dy.

Now the integral is just the integral of a N
(
Dz, 1

C

)
density, so it must equal 1. Thus

fZ(z) ∝ e−
A
2 (z−B)2 .

But this is (except for a constant needed to scale the density to integrate to 1) a N(B, 1/A) density. All
that is needed is to find B = E(Z) and 1/A = Var(Z). But we know from Chapter 3, (3.38) and (3.40) that

E(Z) = E(X) + E(Y )

= µ + θ

and
Var(Z) = Var(X) + Var(Y )

= σ2 + τ2.

Hence Z has a N(µ + θ, σ2 + τ2) distribution. (Alternatively, A = 1/(σ2 + τ2) and B = µ + θ can be found
by algebra, by equating (5.47) to the exponent in (5.46).) We shall obtain this same result from a different
approach later.

It follows by induction that if X1, X2, X3, . . . , Xn are independent random variables, where Xi has a
N(µi, σ

2
i ) distribution, then

n∑

i=1

Xi has a N

(
n∑

i=1

µi,
n∑

i=1

σ2
i

)
distribution. (5.48)

In particular, if the Xi’s are independent, each with a N(µ, σ2) distribution, then

n∑

i=1

Xi has a N(nµ, nσ2) distribution, (5.49)

and
X̄ has a N

(
µ, σ2

n

)
distribution. (5.50)
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Thus the maximum likelihood estimator of a normal mean has a very simple distribution, and if we specify
σ2 we can use tables of the normal distribution to calculate P (|X̄ − µ| < c) for any c.

Example 5.G. The Chi-Square Distribution. We have already encountered the Chi-square distribution
with 1 degree of freedom in Example 1.M: it is the distribution of U2 where U has a N(0, 1) distribution,
and we found its density to be

fU2(y) =
1√
2πy

e−y/2 for y > 0

= 0 for y ≤ 0. (1.34)

The Chi-square distribution with n degrees of freedom is defined to be the probability distribution of

χ2(n) = U2
1 + U2

2 + · · ·+ U2
n, (5.51)

where U1, U2, . . . , Un are independent, each with a N(0, 1) distribution. The appropriateness of the term
“degrees of freedom” will be clearer later; for now we note that χ2(n) involves n terms that are independent
and hence varying freely, one from the other. The density of χ2(n) is given by

fχ2(n)(x) =
1

2n/2Γ
(

n
2

)x
n
2−1e−

x
2 for x > 0 (5.52)

= 0 for x ≤ 0.

For n = 1, Γ
(

n
2

)
=
√

π and
1

2
n
2 Γ

(
n
2

)x
n
2−1 =

1√
2πx

,

so (5.52) agrees with (1.34).
[Figure 5.11]

We can use (5.45) to verify that the density of χ2(n) is as given by (5.52). We proceed by induction.
We have already verified (5.52) for n = 1, in Example 1.M. Assume it holds also for n = k − 1. Now, let

X = U2
1 + U2

2 + · · ·+ U2
k−1

Y = U2
k

where U1, U2, . . . , Uk are independent, each N(0, 1). Then X and Y are independent, and χ2(k) = X + Y
has a Chi-square distribution with k degrees of freedom, by definition. From the induction hypothesis, X
has density given by (5.52) with n = k − 1:

fX(x) =
1

2
k−1
2 Γ

(
k−1
2

)x
k−1
2 −1e−

x
2 for x > 0

= 0 for x ≤ 0,

and Y has density given by (1.34),

fY (y) =
1√
2πy

e−y/2 for y > 0

= 0 for y ≤ 0.

Then from (5.45), the density of χ2(k) is, for z > 0,

fχ2(k)(z) =
∫ ∞

−∞
fX(z − y)fY (y)dy

=
∫ z

0

1

2
k−1
2 Γ

(
k−1
2

) · (z − y)
k−1
2 −1e−

(z−y)
2 · 1√

2πy
e−

y
2 dy

(since fX(z − y) = 0 for y ≥ z)

=
1

2
k−1
2 Γ

(
k−1
2

)√
2π

e−
z
2

∫ z

0

(z − y)
k−3
2 y−

1
2 dy.



5-18

Now from a change of variables u = y/z (so zdu = dy, (z − y)
k−3
2 = z

k−3
2 (1 − u)

k−3
2 , y−

1
2 = z−

1
2 u−

1
2 ) we

get ∫ z

0

(z − y)
k−3
2 y−

1
2 dy = z

k−3
2 · z− 1

2 · z
∫ 1

0

(1− u)
k−3
2 u−

1
2 du

= z
k
2−1 ·

∫ 1

0

(1− u)
k−3
2 u−

1
2 du.

But this last integral does not depend upon z, so we have established that

fχ2(k)(z) = Cz
k
2−1e−

z
2 for z > 0

= 0 for z ≤ 0.

This agrees with (5.52) for n = k except for the constant; since the only role the constant plays is as a scaling
factor, to guarantee that

∫∞
0

f(z)dz = 1, we must have

C =
1

2
k
2 Γ

(
k
2

) . (5.53)

Hence (5.52) holds for n = k. By induction, it gives the density of χ2(n) for any n. An alternative way to
verify (5.53) is by recognizing the integral as a Beta function;

∫ 1

0

(1− u)
k−3
2 u−

1
2 du = B

(
1
2
,
k − 1

2

)

=
Γ

(
1
2

)
Γ

(
k−1
2

)

Γ
(

k
2

)

=
√

π
Γ

(
k−1
2

)

Γ
(

k
2

) .

The principle applications of the Chi-square distribution will be explored later. For example, we will

show that if X1, . . . , Xn are independent N(µ, σ2) (as in Example 5.D), and sss2 = 1
(n−1)

n∑
i=1

(Xi − X̄)2, then

(n − 1)sss2/σ2 has a χ2(n − 1) distribution. Since (n − 1)sss2/σ2 = nσ̂2/σ2, this latter quantity has the same
distribution. Thus the Chi-square will appear as the distribution of a multiple of the sample variance of a
normally distributed sample.

One important property of the Chi-square distribution is obvious from the definition (5.51); if χ2(k) and
χ2(m) are independent random variables, with Chi-square distributions with k and m degrees of freedom
(“d.f.”) respectively, then their sum has a χ2(k + m) distribution. Symbolically,

χ2(k + m) = χ2(k) + χ2(m), (5.54)

keeping in mind that the random variables on the right must be independent. This is clear from the definition:
If

χ2(k) = U2
1 + · · ·+ U2

k

and
χ2(m) = U2

k+1 + · · ·+ U2
k+m

then
χ2(k) + χ2(m) = U2

1 + · · ·+ U2
k+m.
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The definition of the Chi-square distribution also makes it easy to calculate its expectation and variance.
Since the Ui are independent N(0, 1), E(U2

i ) = 1 for all i and

E(χ2(n)) = E

(
n∑

i=1

U2
i

)
(5.55)

=
n∑

i=1

E(U2
i )

= n.

Also,

Var(χ2(n)) = Var

(
n∑

i=1

U2
i

)

=
n∑

i=1

Var(U2
i )

= n ·Var(U2
1 ).

Now Y = U2
1 has density fY (y) given by (1.34), so

E(Y 2) =
∫ ∞

0

y2 · 1√
2πy

e−
y
2 dy

=
1√
2π

∫ ∞

0

y
3
2 e−

y
2 dy

=
2

5
2 Γ

(
5
2

)
√

2π

∫ ∞

0

1
2

5
2 Γ

(
5
2

)y
5
2−1e−

y
2 dy.

The latter integral is the integral of the density (5.52) for n = 5, and so it must equal 1. Then

E(Y 2) =
2

5
2 Γ

(
5
2

)
√

2π

= 4 · Γ
(

5
2

)
√

π

= 4 ·
3
2 · 1

2 · Γ
(

1
2

)
√

π

= 3 from (2.8).

Thus E(Y 2) = 3 and Var(U2
1 ) = 3− 1 = 2, so

Var(χ2(n)) = 2n. (5.56)

Example 5.H. The Exponential and Gamma Distributions. For the special case n = 2, the Chi-square
distribution is an exponential distribution: for n = 2, 2

n
2 Γ

(
n
2

)
= 2 and (5.52) gives

fχ2(2)(x) =
1
2
e−

x
2 for x > 0 (5.57)

= 0 for x ≤ 0,

an Exponential density with θ = 2. This fact can be used to determine the distribution of the maximum
likelihood estimator of θ. In Example 5.C we found that if X1, . . . , Xn are independent Exponential (θ),
then

θ̂ = X̄.
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Now if Xi has density

f(x|θ) =
1
θ
e−

x
θ for x > 0

= 0 for x ≤ 0,

then Yi = 2
θ Xi has (from (1.35) with a = 2

θ , b = 0) the χ2(2) density given by (5.57). Now
n∑

i=1

Yi = 2
θ

n∑
i=1

Xi,

and since the Xi’s are independent, it follows from additive property of the Chi-square distribution (5.54)

that 2
θ

n∑
i=1

Xi has a Chi-square distribution with
n∑

i=1

2 = 2n degrees of freedom. That is, 2n
θ X̄ = 2n

θ θ̂ has

the density fχ2(2n)(y). We could then find the density of θ̂ from (1.35) with a = θ
2n and b = 0; it is

2n
θ fχ2(2n)

(
2nx

θ

)

[Figure 5.12]

The Chi-square distributions are the most important special cases of a more general class of distributions
called the Gamma distributions, G(α, β). They depend upon two parameters, α and β, and they are defined
in terms of their densities, by

f(x|α, β) =
xα−1e−

x
β

βαΓ(α)
for x > 0 (5.58)

= 0 for x ≤ 0.

They are similar to the Chi-square densities in appearance; indeed, the G
(

n
2 , 2

)
distribution is a χ2(n)

distribution, as can be verified by comparing (5.52) and (5.58).

It is easy to see, from (1.35) with b = 0, that if Z has a χ2(n) distribution with density fχ2(n)(z), then
Y = aZ has density

1
a
fχ2(n)

(y

a

)
=

1
(2a)

n
2 Γ

(
n
2

)y
n
2−1e−

y
2a for y > 0,

a G
(

n
2 , 2a

)
distribution. Thus we could describe the distribution of θ̂ as a G

(
n, θ

n

)
distribution.

If Y has a G(α, β) distribution, then (see Problems)

E(Y ) = αβ, (5.59)

Var(Y ) = αβ2. (5.60)

5.6 The Approximate Distribution of Estimators.

In the previous section we saw how in some cases (the Normal, the Exponential) the probability
distribution of a maximum likelihood estimator based upon a sum of random variables could be determined
explicitly. Such cases are rare, however, and more frequently we must fall back upon approximations.
Fortunately, there is available an elegant result in probability theory that will provide the basis for a broad
spectrum of applications. It has come to be called the Central Limit Theorem, where “central” should be
understood in the sense “fundamental.” In its simplest form it states: If X1, X2, . . . , Xn are independent,
each with the same distribution with E(Xi) = µ and Var(Xi) = σ2 < ∞, then if n is large,

n∑

i=1

Xi is approximately N(nµ, nσ2), (5.61)

X̄ is approximately N
(
µ, σ2

n

)
. (5.62)
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By these statements we mean that for any constants a < b,

P

(
a <

n∑

i=1

Xi < b

)
' Φ

(
b− nµ√

nσ

)
− Φ

(
a− nµ√

nσ

)
. (5.63)

Furthermore, the errors in these approximations all become smaller the larger n is, vanishing in the limit
as n → ∞. In some respects these results should not seem surprising. If the Xi are Normally distributed,
then we saw in Section 5.5 that (5.61) and (5.62) hold exactly; in that case the word “approximately” can
be struck out and we have a stronger result. Also, even if the Xi are not Normally distributed, we saw in
Chapter 3 that

E(X̄) = µ (3.56)

Var(X̄) =
σ2

n
, (3.57)

which is in agreement with (5.62); a similar agreement holds for (5.61). What is remarkable about the
Central Limit Theorem is not the expectation or variance of the approximating distribution, but its form:
not only are sums of independent normally distributed random variables normally distributed, but sums of
independent random variables with almost any distribution are approximately normal. Even more general
forms of this theorem are true; subject to some restrictions that guarantee that no one Xi or small set of

Xi’s dominate the sum
n∑

i=1

Xi, the Xi’s do not need to all have the same distribution, and they need only

be “approximately” independent.
The Central Limit Theorem’s main strength is that it gives us an approximation to the distribution of

a sum or average in the standardized form

W =
X̄ − µ

σ/
√

n
.

A weaker corollary applies to unstandardized averages, and is called the weak law of large numbers, or simply
the law of large numbers. It states that as n increases, X̄ approaches µ in probability (written X̄

P→µ), which
is defined to mean that for any ε > 0 (however small), an n can be found so that

P (|X̄ − µ| < ε) > 1− ε. (5.66)

Thus the probability that X̄ is near µ can be made arbitrarily high by increasing the sample size n. This
follows immediately from (5.63):

P (|X̄ − µ| < ε) = P (µ− ε < X̄ < µ + ε)

' Φ
(

ε

σ/
√

n

)
− Φ

( −ε

σ/
√

n

)

= Φ
(√

n
ε

σ

)
− Φ

(
−√n

ε

σ

)

=
∫ √

n ε
σ

−√n ε
σ

φ(x)dx.

By choosing n large, this integral can be made as close to

∫ ∞

−∞
φ(x)dx = 1

as desired.
The Law of Large Numbers tells us X̄ is likely to be close to µ for large n; the Central Limit Theorem

describes its approximate distribution in more detail.
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We have already seen graphical illustration of the Central Limit Theorem in one case. The Chi-square

distribution with n degrees of freedom, χ2(n), is the distribution of a sum
n∑

i=1

Xi, where each Xi = U2
i has a

χ2(1) distribution. The Central Limit Theorem says that if n is large,
n∑

i=1

Xi is approximately N(n, 2n), and

Figure 5.11 illustrates this. Even though the χ2(1) distribution is extremely non-Normal (see Figure 5.11
(a)), we can see that by the time n = 30, the distribution χ2(n) is fairly close to the symmetrical Normal
shape, nearly centered about 30 (its actual expectation), with standard deviation

√
60 = 7.75.

How close an approximation we can expect from (5.61)-(5.65) depends upon the distribution of Xi, upon
n, and upon a and b. A rough rule of thumb suggests the approximation is usually adequate for statistical
purposes if n ≥ 30, but if the distribution of Xi is at all similar to the normal (as is frequently the case),
the approximation can be excellent for n as low as 5 or 10.

We will not prove the Central Limit Theorem; its proof requires techniques from probability theory
which we have not introduced. The following heuristic argument helps make it plausible. Suppose that n is

very large, in fact n = 2m where m is large. Suppose X1, . . . , Xn are independent; we can write
n∑

i=1

Xi as a

sum of 2 blocks, each consisting of m random variables:

n∑

i=1

Xi = X1 + · · ·+ Xm

+ Xm+1 + · · ·+ Xn

Write Y1 = X1 + · · ·+ Xm, Y2 = Xm+1 + · · ·+ Xn, getting

n∑

i=1

Xi = Y1 + Y2.

Now if there is a general approximating distribution, so that each sum of X’s has the same distribution when
standardized, then

Y1 − µY1

σY1

,
Y2 − µY2

σY2

,
(Y1 + Y2)− µY1+µ2

σY1+Y2

must have approximately that same distribution. That distribution must share the reproductive property
(Example 5.F) of the normal distribution. Now the normal distribution is not the only distribution where
Y1, Y2 are independent and the distributions of Y1, Y2, and Y1 +Y2 differ only by a linear change of scale (the
others are called the stable distributions), but it is the only one with a finite variance; hence it is the only
possibility for a general-purpose approximating distribution.

The Central Limit Theorem gives an explanation why approximately normal distributions are common
in applications, since many measurements are themselves made up of an aggregate of a number of roughly
independent components. The weight of a sack of grain is the aggregate of many small weights; the yield of
an apple tree is the total yield of its several branches.

The Central Limit Theorem gives an approximation to the distribution of many estimators; for example,
X̄ may always be considered as an estimator of E(Xi), even though it is the maximum likelihood estimator
for only a few distributions of Xi (eg. for N(µ, σ2) and Exponential (θ)). But what of cases such as that of
Example 5.C, where the maximum likelihood of λ, namely λ̂ = 1/X̄, is not equal to a sum or average, and
the theorem does not apply? It turns out that if the estimator being considered is a maximum likelihood
estimator, it will quite generally be approximately normally distributed. A full statement of conditions under
which this is true is beyond the scope of this book, but the following rather loose statement captures the
main idea:
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Fisher’s Approximation.

If the data consist of independent X1, X2, . . . , Xn, each with distribution f(x|θ), and the
maximum likelihood estimator θ̂ is found by solving d

dθ L(θ) = 0 or d
dθ log L(θ) = 0, then for large

n, θ̂ has approximately a N
(
θ, τ2(θ)

n

)
distribution, where

1
τ2(θ)

= E

(
d

dθ
log f(X1|θ)

)2

= −E

[
d2

dθ2
log f(X1|θ)

]
, (5.67)

provided 0 < τ2(θ) < ∞.

This approximation and its counterpart for estimating several parameters at once are extremely useful. Its
main use is to describe the distribution of θ̂, namely fθ̂(x|θ), but the form of the approximation tells us several
other things as well. First, while maximum likelihood estimators are frequently biased, this approximation
implies that this need not concern us if n is large: the approximating N

(
θ, τ2(θ)

n

)
distribution has expectation

θ. Furthermore, it tells us that the Law of Large Numbers applies to θ̂ just as it did to X̄: for any c > 0,

P (|θ̂ − θ| < c) ' Φ
(√

nc

τ(θ)

)
− Φ

(−√nc

τ(θ)

)
, (5.68)

so if
√

nc
τ(θ) is large, P (|θ̂−θ| < c) ' 1, even if c is very small. That is, θ̂

P→ θ; with high probability (increasing

with n), θ̂ will be as close to θ as desired. Increasing the amount of data increases the accuracy. This
property is sometimes referred to as consistency. Finally, if θ̂ actually had the approximating distribution
N(θ, τ2(θ)/n), its mean squared error would be τ2(θ)/n, and we may use this quantity as a measure of
its accuracy. In fact, it can be shown under additional restrictions that no other estimator will have an
approximating distribution with a smaller MSE, so that for many problems involving large samples, the
maximum likelihood estimator will do as well as is possible.

Example 5.I. Consider the general normal distribution of Example 5.D, but suppose σ2 is known and need
not be estimated. Then Xi is N(µ, σ2) and the log likelihood function is as before, log L(µ) = log(2π)−

n
2 −

n
2 log σ2 − n

2σ2

n∑
i=1

(Xi − µ)2, with

d

dµ
log L(µ) =

n

σ2
(X̄ − µ),

d2

dµ2
log L(µ) = − n

σ2
.

The maximum likelihood estimator can, as before, be found from setting d
dµ log L(µ) = 0 to be µ̂ = X̄.

In this case we know µ̂ has exactly a N(µ, σ2/n) distribution. To see what Fisher’s Theorem tells us, we
consider

log f(X1|µ) = log
(

1√
2πσ

e−
(X1−µ)2

2σ2

)

= − log(
√

2πσ)− (X1 − µ)2

2σ2
.

Now,
d

dµ
log f(X1|µ) =

(X1 − µ)
σ2

,

d2

dµ2
log f(X1|µ) = − 1

σ2
.
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The relationship (5.67) gives us two alternative ways of calculating τ2. First,

E

(
d

dµ
log f(X1|µ)

)2

= E

[
(X1 − µ)2

σ4

]

=
E(X1 − µ)2

σ4

=
σ2

σ4

=
1
σ2

;

second,

−E

(
d2

dµ2
log f(X1|µ)

)
= −E

(
− 1

σ2

)

=
1
σ2

.

In either case, we find τ2 = σ2, and Fisher’s Approximation gives as an approximate result what we know
in this case to be exactly true. In general, we can choose whichever of the expressions in (5.67) is easiest to
evaluate, since when log f(x|θ) is twice differentiable with respect to θ and the expectations are well-defined,
they will be equal.

Example 5.J. For the Exponential (1/λ) case of Example 5.C, where the Xi are independent with
density

f(x|λ) = λe−λx for x > 0

= 0 for x ≤ 0,

we found that λ̂ = 1/X̄, by using the invariance property. We could have found the same result by solving
d

dλ log L(λ) = 0; Fisher’s Approximation applies here. We have

log f(X1|λ) = log λ− λX1,

d

dλ
log f(X1|λ) =

1
λ
−X1,

d2

dλ2
log f(X1|λ) = − 1

λ2
.

Then

−E

(
d2

dλ2
log f(X1|λ)

)
= −E

(
− 1

λ2

)

=
1
λ2

,

and
τ2 = λ2.

We conclude that λ̂ has approximately a N
(
λ, λ2

n

)
distribution, if n is large. Figure 5.13 shows the exact

distribution of λ̂ (found by applying the methods of Section 1.8 to the distribution of X̄ found in Example
5.H) and the approximating distribution, for n = 10, 20, and 40.

[Figure 5.13]

Example 5.K. Fisher’s Approximation requires that the maximum likelihood estimator be found by
setting d

dθ L(θ) = 0 or d
dθ log L(θ) = 0. Here is an example where that is not the case, and the approximation

fails. Suppose X1, X2, . . . , Xn are independent, each with the Uniform (0, θ) density

f(x|θ) =
1
θ

for 0 ≤ x ≤ θ

= 0 otherwise.
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Then
L(θ) = f(x1|θ) · f(x2|θ) · · · f(xn|θ)

=
1
θn

for θ ≥ maximum of the xi = max(xi)

= 0 otherwise.

[Figure 5.14]

It is clear from Figure 5.14a that the largest value of L(θ) is at θ̂ = max(xi), so this is the maximum
likelihood estimator. Yet this cannot be found by differentiation; indeed d

dθ L(θ) 6= 0 for any θ for which
L(θ) > 0. (Similarly, d

dθ log L(θ) 6= 0 for for any such θ.) Fisher’s Approximation does not apply, and in fact
the distribution of θ̂ is very far from a Normal distribution for all n: For 0 < y < θ,

Fθ̂(y) = P (θ̂ ≤ y)

= P (max(Xi) ≤ y)

= P (Xi ≤ y, X2 ≤ y, . . . ,Xn ≤ y)

=
n∏

i=1

P (Xi ≤ y)

= [P (X1 ≤ y)]n

=
(y

θ

)n

,

and so

fθ̂(y|θ) =
nyn−1

θn
for 0 < y < θ

= 0 otherwise,

shown in Figure 5.14b for n = 10.

5.7 Finding Maximum Likelihood Estimators.

In the examples considered so far, it has been relatively easy to find the maximum likelihood estimator
θ̂, usually by solving the equation

d

dθ
log L(θ) = 0 (5.69)

algebraically. Outside of textbook examples it is common, particularly in multiparameter problems, for this
approach to be difficult, and it becomes necessary to solve (5.69) numerically once the data are in hand.
Fortunately the standard Newton-Raphson method usually works well here and permits us to evaluate the
estimate without an explicit algebraic formula.

Let
g(θ) =

d

dθ
log L(θ), (5.70)

and

g′(θ) =
d2

dθ2
log L(θ). (5.71)

We wish to find a root, θ̂, of g(θ) = 0. If θ̂ is near θ (and we both hope and expect that it is), we can apply
the mean value theorem to get

g(θ̂)− g(θ) ' (θ̂ − θ)g′(θ). (5.72)

Now θ̂ is a root of g(θ) = 0; that is, g(θ̂) = 0, and so

−g(θ) ' (θ̂ − θ)g′(θ),
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or

θ̂ − θ ' g(θ)
g′(θ)

. (5.73)

or

θ̂ ' θ − g(θ)
g′(θ)

. (5.74)

This gives θ̂ approximately in terms of θ, which is not known, but it suggests the following iterative scheme:
Start with a good initial guess at θ, say θ̂0. Then for n = 1, 2, . . . , compute

θ̂n+1 = θ̂n − g(θ̂n)

g′(θ̂n)
, (5.75)

until the estimate changes but little, until the series converges. If the procedure is going to work well, which
depends upon both the initial guess θ̂0 and the nature of log L(θ), convergence is usually rapid (2 to 6
iterations). If log L(θ) is a quadratic function of θ, then g(θ) is linear, (5.70) is an exact equation, and (5.73)
gives the maximum likelihood estimate exactly for n = 1, regardless of θ̂0. Figure 5.15 illustrates how the
iteration works, geometrically. As a practical matter, it is a good idea to compute L(θ) or log L(θ) for θ̂ and
several other values, to check that a maximum has been achieved.

[Figure 5.15]

The steps leading to this iteration can be used as a basis of a proof of Fisher’s Approximation. The
idea of the proof is this: Let

Zi(θ) =
d

dθ
log f(Xi|θ) (5.76)

=
d
dθ f(Xi|θ)
f(Xi|θ) .

Then since

log L(θ) = log
n∏

i=1

f(Xi|θ)

=
n∑

i=1

log f(Xi|θ),

we see that

g(θ) =
n∑

i=1

Zi(θ)

is a sum of independent random variables. Now E(Zi(θ)) = 0, since

E(Zi(θ)) =
∫ ∞

−∞

[
d
dθ f(x|θ)
f(x|θ)

]
f(x|θ)dx by (2.17)

=
∫ ∞

−∞

d

dθ
f(x|θ)dx

=
d

dθ

∫ ∞

−∞
f(x|θ)dx

=
d

dθ
· 1 (since f is a density)

= 0.



5-27

Also,

Var(Zi(θ)) = E

(
d

dθ
log f(Xi|θ)

)2

=
1

τ2(θ)
from (5.67).

Then the Central Limit Theorem tells us that g(θ)√
n

has approximately a N
(
0, 1

τ2(θ)

)
distribution. We also

have that

g′(θ) =
n∑

i=1

d

dθ
Zi(θ) =

n∑

i=1

d2

dθ2
log f(Xi|θ)

is a sum of independent random variables, so the Law of Large Numbers tells us that

1
n

g′(θ) P→E

(
d

dθ
Zi(θ)

)
= E

(
d2

dθ2
log f(Xi|θ)

)

= − 1
τ2(θ)

from (5.67). But then
√

n

(−g(θ)
g′(θ)

)
=

g(θ)/
√

n)
(g′(θ)/n)

' g(θ)/
√

n

1/τ2(θ)

= τ2(θ) · g(θ)√
n

has approximately a N
(
0, [τ2(θ)]2 · 1

τ2(θ)

)
or N(0, τ2(θ)) distribution, and so −g(θ)/g′(θ) has approximately

a N(0, τ2(θ)/n) distribution. But with (5.73), this is Fisher’s Approximation. This does not constitute a
rigorous proof, but it can serve as the basis of one.

There are other useful versions of Fisher’s Approximation that follow from the same line of reasoning.
For example, the data X1, X2, . . . , Xn may be assumed independent but not necessarily with the same
density. Suppose Xi has density fi(x | θ), and

σ2
i (θ) = E

(
d

dθ
log fi(Xi | θ)

)2

= −E

[
d2

dθ2
log fi(Xi | θ)

]
.

Then
√

n(θ̂ − θ) would be expected to be approximately normal with expectation 0 and variance

1
n∑

i=1

σ2
i (θ)

. (5.77)

(If the fi are identical, σ2
i (θ) = 1/τ2(θ), and this variance = τ2(θ)/n, agreeing with the earlier approxima-

tion.)
The most general form of Fisher’s Approximation is that for the multiparameter case; that is, where

θ = (θ1, θ2, . . . , θk) is itself multidimensional. In that case θ̂ arises from maximizing L(θ) or log L(θ) over the
k-dimensional set of possible θ, and when the maximum is a “smooth” maximum, as in the 1-dimensional
case we would expect

√
n(θ̂ − θ) to have approximately a “k-dimensional” normal distribution with vector

expectation 0 and covariance matrix [I(θ)]−1, where the (i, j)th entry of I(θ) is aij , with

aij = E

(
∂ log L(θ)

∂θi
· ∂ log L(θ)

∂θj

)
= −E

(
∂2 log L(θ)

∂θi∂θj

)
. (5.78)
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If the Xi are independent, each with density f , then

aij = nE

(
∂ log f(X | θ)

∂θi
· ∂ log f(X | θ)

∂θj

)
= −nE

(
∂2 log f(X | θ)

∂θi∂θj

)
(5.79)

For more than one parameter, the corresponding Newton-Raphson algorithm would proceed like this:
Let L(θθθ) = L(θ1, θ2, . . . , θk) be the likelihood function where θ1, θ2, . . . , θn are the parameters we wish to
estimate. Define the vector

ggg(θθθ) =




d
dθ1

log L(θθθ)
d

dθ2
log L(θθθ)
·
·
·

d
dθk

log L(θθθ)




. (5.80)

We wish to find the root θ̂̂θ̂θ to ggg(θθθ) = 0; that is, to find θ̂1, θ̂2, . . . , θ̂k so that all of the derivatives in ggg(θθθ) are
zero simultaneously. Let

GGG(θθθ) =




d2

dθ2
1

log L(θθθ) d2

dθ1dθ2
log L(θ) · · · d2

dθ1dθk
log L(θ)

d2

dθ1dθ2
log L(θ) d2

dθ2
2

log L(θ) · · · ·
...

...
d2

dθ1dθk
log L(θ) · · · d2

dθ2
k

log L(θ)




(5.81)

Then the mean value theorem tells us

ggg(θ̂θθ)− ggg(θθθ) ' GGG(θθθ)(θ̂θθ − θθθ)

and since ggg(θ̂θθ) = 000,
−ggg(θθθ) ' GGG(θ)(θ̂θθ − θθθ)

or
θ̂θθ − θθθ = −GGG−1(θθθ)ggg(θθθ) (5.82)

or
θ̂θθ = θθθ −GGG−1(θθθ)ggg(θθθ), (5.83)

and the iteration, starting from an initial guess θ̂θθn, is

θ̂θθn+1 = θ̂θθn −GGG−1(θ̂θθn)ggg(θ̂θθn). (5.84)


















