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Multilinear Matrix Multiplication

Multilinear map g : V1 × · · · × Vk → R, g(y1, . . . ,yk).

Linear maps fα : Uα → Vα, yα = fα(xi), α = 1, . . . , k.

Compose g by f1, . . . , fk to get h : U1 × · · · × Uk → R,

h(x1, . . . ,xk) = g(f(x1), . . . , f(xk)).

A = Jaj1···jkK ∈ Rd1×···×dk represents g;

Mα = [mα
j1i1

] ∈ Rdα×sα represents fα, α = 1, . . . , k;

Then h represented by

A(M1, . . . , Mk) = Jci1···ikK ∈ Rs1×···×sk

ci1···ik :=
∑d1

j1=1
· · ·

∑dk

jk=1
aj1···jkm

1
j1i1

· · ·mk
jkik

.

3



Call the above covariant multilinear matrix multiplication.

Contravariant version: compose multilinear map

g : V ∗
1 × · · · × V ∗

k → R

with the adjoint of linear maps fα : Vα → Uα, α = 1, . . . , k,

(L1, . . . , Lk)A = Jbi1···ikK ∈ Rr1×···×rk,

bi1···ik :=
∑d1

j1=1
· · ·

∑dk

jk=1
`1i1j1

· · · `k
ikjk

aj1···jk.



Symmetric Tensors

A = Jai1···ikK ∈ Rd1×···×dk. For a permutation σ ∈ Σk, σ-transpose

of A is

Aσ = Jaiσ(1)···iσ(k)
K ∈ Rdσ(1)×···×dσ(k).

Order-k generalization of ‘taking transpose’.

For matrices (order-2), only one way to take transpose (ie. swap-

ping row and column indices) since Σ2 has only one non-trivial

element. For an order-k tensor, there are k!− 1 different ‘trans-

poses’ — one for each non-trivial element of Σk.

An order-k tensor A = Jai1···ikK ∈ Rn×···×n is called symmetric if

A = Aσ for all σ ∈ Σk, ie.

aiσ(1)···iσ(k)
= ai1···ik.
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Rayleigh-Ritz Approach to Eigenpairs

A ∈ Rn×n symmetric. Its eigenvalues and eigenvectors are critical

values and critical points of Rayleigh quotient

Rn\{0} → R, x 7→
x>Ax

‖x‖2

or equivalently, critical values/points constrained to unit vectors,

ie. Sn−1 = {x ∈ Rn | ‖x‖ = 1}. Associated Lagrangian is

L : Rn × R → R, L(x, λ) = x>Ax− λ(‖x‖2 − 1).

At a critical point (xc, λc) ∈ Rn\{0} × R, we have

A
xc

‖xc‖
= λc

xc

‖xc‖
and ‖xc‖2 = 1.

Write uc = xc/‖xc‖ ∈ Sn−1. Get usual

Auc = λcuc.
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Variational Characterization of Singular Pairs

Similar approach for singular triples of A ∈ Rm×n: singular values,

left/right singular vectors are critical values and critical points of

Rm\{0} × Rn\{0} → R, (x,y) 7→
x>Ay

‖x‖‖y‖
Associated Lagrangian is

L : Rm × Rn × R → R, L(x,y, σ) = x>Ay − σ(‖x‖‖y‖ − 1).

The first order condition yields

A
yc

‖yc‖
= σc

xc

‖xc‖
, A> xc

‖xc‖
= σc

yc

‖yc‖
, ‖xc‖‖yc‖ = 1

at a critical point (xc,yc, σc) ∈ Rm×Rn×R. Write uc = xc/‖xc‖ ∈
Sm−1 and vc = yc/‖yc‖ ∈ Sn−1, get familiar

Avc = σcuc, A>uc = σcvc.
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Multilinear Functional

A = Jaj1···jkK ∈ Rd1×···×dk; multilinear functional defined by A is

fA : Rd1 × · · · × Rdk → R,

(x1, . . . ,xk) 7→ A(x1, . . . ,xk).

Gradient of fA with respect to xi,

∇xifA(x1, . . . ,xk) =

∂fA

∂xi
1

, . . . ,
∂fA

∂xi
di


= A(x1, . . . ,xi−1, Idi

,xi+1, . . . ,xk)

where Idi
denotes di × di identity matrix.
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Singular Values and Singular Vectors of a Tensor

Take a variational approach as in the case of matrices. La-

grangian is

L(x1, . . . ,xk, σ) = A(x1, . . . ,xk)− σ(‖x1‖ · · · ‖xk‖ − 1)

where σ ∈ R is the Lagrange multiplier. Then

∇L = (∇x1L, . . . ,∇xkL,∇σL) = (0, . . . , 0,0).

yields

A

(
Id1

,
x2

‖x2‖
,

x3

‖x3‖
, . . . ,

xk

‖xk‖

)
= σ

x1

‖x1‖
,

...

A

(
x1

‖x1‖
,

x2

‖x2‖
, . . . ,

xk−1

‖xk−1‖
, Idk

)
= σ

xk

‖xk‖
,

‖x1‖ · · · ‖xk‖ = 1.
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Normalize to get ui = xi/‖xi‖ ∈ Sdi−1. We have

A(Id1
,u2,u3, . . . ,uk) = σu1,

...

A(u1,u2, . . . ,uk−1, Idk
) = σuk.

Call ui ∈ Sdi−1 mode-i singular vector and σ singular value of A.

P. Comon, “Tensor decompostions: state of the art and ap-

plications,” in Mathematics in signal processing, V (Coventry,

UK, 2000), pp. 1–24, Inst. Math. Appl. Conf. Ser., 71, Oxford

University Press, Oxford, UK, 2002.

L. de Lathauwer, B. de Moor, and J. Vandewalle, “On the best

rank-1 and rank-(R1, . . . , RN) approximation of higher-order ten-

sors,” SIAM J. Matrix Anal. Appl., 21 (4), 2000, pp. 1324–1342.

Same equations first appeared in the context of rank-1 tensor

approximations. Our study differs in that we are interested in all

critical values as opposed to only the maximum.



Norms of Multilinear Operators

Recall that the norm of a multilinear operator f : V1×· · ·×Vk → V0

from a product of norm spaces (V1, ‖ · ‖1), . . . , (Vk, ‖ · ‖k) to a norm

space (V0, ‖ · ‖0) is defined as

sup
‖f(x1, . . . ,xk)‖0
‖x1‖1 · · · ‖xk‖k

where the supremum is taken over all xi 6= 0.

10



Relation with Spectral Norm

Define spectral norm of a tensor A ∈ Rd1×···×dk by

‖A‖σ := sup
|A(x1, . . . ,xk)|
‖x1‖ · · · ‖xk‖

where ‖ · ‖ in the denominator denotes the usual Euclidean 2-

norm. Note that this differs from the Frobenius norm,

‖A‖F :=
(∑d1

i1=1
· · ·

∑dk

ik=1
|ai1···ik|

2
)1/2

for A = Jai1···ikK ∈ Rd1×···×dk.

Proposition. Let A ∈ Rd1×···×dk. The largest singular value of A

equals its spectral norm,

σmax(A) = ‖A‖σ.
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Relation with Hyperdeterminant

Assume

di − 1 ≤
∑

j 6=i
(dj − 1)

for all i = 1, . . . , k. Let A ∈ Rd1×···×dk. Easy to see that

A(Id1
,u2,u3, . . . ,uk) = 0,

A(u1, Id2
,u3, . . . ,uk) = 0,

...

A(u1,u2, . . . ,uk−1, Idk
) = 0.

has a solution (u1, . . . ,uk) ∈ Sd1−1 × · · · × Sdk−1 iff

∆(A) = 0

where ∆ is the hyperdeterminant in Rd1×···×dk.

In other words, ∆(A) = 0 iff 0 is a singular value of A.
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Multilinear Homogeneous Polynomial

A = Jaj1···jkK ∈ Rn×···×n symmetric tensor; multilinear homoge-

neous polynomial defined by A is

gA : Rn → R,

x 7→ A(x, . . . ,x) =
∑n

j1=1
· · ·

∑n

jk=1
aj1···jkxj1 · · ·xjk.

Gradient of gA,

∇gA(x) =

(
∂gA

∂x1
, . . . ,

∂gA

∂xn

)
= kA(In,x, . . . ,x)

where x = (x1, . . . , xn)> occurs k−1 times in the argument. This

is a multilinear generalization of

d

dx
axk = kaxk−1.

Note that for a symmetric tensor,

A(In,u,u, . . . ,u) = A(u, In,u, . . . ,u) = · · · = A(u,u, . . . ,u, In).
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Eigenvalues and Eigenvectors of a Symmetric Tensor

In this case, the Lagrangian is

L(x, λ) = A(x, . . . ,x)− λ(‖x‖k − 1)

Then ∇xL = 0 yields

kA(In,x, . . . ,x) = kλ‖x‖k−2x,

or, equivalently

A

(
In,

x

‖x‖
, . . . ,

x

‖x‖

)
= λ

x

‖x‖
.

∇λL = 0 yields ‖x‖ = 1. Normalize to get u = x/‖x‖ ∈ Sn−1,

giving

A(In,u,u, . . . ,u) = λu.

u ∈ Sn−1 will be called an eigenvector and λ will be called an

eigenvalue of A.
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Eigenvalues and Eigenvectors of a Tensor

How about eigenvalues and eigenvectors for A ∈ Rn×···×n that

may not be symmetric? Even in the order-2 case, the critical

values/points of the Rayleigh quotient no longer gives the eigen-

pairs.

However, as in the order-2 case, eigenvalues and eigenvectors

can still be defined via

A(In,v1,v1, . . . ,v1) = µv1.

Except that now, the equations

A(In,v1,v1, . . . ,v1) = µ1v
1,

A(v2, In,v2, . . . ,v2) = µ2v
2,

...

A(vk,vk, . . . ,vk, In) = µkv
k,

are distinct.
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We will call vi ∈ Rn an mode-i eigenvector and µi an mode-i

eigenvalue. This is just the order-k generalization of left- and

right-eigenvectors for unsymmetric matrices.

Note that the unit-norm constraint on the eigenvectors cannot

be omitted for order 3 or higher because of the lack of scale

invariance.



Characteristic Polynomial

Let A ∈ Rn×n. One way to get the characteristic polynomial

pA(λ) = det(A− λI) is as follows.
∑n

j=1
aijxj = λxi, i = 1, . . . , n,

x2
1 + · · ·+ x2

n = 1.

System of n+1 polynomial equations in n+1 variables, x1, . . . , xn, λ.

Use Elimination Theory to eliminate all variables x1, . . . , xn, leav-

ing a one-variable polynomial in λ — a simple case of the mul-

tivariate resultant.

The det(A − λI) definition does not generalize to higher order

but the elimination theoretic approach does.
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Multilinear Characteristic Polynomial

Let A ∈ Rn×···×n, not necessarily symmetric. Use mode-1 for

illustration.

A(In,x1,x1, . . . ,x1) = µx1.

and the unit-norm condition gives a system of n + 1 equations

in n + 1 variables x1, . . . , xn, λ:
∑n

j2=1
. . .

∑n

jk=1
aij2···jkxj2 · · ·xjk = λxi, i = 1, . . . , n,

x2
1 + · · ·+ x2

n = 1.

Apply elimination theory to obtain the multipolynomial resultant

or multivariate resultant — a one-variable polynomial pA(λ). Ef-

ficient algorithms exist:

D. Manocha and J.F. Canny, “Multipolynomial resultant algo-

rithms,” J. Symbolic Comput., 15 (1993), no. 2, pp. 99–122.
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If the aij2···jk’s assume numerical values, pA(λ) may be obtained

by applying Gröbner bases techniques to system of equations

directly.

Roots of pA(λ) are precisely the eigenvalues of the tensor A.

Adopt matrix terminology and call it characteristic polynomial

of A, which has an expression

pA(λ) =

detM(λ)/detL if detL 6= 0,

detm(λ) if detL = 0.

M(λ) is a square matrix whose entries are polynomials in λ (for

order-2, M(λ) = A − λI). In the det(L) = 0 case, detm(λ)

denotes the largest non-vanishing minor of M(λ).



Polynomial Matrix Eigenvalue Problem

The matrix M(λ) (or m(λ) in the det(L) = 0 case) allows numer-

ical linear algebra to be used in the computations of eigenvectors

as 
∑n

j2=1
. . .

∑n

jk=1
aij2···jkxj2 · · ·xjk = λxi, i = 1, . . . , n,

x2
1 + · · ·+ x2

n = 1.

may be reexpressed in the form

M(λ)(1, x1, . . . xn, . . . , xn
n)
> = (0, . . . ,0)>.

So if (x, λ) is an eigenpair of A. Then M(λ) must have a non-

trivial kernel.

Observe that M(λ) may be expressed as

M(λ) = M0 + M1λ + · · ·+ Mdλ
d

where Mi’s are matrices with numerical entries.
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This reduces the multilinear eigenvalue problem to a polynomial

eigenvalue problem. Efficient algorithms for solving such prob-

lems will be discussed in the next talk.

Note that the preceding discussions also apply in the context

of singular pairs, where we solve a system of d1 + · · · + dk + 1

equations in d1 + · · ·+ dk + 1 variables.



Applications

Singular values/vectors — Nash equilibria for n-person games.

Symmetric eigenvalues/vectors — spectral hypergraph theory.

Unsymmetric eigenvalues/vectors — multilinear Perron-Frobenius
theory.

R.D. McKelvey and A. McLennan, “The maximal number of
regular totally mixed Nash equilibria,” J. Econom. Theory, 72
(1997), no. 2, pp. 411–425.

P. Drineas and L.-H. Lim, “A multilinear spectral theory of hy-
pergraphs and expander hypergraphs,” work in progress.

L.-H. Lim, “Multilinear PageRank: measuring higher order con-
nectivity in linked objects,” poster, The Internet: Today & To-
morrow, 2005 School of Engineering Summer Research Forum,
July 28, 2005, Stanford University, Stanford, CA, 2005.
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