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Matrix Multiplication I

Let f : U — V and g : V — W Dbe linear maps; U,V,W vector
spaces over R of dimensions n,m,l.

With choice of bases on U, V, W, g, f have matrix representations
A = [a;j] € RX™ B = [b;] € R™¥".

The matrix representation of h = go f (ie. h(x) = ¢g(f(x))) is
then C = [¢;;] € RYX™ where

" — n o o .
Cik - = Zj:l a;jbj-

Similarly for bilinear g : V1 x Vo — R and linear f1 : U1 — V1, fo :
U, — Vo with matrix representations A € R%1xd92 By ¢ Ré1xs1,
BQ c RdQXSQ-

The composite map h, where h(x,y) := g(f1(x), fo(y)), has ma-
trix representation

C = B;—ABl € R1792,



Multilinear Matrix Multiplication I

Do the same for multilinear map g : V1 x --- x Vi — R and linear
maps f1: U1 — Vi,..., fr : U, — Vi, dlm(V) = s;,dim(U;) = d;.

With choice of bases on V;'s and U;'s, g is represented by A =
ﬂajl g ) € RO Xdkand f1,..., fr by My = [m7; ] € RI1¥51, . M =
[ ] E deSk

If we compose g by f1,...,fr toget h:U; x--- x U — R defined
by

Jit1

kzk

h(x1,...,Xg) = g(f(x1),..., f(xx)),

then h is represented by [c;;..;, [ € R51% %% where

_ dy, m k
Cig-oip += Z]l— . Z]k; 195135141 " i (1)

The covariant multilinear matrix multiplication will be written

A(M1q,..., M) = [[Clek]] c RS17X %5k,



Contravariant Version |

The contravariant multilinear matrix multiplication of [aj,...; | €
Ré1%xXdk by matrices L1 = [¢1 . ] € RiiXd1 [, = [k
R7¥4k is defined by

1171

(L]_, c ey Lk)A = [[blek]] c erx...xrpk
o —d 1 "
Digvig *= ZJ'1l=1 o Z =1%iyj1 " bipgpir--ir- (2)

This comes from the composition of a multilinear map g : Vl* X
- x V¥ — R by linear maps f1: Vi — Uy,..., fr: Vi — Ug.

Simple relation if we disregard covariance/contravariance:

(L1,...,Lp)A=A(L{,...,L})
A(Myq,..., M) = (M{],...,M})A.

Works over C too (replace L, by L,:f).



Propertiesl

o Let A, B e RAXXdy gnd A, p € R. Let Ly e Rii*d1 [, €
R7&Xdk, Then

(L1,..., L) (M +puB) = XL, ..., Lp)A+ p(Ly, ..., Lg)B.
o Let A € RlaxXdy et L1 € Ri1*d1 [, € R%>*%, and
My e RS1x7T1 M, € R%*"k. Then
(My,...,M)(L1,...,Lp)A = (M1Lq,...,MiLy)A

where M;L; € RSi%Xdi js simply the matrix-matrix product of
Mi and Li-

o Let A e RUX~Xdk and \,p € R. Let Ly e R"*41 . L, M; €
R7%% ... L, € R'x*%  Then

A(L1,...,ALj + puMj, ..., L) =
)\(Ll,...,Lj,...,Lk)A—I—/L(L]_,...,Mj,...,Lk)A.
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Aside: Relation with Kronecker Productl

Forgetful map RI1*Xde _, Rd1dk A + vec(A) (‘forgets’ the
multilinear structure), then

vec((L1,...,Lp)A) = L1 ® - --Q Livec(A).
where L1 ® --- ® L, € Ré1dixdidi j5 the Kronecker product of
Li,..., L.



Matrix Techniquesl

Start with R™*XnxXl gnd ¢m*xnxl | = 2 js well understood, may
be regarded as pairs of matrices (A, B) € (C™*™)2 or (RM*Xn)2
or equivalently, as a matrix pencil MA + uB € C[X, u]™*™ or
R\, p]™>n,

Kronecker-Weierstrass Theory. There exist S € GL(m),T &
GL(n) such that (SAT,SBT) can be decomposed into block pairs

of the following forms

1 0
0O 1 1 0 \
0 1 e R+Lxp,
1 0
! o] | 1]/
1 0 0O 1 ] \
' .O . ) ° .1 : e R+,
. 1. O B O. 1_ /
1 0 —ao ] \
1 1 s c RT<T
- 0 —aro2
1 1 —ay_1l /

Likewise for C. Similar but simpler results obtained by Jos ten

Berge for generic pairs.
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Larger Sizes and Higher Ordersl

Want to obtain results as general as possible — for tensors of
arbitrary size and order over both R and C. For larger values of
k or dq,...,d;, techniques relying on multilinear matrix multipli-
cations become increasingly less effective.

Inherent limitation:
dim(RAX Xy = g1 ... . d. = O(d¥)
while
dim(GL(d1) X --- x GL(dg)) = d$ + --- + df = O(kd?)
and
dim(O(dy) x- - -xO(dy)) = d1(d1—1) /24 - -+dj(d,—1) /2 = O(kd?).

The action of GL(d1) x---x GL(d) on R41*"Xdk has uncountably
many orbits,

{(Lla .- 7Lk)A | (L17 .- 7Lk) S GL(dl) X X GL(dk)}7
as soon as d; > 2, k > 4.



Multilinear Functional and its Gradientl

Multilinear functional associated with A ¢ Rd1XXxdg je.

faiRM x .o x R%™ — R, (3)
d dp. 1 k
(X1,...,X) — Zjllzl i =1y Ty T
can be written as
fa(xy,...,xk) = A(X1, .-, Xg) (4)
where the rhs is the right multilinear multiplication by x; =
(z%,...,2%)", regarded as a d; x 1 matrix.

Gradient of f4 may be written as

Via=(Vxifa, -, Vx,fa)
where

ofa . 91
ozl oxty

I4. denotes d; x d; identity matrix.

infA(X]_)'--;Xk) — ( ) — A(X]_,...,XZ'_]_,IdZ.,XZ'_I_l,...,Xk).
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Hyperdeterminant I

Work in Cldit+1)x--x(dr+1) for the time being (d; > 1). Consider

S = {A e Cldrtxx(det+1) | v f,(xq,...,x,) =0
for some non-zero (x1,...,Xg)}.

Theorem (Gelfand, Kapranov, Zelevinsky, 1992). S is a
hypersurface if and only if

dj <> d,
1]
forall j=1,...,k. Let A be the equation of the hypersurface,
ie. a multivariate polynomial in the entries of A such that
S = {A e CldrtDxx(dp+1) | A(A) = 0}.
Then A may be chosen to have integer coefficients.

For C™*" the condition becomes m < n and n < m — that's
why matrix determinants is only defined for square matrices.

Since A has integer coefficients, A(A) is real-valued for A €
R(d14+1)x-x(dp+1)
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Geometric View |

Let X = {x1 ® - @ x5 € CldiT1)xx(dp+1) | x. ¢ C4t1} pe the
(smooth) manifold of decomposable tensors (X oftened called
the Segre variety).

Let A € Cldi+1)xx(d+1)  Then the condition V f(x1,...,X;) =
0 for some non-zero (x1,...,X;) iS equivalent to saying that the
hyperplane orthogonal to A, ie.

Hy:={B e ClatDxx(d+1) | 14 By =0}

contains a tangent to X at the point x; ® --- ® x;.. This may
also be taken as an alternative definition of the hyperdeterminant
A(A).

Projective duality:
X*=¢.
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o A(B)=0







Minor Inaccuracyl

Should really be working in projective spaces P(C(dit+1)x-x(dp+1)) =
p(di+1)--(de+1)-1  Thjs is the set of equivalence classes

[4] := {24 e CldaT1lex(det1) | ) e X1,

Thing to note is that the for any A ¢ Cldi+1)x-x(d+1) gnd
A e Cx,

rankg(AA) = rankg(A).

So outer-product rank is well-defined in P(C(d1t1)x-x(dp+1))
ie. given [A] € P(Cldit+1)xx(dp+1)) define

rankg ([A]) = rankg (A)
for any A € [A].
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Examplesl

A. Cayley, “On the theory of linear transformation,

Math. J., 4 (1845), pp. 193—-209.

Hyperdeterminant of A = [a; ]

1
A(A) = = |det [ |#000 @010
4 app1 @011

c RQXQXQ is

4+ |@100 @110
@101 a111

a a
_ det [ |@000 @010
apol @011

—4det[

Cambridge

2
_ |a100 @110
aipl aiiil

ap00 aQ10
ap01 4ao11

a a
det 100 110|
ajol 4111

A result that parallels the matrix case is the following: the system
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of bilinear equations

apo0ZoYo + ap10Z0yY1 + a10021Y0 + a110%1y1 = O,
ap01ToYo + ap11%0yY1 + a10121Yo + a11121y1 = O,
apo0*0%0 + @001%0%1 + a1002120 + a101z121 = 0,
ap10T0%z0 + @011%0%1 + a110¢120 + a1117x121 = 0O,
ap00Y020 + @001Y0%21 + ap10¥Y1%0 + ap11y121 = O,
a100Y0%0 T @101Y0%1 + a110Y120 + a111y121 = O,

has a non-trivial solution iff A(A) = 0.



A(A) = det

a000
a100

1a010

— det

Exannﬂesl

Hyperdeterminant of A = [[a;;x] € R?X2%3 is

appl @002
@101 Q102
apll1 ag1l2|
apo0 @001
@100 @101
a110 @111

det

Again, the following is true:

a100
ag1o

14110

apo2
aio2

a112]

ajoil
ap1il
aiill

det

@102
ap12
a112]

a000 @001
4010 4011

a110 @111

@000Z0Y0 + a010T0Y1 + a100T1Yo + A110T1Y1
@00120Y0 + a011ToY1 + a101T1Yo + A111T1Y1
@00220Y0 + a012ToY1 + a102T1Yo + A112T1Y1
000020 + ap01T021 + @0022022 + a100T120 + @101%121 + A102T122
0107020 + a011T021 + 0122022 + a110T120 + @111%121 + A112T122

@000Y020 + a001Y0z1 + ao02Yoz2 + ao10y120 + ao11yY121 + ao12y122

@100Y020 + a101Y021 + a102Y022 + ai110y120 + a111Y121 + a112Y122

has a non-trivial solution iff A(A) = 0.

ap0?2
ap12
a112]
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For more examples, see:

I.M. Gelfand, M.M. Kapranov, and A.V. Zelevinsky, Discrimi-
nants, resultants, and multidimensional determinants, Birkhauser
Publishing, Boston, MA, 1994.



Another Explanation for Degeneracyl

Degeneracy here means: a sequence of tensors B, of rank < r
converging to a tensor A of rank r+1, ie. A can be approximated
arbitrarily well by tensors of lower-rank. In particular, A has no
best rank-r approximations.

Question: Why do degeneracy occur in PARAFAC?
One Explanation: Alwin’'s talk

Alternative explanation: Degeneracy happens when a sequence
of r-secants to X converges to a (r 4+ 1)-secant. Furthermore,
this (r + 1)-secant is always tangent to X (since X is a smooth
manifold). This doesn't happen for order-2 tensors because the
geometry of X = {A € C"*" | rank(A) < 1} prevents this.
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Relation between the two explanationsl
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o A(B)=0




Typical Rank(s) for Real TensorsI

Conjecture. For any dq,...,d;, > 1 satisfying
d; <> d,
1]
for all j, the outer-product rank is constant on the sets {A €
R(d14+1)x--x(dp+1) | A(A) < 0} and {A € R(d1+1)x--x(dp+1) |
A(A) > 0} (but may take different values).

Corollary. If the conjecture is true, then there exist at most two
typical ranks for R(d1+1)x--x(dp+1)
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Generic rank for Complex Tensorsl

Theorem. For any dq,...,d; > 1, a (unique) generic rank always
exist for C(d1+1)x-x(dp+1)

C

A(A) =0

A(A) =0

19



Extending hyperdeterminantl

Let A € RAxXdk . >pr =rankg(A). Let A denote the hyper-
determinant in R"* X7,

Easy to show: There exist Q; € R™*% with orthonormal columns,
1=1,...,k, such that

(Q1,-..,Qp)A e RTTT,

Lemma. If A can be approximated arbitrarily closely by tensors
of rank < r in R91*Xd;x then (Qq,...,Qk)A can be approximated
arbitrarily closely by tensors of rank < r in R"1 X" X7k,

Define r-hyperdeterminant of A by

Apr(A) = AR, -, QE)A).

Whether Ay .(A) = 0 or not is independent of choice of Q1, ..., Q.
20



Conditioning l

J.W. Demmel, “On condition numbers and the distance to the
nearest ill-posed problem,” Numer. Math., 51 (1987), no. 3, pp.
251—2809.

J.W. Demmel, “The geometry of ill-conditioning,” J. Complex-
ity, 3 (1987), no. 2, pp. 201—-229.

J.W. Demmel, “The probability that a numerical analysis prob-
lem is difficult,” Math. Comp., 50 (1988), no. 182, pp. 449—480.

An ill-posed problem is one that lacks either existence or unique-
ness or stability (of a solution).

Condition number in a nutshell: The condition number of a
well-posed problem measures the distance of that problem to
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the manifold of ill-posed problems. The larger the condition
number, the closer the problem is to an ill-posed one.

Example. The manifold of ill-posed n x n linear system is § =

{A € R*"*"™ | det(A) = 0}. For a non-singular B, the (normalized)
condition number
1

1B—1
is the distance of B to §. Note that the value of det(B) does

not enter into the picture — det(B) can be arbitrarily small for
well-conditioned B.




Using Hyperdeterminantsl

The set {A € R4**dr | Ay (A) = 0} characterizes the ill-posed
best rank-r approximation problems in Rd1XXdy

The (normalized) condition number of the problem of finding
the best rank-r approximation to B is given by the reciprocal of

the distance of B to {4 € R41**dk | A} .(A) = 0}.

Note again that the exact value of Ay .(A) is unimportant (only
whether it is 0).
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Example: Order-3, Rank-2|

Easy Fact. Let[,m,n > 2. Let x1,y1 € R, Xo,y2 € R, x3,y3 €
R™ and define

A=%X1 ®XpQy3+ X1 @y ®X3 +y1 ® X5 @ x3 € RXM*7,

Then rankg(A) = 3 if and only if x;,y; are linearly independent,
i =1,2,3.

Theorem (de Silva and L., 2004). Let I,m,n > 2. Let A ¢
RIXmXn with rankg(A) > 3. The following are equivalent:

1. Ais the limit of a sequence B, € RXMXn with rankg(By) < 2,
2. A3,2(A) = 0,

3. A=x1 X2 QY3 + X1 ®y2 ®X3 + y1 ® X2 ® X3.
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