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Matrix Multiplication

Let f : U → V and g : V → W be linear maps; U, V, W vector
spaces over R of dimensions n, m, l.

With choice of bases on U, V, W , g, f have matrix representations
A = [aij] ∈ Rl×m, B = [bjk] ∈ Rm×n.

The matrix representation of h = g ◦ f (ie. h(x) := g(f(x))) is
then C = [cik] ∈ Rl×n where

cik :=
∑n

j=1
aijbjk.

Similarly for bilinear g : V1 × V2 → R and linear f1 : U1 → V1, f2 :
U2 → V2 with matrix representations A ∈ Rd1×d2, B1 ∈ Rd1×s1,
B2 ∈ Rd2×s2.

The composite map h, where h(x,y) := g(f1(x), f2(y)), has ma-
trix representation

C = B>
2 AB1 ∈ Rs1×s2.
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Multilinear Matrix Multiplication

Do the same for multilinear map g : V1 × · · · × Vk → R and linear
maps f1 : U1 → V1, . . . , fk : Uk → Vk; dim(Vi) = si,dim(Ui) = di.

With choice of bases on Vi’s and Ui’s, g is represented by A =
Jaj1···jkK ∈ Rd1×···×dk and f1, . . . , fk by M1 = [m1

j1i1
] ∈ Rd1×s1, . . . , Mk =

[mk
jkik

] ∈ Rdk×sk.

If we compose g by f1, . . . , fk to get h : U1× · · · ×Uk → R defined
by

h(x1, . . . ,xk) = g(f(x1), . . . , f(xk)),

then h is represented by Jci1···ikK ∈ Rs1×···×sk where

ci1···ik :=
∑d1

j1=1 · · ·
∑dk

jk=1aj1···jkm
1
j1i1

· · ·mk
jkik

. (1)

The covariant multilinear matrix multiplication will be written

A(M1, . . . , Mk) := Jci1···ikK ∈ Rs1×···×sk.
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Contravariant Version

The contravariant multilinear matrix multiplication of Jaj1···jkK ∈
Rd1×···×dk by matrices L1 = [`1i1j1

] ∈ Rr1×d1, . . . , Lk = [`k
ikjk

] ∈
Rrk×dk is defined by

(L1, . . . , Lk)A = Jbi1···ikK ∈ Rr1×···×rk,

bi1···ik :=
∑d1

j1=1 · · ·
∑dk

jk=1`1i1j1
· · · `k

ikjk
aj1···jk. (2)

This comes from the composition of a multilinear map g : V ∗
1 ×

· · · × V ∗
k → R by linear maps f1 : V1 → U1, . . . , fk : Vk → Uk.

Simple relation if we disregard covariance/contravariance:

(L1, . . . , Lk)A = A(L>1 , . . . , L>k )

A(M1, . . . , Mk) = (M>
1 , . . . , M>

k )A.

Works over C too (replace L>i by L
†
i).
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Properties

• Let A, B ∈ Rd1×···×dk and λ, µ ∈ R. Let L1 ∈ Rr1×d1, . . . , Lk ∈
Rrk×dk. Then

(L1, . . . , Lk)(λA + µB) = λ(L1, . . . , Lk)A + µ(L1, . . . , Lk)B.

• Let A ∈ Rd1×···×dk. Let L1 ∈ Rr1×d1, . . . , Lk ∈ Rrk×dk, and

M1 ∈ Rs1×r1, . . . , Mk ∈ Rsk×rk. Then

(M1, . . . , Mk)(L1, . . . , Lk)A = (M1L1, . . . , MkLk)A

where MiLi ∈ Rsi×di is simply the matrix-matrix product of

Mi and Li.

• Let A ∈ Rd1×···×dk and λ, µ ∈ R. Let L1 ∈ Rr1×d1, . . . , Lj, Mj ∈
Rrj×dj , . . . , Lk ∈ Rrk×dk. Then

A(L1, . . . , λLj + µMj, . . . , Lk) =

λ(L1, . . . , Lj, . . . , Lk)A + µ(L1, . . . , Mj, . . . , Lk)A.
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Aside: Relation with Kronecker Product

Forgetful map Rd1×···×dk → Rd1···dk, A 7→ vec(A) (‘forgets’ the

multilinear structure), then

vec((L1, . . . , Lk)A) = L1 ⊗ · · · ⊗ Lk vec(A).

where L1 ⊗ · · · ⊗ Lk ∈ Rd1···dk×d1···dk is the Kronecker product of

L1, . . . , Lk.
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Matrix Techniques

Start with Rm×n×l and Cm×n×l. l = 2 is well understood, may
be regarded as pairs of matrices (A, B) ∈ (Cm×n)2 or (Rm×n)2,
or equivalently, as a matrix pencil λA + µB ∈ C[λ, µ]m×n or
R[λ, µ]m×n.

Kronecker-Weierstrass Theory. There exist S ∈ GL(m), T ∈
GL(n) such that (SAT, SBT ) can be decomposed into block pairs
of the following forms


1
0 1

0 .. .
. . . 1

0

 ,


0
1 0

1 .. .
. . . 0

1


 ∈ R(p+1)×p,

1 0
1 0

.. . . . .
1 0

 ,

0 1
0 1

.. . . . .
0 1

 ∈ Rq×(q+1),

1
1

.. .
1

 ,

0 −a0

1 .. . ...
. . . 0 −ar−2

1 −ar−1

 ∈ Rr×r.

Likewise for C. Similar but simpler results obtained by Jos ten
Berge for generic pairs.

8



Larger Sizes and Higher Orders

Want to obtain results as general as possible — for tensors of
arbitrary size and order over both R and C. For larger values of
k or d1, . . . , dk, techniques relying on multilinear matrix multipli-
cations become increasingly less effective.

Inherent limitation:

dim(Rd1×···×dk) = d1 · · · · · dk = O(dk)

while

dim(GL(d1)× · · · ×GL(dk)) = d2
1 + · · ·+ d2

k = O(kd2)

and

dim(O(d1)×· · ·×O(dk)) = d1(d1−1)/2+· · ·+dk(dk−1)/2 = O(kd2).

The action of GL(d1)×· · ·×GL(dk) on Rd1×···×dk has uncountably
many orbits,

{(L1, . . . , Lk)A | (L1, . . . , Lk) ∈ GL(d1)× · · · ×GL(dk)},
as soon as di > 2, k > 4.
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Multilinear Functional and its Gradient

Multilinear functional associated with A ∈ Rd1×···×dk, ie.

fA : Rd1 × · · · × Rdk → R, (3)

(x1, . . . ,xk) 7→
∑d1

j1=1 · · ·
∑dk

jk=1aj1···jkx
1
j1
· · ·xk

jk
,

can be written as

fA(x1, . . . ,xk) = A(x1, . . . ,xk) (4)

where the rhs is the right multilinear multiplication by xi =
(xi

1, . . . , xi
di
)>, regarded as a di × 1 matrix.

Gradient of fA may be written as

∇fA = (∇x1fA, . . . ,∇xkfA)

where

∇xifA(x1, . . . ,xk) =

∂fA

∂xi
1

, . . . ,
∂fA

∂xi
di

 = A(x1, . . . ,xi−1, Idi
,xi+1, . . . ,xk).

Idi
denotes di × di identity matrix.
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Hyperdeterminant

Work in C(d1+1)×···×(dk+1) for the time being (di ≥ 1). Consider

S := {A ∈ C(d1+1)×···×(dk+1) | ∇fA(x1, . . . ,xk) = 0

for some non-zero (x1, . . . ,xk)}.
Theorem (Gelfand, Kapranov, Zelevinsky, 1992). S is a
hypersurface if and only if

dj ≤
∑
i6=j

di

for all j = 1, . . . , k. Let ∆ be the equation of the hypersurface,
ie. a multivariate polynomial in the entries of A such that

S = {A ∈ C(d1+1)×···×(dk+1) | ∆(A) = 0}.
Then ∆ may be chosen to have integer coefficients.

For Cm×n, the condition becomes m ≤ n and n ≤ m — that’s
why matrix determinants is only defined for square matrices.

Since ∆ has integer coefficients, ∆(A) is real-valued for A ∈
R(d1+1)×···×(dk+1).
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Geometric View

Let X = {x1 ⊗ · · · ⊗ xk ∈ C(d1+1)×···×(dk+1) | xi ∈ Cdi+1} be the

(smooth) manifold of decomposable tensors (X oftened called

the Segre variety).

Let A ∈ C(d1+1)×···×(dk+1). Then the condition ∇fA(x1, . . . ,xk) =

0 for some non-zero (x1, . . . ,xk) is equivalent to saying that the

hyperplane orthogonal to A, ie.

HA := {B ∈ C(d1+1)×···×(dk+1) | 〈A, B〉 = 0}

contains a tangent to X at the point x1 ⊗ · · · ⊗ xk. This may

also be taken as an alternative definition of the hyperdeterminant

∆(A).

Projective duality:

X∗ = S.
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¢(A) = 0

rank(A) = 1

rank(B) = 2

¢(B) ≠ 0



¢(A) = 0

rank(A) = 1

rank(B) = 2

¢(B) = 0



Minor Inaccuracy

Should really be working in projective spaces P (C(d1+1)×···×(dk+1)) =

P(d1+1)···(dk+1)−1. This is the set of equivalence classes

[A] := {λA ∈ C(d1+1)×···×(dk+1) | λ ∈ C×}.

Thing to note is that the for any A ∈ C(d1+1)×···×(dk+1) and

λ ∈ C×,

rank⊗(λA) = rank⊗(A).

So outer-product rank is well-defined in P (C(d1+1)×···×(dk+1)),

ie. given [A] ∈ P (C(d1+1)×···×(dk+1)) define

rank⊗([A]) = rank⊗(A)

for any A ∈ [A].
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Examples

A. Cayley, “On the theory of linear transformation,” Cambridge

Math. J., 4 (1845), pp. 193–209.

Hyperdeterminant of A = [[aijk]] ∈ R2×2×2 is

∆(A) =
1

4

[
det

([
a000 a010
a001 a011

]
+

[
a100 a110
a101 a111

])

− det

([
a000 a010
a001 a011

]
−
[
a100 a110
a101 a111

])]2

− 4det

[
a000 a010
a001 a011

]
det

[
a100 a110
a101 a111

]
.

A result that parallels the matrix case is the following: the system
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of bilinear equations

a000x0y0 + a010x0y1 + a100x1y0 + a110x1y1 = 0,

a001x0y0 + a011x0y1 + a101x1y0 + a111x1y1 = 0,

a000x0z0 + a001x0z1 + a100x1z0 + a101x1z1 = 0,

a010x0z0 + a011x0z1 + a110x1z0 + a111x1z1 = 0,

a000y0z0 + a001y0z1 + a010y1z0 + a011y1z1 = 0,

a100y0z0 + a101y0z1 + a110y1z0 + a111y1z1 = 0,

has a non-trivial solution iff ∆(A) = 0.



Examples

Hyperdeterminant of A = [[aijk]] ∈ R2×2×3 is

∆(A) = det

a000 a001 a002
a100 a101 a102
a010 a011 a012

det

a100 a101 a102
a010 a011 a012
a110 a111 a112


− det

a000 a001 a002
a100 a101 a102
a110 a111 a112

det

a000 a001 a002
a010 a011 a012
a110 a111 a112


Again, the following is true:

a000x0y0 + a010x0y1 + a100x1y0 + a110x1y1 = 0,

a001x0y0 + a011x0y1 + a101x1y0 + a111x1y1 = 0,

a002x0y0 + a012x0y1 + a102x1y0 + a112x1y1 = 0,

a000x0z0 + a001x0z1 + a002x0z2 + a100x1z0 + a101x1z1 + a102x1z2 = 0,

a010x0z0 + a011x0z1 + a012x0z2 + a110x1z0 + a111x1z1 + a112x1z2 = 0,

a000y0z0 + a001y0z1 + a002y0z2 + a010y1z0 + a011y1z1 + a012y1z2 = 0,

a100y0z0 + a101y0z1 + a102y0z2 + a110y1z0 + a111y1z1 + a112y1z2 = 0,

has a non-trivial solution iff ∆(A) = 0.
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For more examples, see:

I.M. Gelfand, M.M. Kapranov, and A.V. Zelevinsky, Discrimi-

nants, resultants, and multidimensional determinants, Birkhäuser

Publishing, Boston, MA, 1994.



Another Explanation for Degeneracy

Degeneracy here means: a sequence of tensors Bn of rank ≤ r

converging to a tensor A of rank r+1, ie. A can be approximated

arbitrarily well by tensors of lower-rank. In particular, A has no

best rank-r approximations.

Question: Why do degeneracy occur in PARAFAC?

One Explanation: Alwin’s talk

Alternative explanation: Degeneracy happens when a sequence

of r-secants to X converges to a (r + 1)-secant. Furthermore,

this (r + 1)-secant is always tangent to X (since X is a smooth

manifold). This doesn’t happen for order-2 tensors because the

geometry of X = {A ∈ Cm×n | rank(A) ≤ 1} prevents this.
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rank(A) = 1

rank(C) = 3

rank(B) = 2



Relation between the two explanations

¢(A) = 0

rank(A) = 1

rank(B) = 2

¢(B) = 0
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¢(A) = 0

rank(A) = 1

rank(B) = 2

¢(B) ≠ 0



Typical Rank(s) for Real Tensors

Conjecture. For any d1, . . . , dk ≥ 1 satisfying

dj ≤
∑
i6=j

di

for all j, the outer-product rank is constant on the sets {A ∈
R(d1+1)×···×(dk+1) | ∆(A) < 0} and {A ∈ R(d1+1)×···×(dk+1) |
∆(A) > 0} (but may take different values).

Corollary. If the conjecture is true, then there exist at most two

typical ranks for R(d1+1)×···×(dk+1).
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¢(A) = 0

¢(A) > 0

¢(A) < 0

R



Generic rank for Complex Tensors

Theorem. For any d1, . . . , dk ≥ 1, a (unique) generic rank always

exist for C(d1+1)×···×(dk+1).

¢(A) = 0

¢(A) ≠ 0

¢(A) ≠ 0

C
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Extending hyperdeterminant

Let A ∈ Rd1×···×dk, di ≥ r = rank⊗(A). Let ∆ denote the hyper-

determinant in Rr×···×r.

Easy to show: There exist Qi ∈ Rr×di with orthonormal columns,

i = 1, . . . , k, such that

(Q1, . . . , Qk)A ∈ Rr×···×r.

Lemma. If A can be approximated arbitrarily closely by tensors

of rank ≤ r in Rd1×···×dk, then (Q1, . . . , Qk)A can be approximated

arbitrarily closely by tensors of rank ≤ r in Rr1×···×rk.

Define r-hyperdeterminant of A by

∆k,r(A) := ∆((Q1, . . . , Qk)A).

Whether ∆k,r(A) = 0 or not is independent of choice of Q1, . . . , Qk.
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Conditioning

J.W. Demmel, “On condition numbers and the distance to the

nearest ill-posed problem,” Numer. Math., 51 (1987), no. 3, pp.

251–289.

J.W. Demmel, “The geometry of ill-conditioning,” J. Complex-

ity, 3 (1987), no. 2, pp. 201–229.

J.W. Demmel, “The probability that a numerical analysis prob-

lem is difficult,” Math. Comp., 50 (1988), no. 182, pp. 449–480.

An ill-posed problem is one that lacks either existence or unique-

ness or stability (of a solution).

Condition number in a nutshell: The condition number of a

well-posed problem measures the distance of that problem to
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the manifold of ill-posed problems. The larger the condition

number, the closer the problem is to an ill-posed one.

Example. The manifold of ill-posed n × n linear system is S =

{A ∈ Rn×n | det(A) = 0}. For a non-singular B, the (normalized)

condition number
1

‖B−1‖
is the distance of B to S. Note that the value of det(B) does

not enter into the picture — det(B) can be arbitrarily small for

well-conditioned B.



Using Hyperdeterminants

The set {A ∈ Rd1×···×dk | ∆k,r(A) = 0} characterizes the ill-posed

best rank-r approximation problems in Rd1×···×dk.

The (normalized) condition number of the problem of finding

the best rank-r approximation to B is given by the reciprocal of

the distance of B to {A ∈ Rd1×···×dk | ∆k,r(A) = 0}.

Note again that the exact value of ∆k,r(A) is unimportant (only

whether it is 0).
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Example: Order-3, Rank-2

Easy Fact. Let l, m, n ≥ 2. Let x1,y1 ∈ Rl, x2,y2 ∈ Rm, x3,y3 ∈
Rn and define

A := x1 ⊗ x2 ⊗ y3 + x1 ⊗ y2 ⊗ x3 + y1 ⊗ x2 ⊗ x3 ∈ Rl×m×n.

Then rank⊗(A) = 3 if and only if xi,yi are linearly independent,
i = 1,2,3.

Theorem (de Silva and L., 2004). Let l, m, n ≥ 2. Let A ∈
Rl×m×n with rank⊗(A) ≥ 3. The following are equivalent:

1. A is the limit of a sequence Bn ∈ Rl×m×n with rank⊗(Bn) ≤ 2,

2. ∆3,2(A) = 0,

3. A = x1 ⊗ x2 ⊗ y3 + x1 ⊗ y2 ⊗ x3 + y1 ⊗ x2 ⊗ x3.
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