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We study path-connectedness and homotopy groups of sets of 
tensors defined by tensor rank, border rank, multilinear rank, 
as well as their symmetric counterparts for symmetric tensors. 
We show that over C, the set of rank-r tensors and the set of 
symmetric rank-r symmetric tensors are both path-connected 
if r is not more than the complex generic rank; these results 
also extend to border rank and symmetric border rank over 
C. Over R, the set of rank-r tensors is path-connected if it 
has the expected dimension but the corresponding result for 
symmetric rank-r symmetric d-tensors depends on the order d: 
connected when d is odd but not when d is even. Border rank 
and symmetric border rank over R have essentially the same 
path-connectedness properties as rank and symmetric rank 
over R. When r is greater than the complex generic rank, 
we are unable to discern any general pattern: For example, 
we show that border-rank-three tensors in R2 ⊗ R2 ⊗ R2

fall into four connected components. For multilinear rank, 
the manifold of d-tensors of multilinear rank (r1, . . . , rd) in 
Cn1 ⊗ · · · ⊗ Cnd is always path-connected, and the same is 
true in Rn1 ⊗ · · · ⊗ Rnd unless ni = ri =

∏
j �=i rj for some 

i ∈ {1, . . . , d}. Beyond path-connectedness, we determine, 
over both R and C, the fundamental and higher homotopy 
groups of the set of tensors of a fixed small rank, and, taking 
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advantage of Bott periodicity, those of the manifold of tensors 
of a fixed multilinear rank. We also obtain analogues of these 
results for symmetric tensors of a fixed symmetric rank or a 
fixed symmetric multilinear rank.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Let V1, . . . , Vd be vector spaces over F = R or C and let N0 := {0, 1, 2, . . .} = N ∪{0}
denote the set of nonnegative integers. For a d-tensor A ∈ V1 ⊗ · · · ⊗ Vd, its tensor rank
[29,20,33] is

rank(A) := min
{
r ∈ N0 : A =

∑r

i=1
v1,i ⊗ · · · ⊗ vd,i, vj,i ∈ Vj

}
, (1.1)

and its multilinear rank [29,20,33] is the d-tuple

μrank(A) := min
{
(r1, . . . , rd) ∈ Nd

0 : A ∈ W1 ⊗ · · · ⊗Wd, Wj ⊆ Vj , dimF (Wj) = rj
}
,

(1.2)
well-defined since the set on the right is a directed subset of Nd

0 . When d = 2, the 
multilinear rank in (1.2) reduces to row and column ranks of a matrix, which are of 
course equal to each other and to (1.1), the minimal number of rank-one summands 
required to decompose the matrix. Thus (1.2) and (1.1) are both generalizations of 
matrix rank although for d ≥ 3, these numbers are in general all distinct.

For a symmetric d-tensor A ∈ Sd(V ), there is also a corresponding notion of symmetric 
tensor rank [19,33], given by

rankS(A) := min
{
r ∈ N0 : A =

∑r

i=1
v⊗d
i , vi ∈ V

}
, (1.3)

and symmetric multilinear rank, given by

μrankS(A) := min
{
r ∈ N0 : A ∈ Sd(W ), W ⊆ V, dimF (W ) = r

}
. (1.4)

It is now known that rank(A) �= rankS(A) in general [43] although it is easy to see that 
one always has μrank(A) = (r, . . . , r) where r = μrankS(A).

When d ≥ 3, the sets {A ∈ V1 ⊗· · ·⊗Vd : rank(A) ≤ r} and {A ∈ Sd(V ) : rankS(A) ≤
r} are in general not closed (whether in the Euclidean or Zariski topology) [33], giving 
rise to the notions of border rank and symmetric border rank

rank(A) := min
{
r ∈ N0 : A ∈ {B ∈ V1 ⊗ · · · ⊗ Vd : rank(B) ≤ r}

}
, (1.5)

rankS(A) := min
{
r ∈ N0 : A ∈ {B ∈ Sd(V ) : rankS(B) ≤ r}

}
. (1.6)
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The closures here are in the Euclidean topology. Although over C, the Euclidean and 
Zariski topologies give the same closure for these sets [40, Theorem 2.33]. This ‘border 
rank’ phenomenon does not happen with multilinear rank and symmetric multilinear 
rank.

In this article we will study (i) path-connectedness, (ii) fundamental group, and (iii) 
higher homotopy groups of the sets:

➀ {A ∈ V1 ⊗ · · · ⊗ Vd : rank(A) = r}, ➁ {A ∈ Sd(V ) : rankS(A) = r},

➂ {A ∈ V1 ⊗ · · · ⊗ Vd : rank(A) = r}, ➃ {A ∈ Sd(V ) : rankS(A) = r},

➄ {A ∈ V1 ⊗ · · · ⊗ Vd : μrank(A) = (r1, . . . , rd)}, ➅ {A ∈ Sd(V ) : μrankS(A) = r},

for arbitrary d ≥ 3 and for a vast range of (although not all) values of r and (r1, . . . , rd). 
These topological properties will in general depend on whether the vector spaces involved 
are over R or C and the two cases will often require different treatments. ➀ and ➁ are 
semialgebraic sets; ➂ and ➃ are locally closed semialgebraic sets; ➄ and ➅ are smooth 
manifolds. One common feature of ➀–➅ is that they all contain a nonempty Euclidean 
open subset of their closures, implying that each of these sets has the same dimension 
as its closure.

Throughout this article, ‘rank-r’ will mean ‘rank exactly r’ and likewise for ‘border-
rank r,’ ‘symmetric rank-r,’ ‘multilinear rank-(r1, . . . , rd),’ etc. Statements such as ‘path-
connectedness of border rank’ or ‘homotopy groups of symmetric multilinear rank’ will 
be understood to mean (respectively) path-connectedness of the set in ➂ or homotopy 
groups of the set in ➅.

1.1. Outline

Our results for the three topological properties of the six notions of tensor ranks over 
two base fields are too lengthy to reproduce in the introduction. Instead we provide 
Table 1 to serve as a road map to these results. As is evident, one notable omission is 
the homotopy groups of border ranks, which accounts for the empty cells in the table. 
The reason is that the approaches we used to obtain homotopy groups for ranks do not 
directly apply to border ranks (e.g., Proposition 5.2 does not have a counterpart for 
border rank) because of the more subtle geometry of border ranks and at this point we 
are unable to go beyond path-connectedness for border ranks.

1.2. Coordinates

All notions of rank in this article, and in particular the tensor ranks (1.1)–(1.6), 
are independent of bases, i.e., they are indeed defined on the respective tensor spaces — 
V1⊗· · ·⊗Vd or Sd(V ) where V1, . . . , Vd and V are F -vector spaces. We will therefore state 
our results in this article in a coordinate-free manner. Nevertheless some practitioners 
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Table 1
Road map to results.

Connectedness Fundamental group Higher homotopy
X-rank over C Theorem 3.7 Proposition 5.2 Proposition 5.2
border X-rank over C Theorem 3.1
rank over C Corollary 3.8 Theorem 6.1 Theorem 6.2, 

Theorem 6.3
rank over R Theorem 4.7, 

Corollary 4.8
Theorem 6.4 Theorem 6.5, 

Theorem 6.6
border rank over C Corollary 3.2
border rank over R Theorem 4.7, 

Corollary 4.8
symmetric rank over C Corollary 3.8 Theorem 7.1 Theorem 7.2, 

Theorem 7.3
symmetric rank over R Theorem 4.4 Theorem 7.4 Theorem 7.5, 

Theorem 7.6
symmetric border rank over C Corollary 3.3
symmetric border rank over R Theorem 4.5
multilinear rank over C Theorem 8.3 Theorem 8.5 Theorem 8.5
multilinear rank over R Theorem 8.2 Theorem 8.4 Theorem 8.4
symmetric multilinear rank over C Theorem 9.3 Theorem 9.5 Theorem 9.5
symmetric multilinear rank over R Theorem 9.2 Theorem 9.4 Theorem 9.4

tend to view tensors in terms of hypermatrices, i.e., d-dimensional matrices that are 
coordinate representations of tensors with respect to some choices of bases. These are 
usually denoted

Fn1×···×nd := {(ai1...id) : ai1...id ∈ F , 1 ≤ k1 ≤ nk, k = 1, . . . , d}.

All results in this article may be applied to hypermatrices by choosing bases and setting 
V1 = Fn1 , . . . , Vd = Fnd , with ni = dimF (Vi), and identifying tensors with hypermatrices:

Fn1 ⊗ · · · ⊗ Fnd = Fn1×···×nd ,

or symmetric tensors with symmetric hypermatrices

Sd(Fn) = {(ai1...id) ∈ Fn×···×n : aiσ(1)...iσ(d) = ai1...id for all σ ∈ Sd}.

Note that when we said the sets ➀–➅ have semialgebraic, locally closed, or manifold 
structures, these statements are coordinate independent.

1.3. Application impetus

The primary goal of this article is to better understand the topological properties of 
various tensor ranks, an aspect that has been somewhat neglected in existing studies. 
However, the results on path-connectedness and simple-connectedness of tensor rank, 
multilinear rank, and their symmetric counterparts have useful practical implications.
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One of the most basic and common problems involving tensors in applications is to 
find low-rank approximations [20] with respect to one of these notions of rank: Given 
A ∈ V1 ⊗ · · · ⊗ Vd and r ∈ N or (r1, . . . , rd) ∈ Nd, find a best rank-r or best multilinear 
rank-(r1, . . . , rd) approximation:

infrank(B)≤r‖A−B‖ or infμrank(B)≤(r1,...,rd)‖A−B‖;

or, given A ∈ Sd(V ) and r ∈ N, find the best symmetric rank-r approximation or best 
symmetric multilinear rank-r approximation:

infrankS(B)≤r‖A−B‖ or infμrankS(B)≤r‖A−B‖.

Riemannian manifold optimization techniques [21,2] were first used for the best mul-
tilinear rank approximations of tensors and symmetric tensors in [22,42]. Numerous 
variants have appeared since, mostly dealing with different objective functions, e.g., for 
the so-called ‘tensor completion’ problems. In one of these works [31], the authors con-
sidered approximation by tensors of a fixed multilinear rank, i.e.,

Xr1,...,rd(V1, . . . , Vd) := {A ∈ V1 ⊗ · · · ⊗ Vd : μrank(A) = (r1, . . . , rd)},

as opposed to those not more than a fixed multilinear rank, i.e.,

Subr1,...,rd(V1, . . . , Vd) := {A ∈ V1 ⊗ · · · ⊗ Vd : μrank(A) ≤ (r1, . . . , rd)}.

The advantages of using Subr1,...,rd(V1, . . . , Vd), called a subspace variety, are well-known: 
The set is topologically well-behaved, e.g., closed in the Euclidean (and Zariski) topol-
ogy and therefore guaranteeing the existence of a best approximation [20]; connected 
in the Euclidean (and Zariski) topology and therefore ensuring that path-following op-
timization methods that start from any initial point could in principle arrive at the 
optimizer [33]. However Subr1,...,rd(V1, . . . , Vd) suffers from one defect — it is not a 
smooth manifold, e.g., any point in Subr1,...,rd(V1, . . . , Vd) with multilinear rank strictly 
less than (r1, . . . , rd) is singular, and this prevents the use of Riemannian optimization 
techniques. With this in mind, the authors of [31] formulated their optimization problem 
over Xr1,...,rd(V1, . . . , Vd), which is a smooth Riemannian manifold [47]. But this raises 
the question of whether Xr1,...,rd(V1, . . . , Vd) is path-connected. If not, then the path-
following algorithms in [31] that begin from an initial point in one component will never 
converge to an optimizer located in another. For example, when d = 2, it is well-known 
that the set of n × n real matrices of rank n has two components given by the sign of 
the determinant but that the set of n ×n complex matrices of rank n is connected. More 
generally, the set of n1 × n2 real matrices of rank r is connected unless n1 = n2 = r

[36,48].
Homotopy continuation techniques [5] have also made a recent appearance [28] in 

tensor decomposition problems over C. In general, a tensor of a given rank may have 
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several rank decompositions and such techniques have the advantage of being able to 
find all decompositions with high probability. The basic idea is that for a given general 
complex rank-r tensor A ∈ W1 ⊗ · · · ⊗Wd with a known rank-r decomposition, one may 
construct a random loop τ : [0, 1] → W1⊗· · ·⊗Wd with τ(0) = τ(1) = A, the endpoint of 
this loop gives a rank-r decomposition of A, repeat this process a considerable number of 
times by choosing random loops, and one may expect to obtain all rank-r decompositions. 
The consideration of loops naturally leads us to questions of simple-connectedness.

We expect our results on the path-connectedness of sets of d-tensors of various ranks 
to be useful to practitioners applying Riemannian optimization algorithms to tensor 
approximations problems by allowing them to ascertain if the case they are interested 
in is path-connected or not. Likewise, we expect our simply-connectedness results to be 
useful to practitioners applying homotopy continuation methods.

2. X-rank, tensor rank, symmetric rank, and border rank

Our results in this section are relatively straightforward to state but their proofs 
will be technical and require an algebraic geometric view of tensor rank. We start by 
providing some relevant background in Section 2.1. Even those already conversant with 
the standard treatment of these materials may nevertheless benefit from going over 
Section 2.1 because of the subtleties that arise when one switches between R and C. The 
standard treatment, say as in [25,33], invariably assumes that everything is carried out 
over C.

2.1. Rank and border rank

Let V be a finite-dimensional real vector space, and W = V ⊗R C be its complexifi-
cation. Let PW be the corresponding projective space1 with quotient map

p : W \ {0} → PW, v �→ [v], (2.1)

where [v] denotes the projective equivalence class of v ∈ W \ {0}. For any subset X ⊆
PW , the affine cone over X is the set X̂ := p−1(X) ∪ {0}. Note that X̂ ⊆ W . A 
complex projective variety X ⊆ PW is called nondegenerate if X is not contained in any 
hyperplane, and X is called irreducible if it is not a union of two proper subvarieties. If 
X is defined by homogeneous polynomials with real coefficients, then X(R), the set of 
real points of X, is the zero locus of these polynomials in PV . In fact, X(R) = X∩PV . If 
X ⊆ PW is an irreducible nondegenerate projective variety defined by real homogeneous 
polynomials, then X(R) is Zariski dense in X if and only if X has a nonsingular real 
point [7,44].

1 But we will follow convention and write RPn and CPn instead of PRn and PCn.
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Let sr(X) be the image of the morphism

sr : (X̂ \ {0})r → W, (x1, . . . , xr) �→ x1 + · · · + xr. (2.2)

The rth secant variety σr(X) is the projective subvariety whose affine cone is the Zariski 
closure of sr(X). Henceforth we will write sr(X) := sr(X) for the Euclidean closure 

of sr(X) and σ̂r(X) := σ̂r(X) for the affine cone of σr(X). For a complex irreducible 
projective variety X,

sr(X) = σ̂r(X).

Let x ∈ W . We say that x has X-rank r if x ∈ sr(X) \sr−1(X); in notation, rankX(x) = r. 
We say that x has border X-rank r if x ∈ sr(X) \ sr−1(X); in notation, rankX(x) = r. 
In summary,

sr(X) = {x ∈ W : rankX(x) ≤ r}, sr(X) \ sr−1(X) = {x ∈ W : rankX(x) = r},
sr(X) = {x ∈ W : rankX(x) ≤ r}, sr(X) \ sr−1(X) = {x ∈ W : rankX(x) = r}.

Let A(PW ) denote the set of all complex projective varieties X ⊆ PW that are (i) 
irreducible, (ii) nondegenerate, (iii) defined by real homogeneous polynomials, and (iv) 
whose real points X(R) are Zariski dense. Given X ∈ A(PW ), consider the real analogue 
of the map in (2.2),

sr : (X̂(R) \ {0})r → V, (x1, . . . , xr) �→ x1 + · · · + xr,

also denoted sr by a slight abuse of notation. It follows from [41,14] that

σr(X(R)) =
(
σr(X)

)
(R). (2.3)

Thus if X ∈ A(PW ), then σr(X) ∈ A(PW ). However, sr(X(R)) may not be equal to 
σ̂r(X(R)). Also, the assumption X ∈ A(PW ) is required for (2.3), which does not hold 
in general.

An important point to note is that the values of X-rank and border X-rank depend 
on the choice of base field. For x ∈ V , it is entirely possible [19,20,37] that

rankX(x) �= rankX(R)(x) or rankX(x) �= rankX(R)(x).

As such we will have to treat the real and complex cases separately.
The smallest r so that sr(X) = W , or equivalently, σr(X) = PW , is called complex 

generic X-rank, and is denoted by rg(X). Note that the notion of generic rank is only 
defined over C. If sr(X(R)) \ sr−1(X(R)) contains a Euclidean open subset of V , then 
r is called a typical X-rank. Note that the notion of typical rank is only defined over R. 
The two notions are related in that the complex generic X-rank rg(X) is the smallest 
typical X-rank [7].
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2.2. Secant, Segre, and Veronese varieties

Our discussions will be framed in terms an arbitrary variety X ∈ A(PW ) for greatest 
generality. However, when we apply these results to tensor rank, the variety in question 
is the Segre variety X = Seg(PW1 × · · · × PWd), the manifold of projective equivalence 
classes of rank-one d-tensors, where each Wi is the complexification of some real vector 
space Vi, with W = W1⊗· · ·⊗Wd and V = V1⊗· · ·⊗Vd. In this case, X(R) = Seg(PV1×
· · ·×PVd), which is Zariski dense in X = Seg(PW1×· · ·×PWd). Similarly, when we apply 
these results to symmetric tensor rank, the variety in question is the Veronese variety
X = νd(PU), the manifold of projective equivalence classes of symmetric rank-one d-
tensors, where U is the complexification of some real vector space T , with W = Sd(U)
and V = Sd(T ). In this case, X(R) = νd(PT ), which is Zariski dense in X = νd(PU).

When X = Seg(PW1 × · · · × PWd), we write

rank(A) = rankSeg(PW1×···×PWd)(A) and rank(A) = rankSeg(PW1×···×PWd)(A)

for the tensor rank and border rank of a tensor A ∈ W1 ⊗ · · · ⊗Wd. When X = νd(PU), 
we write

rankS(A) = rankνd(PU)(A) and rankS(A) = rankνd(PU)(A)

for the symmetric tensor rank and symmetric border rank of a symmetric tensor A ∈
Sd(U).

Note that if, say, W1 is one-dimensional, then W1⊗W2⊗· · ·⊗Wd
∼= W2⊗· · ·⊗Wd. So 

for W1⊗· · ·⊗Wd to be faithfully a space of order-d tensors, the dimensions of W1, . . . , Wd

must all be at least two. Throughout this article, we will assume that all vector spaces 
that appear in tensor product spaces such as W1 ⊗ · · · ⊗Wd or Sd(U) are of dimensions 
at least two. The same assumption will apply to real vector spaces as well for the same 
reason.

3. Path-connectedness of complex tensor ranks

The notions of path-connectedness and connectedness are equivalent for all spaces that 
we will consider in this article and henceforth, except in section headings, we will write 
“connected” or “connectedness” for brevity. We start by establishing the connectedness 
of border X-rank over C, which is a straightforward consequence of the following fact [3]: 
For any complex irreducible nondegenerate projective variety X � PW , we have a strict 
inclusion σr−1(X) � σr(X) whenever r ≤ rg(X). By [40, Corollary 4.16], σr(X) \σr−1(X)
is connected. Given any nonempty subset S ⊆ PW , let

O◦
S(−1) = {(x, v) ∈ PW ×W : x ∈ S, v ∈ x̂ \ {0}} (3.1)
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be a fiber bundle2 over S. Let p1 : O◦
S(−1) → PW and p2 : O◦

S(−1) → W be the 
projections onto the first and second factor respectively. For any x ∈ S, the fiber 
p−1
1 (x) = x̂ \ {0} ∼= C \ {0} is connected. So if S is connected, p−1

1 (S) is connected, 
which implies p2(p−1

1 (S)) is connected. In our case, S = σr(X) \ σr−1(X). Hence 
p2(p−1

1 (S)) = σ̂r(X) \ σ̂r−1(X) is connected, or, in other words, the set of border X-
rank-r points,

{x ∈ W : rankX(x) = r} = σ̂r(X) \ σ̂r−1(X),

is connected. We state this formally below.

Theorem 3.1 (Connectedness of X-border rank-r points). Let W be a complex vector space 
and X � PW be any complex irreducible nondegenerate projective variety. If r ≤ rg(X), 
then the set {x ∈ W : rankX(x) = r} is a connected set.

Let W1, . . . , Wd and W be finite-dimensional complex vector spaces. Applying Theo-
rem 3.1 to the special cases X = Seg(PW1 × · · · × PWd) and X = νd(PW ), we obtain 
the connectedness of tensor border rank and symmetric border rank over C.

Corollary 3.2 (Connectedness of border rank-r complex tensors). Let r be not more than 
the complex generic tensor rank. The set of border rank-r complex tensors

{A ∈ W1 ⊗ · · · ⊗Wd : rank(A) = r}

is a connected set.

Corollary 3.3 (Connectedness of symmetric border rank-r complex symmetric tensors). 
Let r be not more than the complex generic symmetric rank. The set of symmetric border 
rank-r complex symmetric tensors

{A ∈ Sd(W ) : rankS(A) = r}

is a connected set.

We next move on to the connectedness of X-rank (as opposed to border X-rank) over 
C. For the following discussions, one should bear in mind that every complex variety 
is naturally a real semialgebraic set; and every complex nonsingular variety of complex 
dimension n is a complex smooth manifold of complex dimension n, which is naturally a 
real smooth manifold of real dimension 2n. Throughout this article, whenever we refer to 
the kth homotopy group of a semialgebraic set X, we mean the kth topological homotopy 
group of X under its Euclidean topology. Recall the following well-known fact.

2 Note that O◦
S(−1) differs from the tautological line bundle OS(−1) = {(x, v) ∈ PW ×W : x ∈ S, v ∈ x̂}

in that its fiber over x ∈ S is x̂ \ {0} and not x̂.
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Theorem 3.4. If M is a smooth manifold and X is a union of finitely many embedded 
submanifolds of M with codimR(X, M) ≥ n, then πk(M) ∼= πk(M \ X) for all k =
0, . . . , n − 2.

By [9, Proposition 2.9.10], any semialgebraic subset X � Rm is a disjoint union of 
finitely many submanifolds of Rm. This yields the following corollary of Theorem 3.4, 
which will be an important tool for us.

Theorem 3.5. If M is a smooth manifold and X is a semialgebraic subset of M of real 
codimension codimR(X, M) ≥ n, then πk(M) ∼= πk(M \X) for k = 0, . . . , n − 2.

Another standard fact that we will use repeatedly is the following well-known result 
[27], stated here for easy reference.

Theorem 3.6. Let F → E
p−→ B be a fiber bundle and B be connected. For any x ∈ F , 

b = p(x), there is a long exact sequence

· · · → πi+1(F, x) → πi+1(E, x) p∗−→ πi+1(B, b) → πi(F, x) → · · · → π0(E, x) → 0.

Let X � PW be a complex irreducible nondegenerate nonsingular projective variety. 
When r ≤ rg(X), the aforementioned fact that σr−1(X) � σr(X) implies that the com-
plex codimension of sr−1(X) in sr(X) is at least one. So the preimage s−1

r (sr−1(X)) has 
complex codimension at least one in (X̂\{0})r, i.e., the real codimension of s−1

r (sr−1(X))
in (X̂ \ {0})r is at least two. Let O◦

X(−1) be the bundle in (3.1) with S = X. Let 
p1 : O◦

X(−1) → PW and p2 : O◦
X(−1) → W be the projections. For any x ∈ X, the fiber 

p−1
1 (x) = x̂ \ {0} ∼= C \ {0} is connected. Since X is irreducible, X is connected. Thus 

p−1
1 (X) is connected, which implies X̂ \{0} = p2(p−1

1 (X)) is connected. By Theorem 3.5, 
the semialgebraic subset

(X̂ \ {0})r \ s−1
r (sr−1(X))

is connected. Therefore sr(X) \sr−1(X) is also connected, being the image of a connected 
set under a continuous map. We have thus deduced the connectedness of complex X-rank.

Theorem 3.7 (Connectedness of X-rank-r points). Let W be a complex vector space and 
X � PW be any complex irreducible nondegenerate projective variety. If r ≤ rg(X), then 
the set {x ∈ W : rankX(x) = r} is a connected set.

Let W1, . . . , Wd and W be finite-dimensional complex vector spaces. Applying Theo-
rem 3.7 to the special cases X = Seg(PW1 × · · · × PWd) and X = νd(PW ), we obtain 
the connectedness of tensor rank and symmetric tensor rank over C.

Corollary 3.8 (Connectedness of rank-r complex tensors).
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(i) Let r be not more than the complex generic tensor rank. The set of rank-r complex 
tensors

{A ∈ W1 ⊗ · · · ⊗Wd : rank(A) = r}

is a connected set.
(ii) Let r be not more than the complex generic symmetric rank. The set of symmetric 

rank-r complex symmetric tensors

{A ∈ Sd(W ) : rankS(A) = r}

is a connected set.

4. Path-connectedness of real tensor ranks

We will now establish results similar to those in Section 3 but over R; these will 
however require quite different techniques. The marked difference between real tensor 
rank and complex tensor rank will not come as too much of a surprise to those familiar 
with tensor rank, which depends very much on the base field.

Let W be a vector space over F = R or C. Let X ⊆ PW be an irreducible non-
degenerate nonsingular projective variety. In particular X̂ \ {0} is naturally a smooth 
F -manifold. As usual, we will denote the tangent space of a smooth manifold M at a 
nonsingular point x ∈ M by TxM . Let x1, . . . , xr−1 be general points in X̂ \ {0}. We 
define

Z := s−1
r

(
sr−1(X)

)
and Y := {x ∈ X̂ : (x1, . . . , xr−1, x) ∈ Z}. (4.1)

Pick a general xr ∈ Y . Since sr : Z → sr−1(X) is surjective in an open neighborhood of 
(x1, . . . , xr), which is in Z, its differential

sr∗ : T(x1,...,xr)Z → Tx1+···+xr
sr−1(X)

is also surjective.
Because x1, . . . , xr−1 are general in X̂,

Tx1+···+xr−1sr−1(X) = Tx1X̂ + · · · + Txr−1X̂

by the semialgebraic Terracini’s lemma [41, Lemma 12]. On the other hand,
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Tx1+···+xr
sr−1(X) = sr∗(T(x1,...,xr)Z)

= sr∗
(
Tx1X̂ ⊕ · · · ⊕ Txr−1X̂ ⊕ Txr

Y
)

= Tx1X̂ + · · · + Txr−1X̂ + Txr
Y

⊇ Tx1X̂ + · · · + Txr−1X̂

= Tx1+···+xr−1sr−1(X),

which, by a dimension count, implies that

Txr
Y ⊆ Tx1X̂ + · · · + Txr−1X̂. (4.2)

Let dimF (X) := n − 1 and the codimension of Y in X̂, codimF (Y, X̂) := k. Then

codimF

(
Z, (X̂ \ {0})r

)
= k,

and (4.2) implies

dimF

(
Tx1X̂ + · · · + Txr

X̂
)
≤ k + dimF

(
Tx1X̂ + · · · + Txr−1X̂

)
. (4.3)

To establish the connectedness of tensor rank and symmetric tensor rank over R, we will 
need (4.3) and the following notion of defectivity.

Definition 4.1. Let W be a vector space over F = R or C, and X � PW be an irreducible 
projective variety of dimension m − 1. We say that X is not r-defective if

dimF

(
σr(X)

)
= min{rm− 1,dimF (W ) − 1}

and r-defective otherwise.

We will address the connectedness of symmetric tensor rank over R before address-
ing that of (nonsymmetric) tensor rank over R as we have more detailed results for 
the former. The reason being that our approach requires knowledge of r-defectivity. 
For symmetric tensors, the r-defectivity of σr(νd(PU)) is completely known due to the 
work of Alexander and Hirschowitz but for nonsymmetric tensors, the r-defectivity of 
σr(Seg(PW1 × · · · × PWd)) has not been completely determined.

4.1. Path-connectedness of real symmetric tensor rank and real symmetric border rank

Let W be the complexification of a real vector space V . Recall that if X = νd(PW ), 
then X(R) = νd(PV ). We first address the symmetric rank-one case, i.e., the connect-
edness of X̂(R) \ {0}, and later generalize it to arbitrary symmetric rank.

Proposition 4.2. Let V be a real vector space.
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(i) When d is odd, the set of symmetric rank-one real symmetric tensors

{A ∈ Sd(V ) : rankS(A) = 1},

is a connected set.
(ii) When d is even, the set of symmetric rank-one real symmetric tensors

{A ∈ Sd(V ) : rankS(A) = 1}

has two connected components.

Proof. Let dimR(V ) = n, and X(R) = νd(PV ). Fix a basis {e1, . . . , en} and a norm ‖ · ‖
for V . Let {e∗1, . . . , e∗n} be the dual basis of V ∗.

(i) Let u, v ∈ V and λ, μ ∈ R with ‖u‖ = ‖v‖ = 1 and λ, μ �= 0. As d is odd, the signs 
of λ and μ can be absorbed into u and v respectively, so we may assume that λ > 0, 
μ > 0. Since u, v ∈ Sn−1, the connectedness of Sn−1 implies the existence of a curve 
β(t) on Sn−1 connecting u and v. Then γ : [0, 1] → Sd(V ),

γ(t) :=
(
tμ + (1 − t)λ

)
· β(t)⊗d,

is a curve of constant rank connecting λu⊗d and μv⊗d.
(ii) Consider the map

ϕ : X̂(R) \ {0} → R, A �→ (e∗1)⊗d(A) + · · · + (e∗n)⊗d(A).

Given any symmetric rank-one tensor A, since d is even, ϕ(A) �= 0. Therefore X̂(R) \
{0} is a disjoint union of ϕ−1((−∞, 0)

)
and ϕ−1((0, +∞)

)
; we will show these two 

sets are connected, which implies the set of symmetric rank-one real tensors has two 
connected components. First observe that for any nonzero u ∈ V , ϕ(u⊗d) > 0 as 
d is even. Thus if A ∈ ϕ−1((0, +∞)

)
, then A is of the form λu⊗d for some u �= 0

and λ > 0. If A ∈ ϕ−1((−∞, 0)
)
, then A is of the form λu⊗d for some u �= 0

and λ < 0. Hence we may identify ϕ−1((0, +∞)
)

with ϕ−1((−∞, 0)
)

by the map 
λu⊗d �→ −λu⊗d and it suffices to demonstrate connectedness of ϕ−1((0, +∞)

)
, which 

is given by the same curve constructed in the proof of (i). �
A celebrated result due to Alexander and Hirschowitz [4] (see also [12] for a simplified 

proof) shows that if r <
(
n+d−1

d

)
/n, then X = νd(PW ) is not r-defective. Since σr(X) ∈

A(PSd(W )), X(R) is not r-defective either. This allows us to deduce the following result 
about Z = s−1

r

(
sr−1(X(R))

)
in (4.1).

Proposition 4.3. Let n > 2 and r <
(
n+d−1

d

)
/n. Then

codimR

(
s−1
r (sr−1(X(R))), (X̂(R) \ {0})r

)
> 1.
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Proof. In fact we will show that codimR(s−1
r (σ̂r−1(X)(R)), (X̂(R) \ {0})r) > 1, which 

clearly implies the required result. Suppose not, then s−1
r (σ̂r−1(X)(R)) is a hypersurface. 

For given general v1, . . . , vr−1 ∈ V , the set Y in (4.1) takes form

Y = {v ∈ V : v⊗d
1 + · · · + v⊗d

r−1 + v⊗d ∈ σ̂r−1(X)(R)},

which is an affine variety. If s−1
r

(
σ̂r−1(X)(R)

)
is a hypersurface, then Y is a hypersurface3

in V , and therefore defined by the vanishing of a single real homogeneous polynomial 
h. Let Y (C) ⊆ W be the complex hypersurface defined by h. Since r < rg(X), and 
v1, . . . , vr−1 are general, Y (C) is contained in

Ỹ := {v ∈ W : v⊗d
1 + · · · + v⊗d

r−1 + v⊗d ∈ σ̂r−1(X)},

and thus Ỹ must have codimension at most one. We will see that this leads to a contra-
diction.

Given a nonzero vector w ∈ W , let

m[w] :=
{
f ∈

⊕∞

k=0
Sk(W ∗) : f(w) = 0

}
be the maximal ideal of [w] ∈ PW , the point corresponding to w in projective space. 
Recall [6,26] that a scheme is called a double point if it is defined by the ideal m2

[w] for 
some w, and we denote such a double point by [w]2.

For a vector subspace Q ⊆ Sd(W ), its dual space is given by

Q⊥ := {f ∈ Sd(W ∗) : f(u) = 0 for all u ∈ Q}.

A classical result [35] stated in modern language says that

(T[v⊗d]X̂)⊥ = Sd(W ∗) ∩m2
[v].

Let C = {[v1]2, . . . , [vr]2} be a set of double points. Then by Terracini’s lemma [45], the 
degree-d piece of the ideal of C, denoted by IC(d), equals 

(
T[v⊗d

1 ]X̂ + · · · + T[v⊗d
r ]X̂

)⊥. 
Thus

codimC

(
IC(d),Sd(W ∗)

)
= dimC

(
T[v⊗d

1 ]X̂ + · · · + T[v⊗d
r ]X̂

)
.

The codimension codimC

(
IC(d), Sd(W ∗)

)
is in fact the Hilbert function of C evaluated 

at d, and is denoted by hPW (C, d). The result of Alexander and Hirschowitz [4] then 
implies that for r <

(
n+d−1

d

)
/n general double points, we have hPW (C, d) = nr. In our 

case, since [v1]2, . . . , [vr−1]2 are general, and vr is on a hypersurface Ỹ , we get that

3 Note that Y 	= V , since otherwise dim s−1
r

(
σ̂r−1(X)(R)

)
= r dimV as v1, . . . , vr−1 are general, implying 

that s−1
r

(
σ̂r−1(X)(R)

)
is not a hypersurface.
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hPW (C, d) = deg(C) = n(r − 1) + deg([vr]2) ≥ n(r − 1) + (n− 1). (4.4)

By (4.3), we obtain

hPW (C, d) = dimC

(
T[v⊗d

1 ]X̂ + · · · + T[v⊗d
r ]X̂

)
≤ codimC(Ỹ ,W ) + dimC

(
T[v⊗d

1 ]X̂ + · · · + T[v⊗d
r−1]

X̂
)
≤ 1 + n(r − 1),

which contradicts (4.4). �
We are in a position to address the connectedness of symmetric tensor rank over R.

Theorem 4.4 (Connectedness of symmetric rank-r real symmetric tensors). Let V be a 
real vector space of dimension n > 2 and let r <

(
n+d−1

d

)
/n be a positive integer.

(i) When d is odd, the set of symmetric rank-r real tensors

{A ∈ Sd(V ) : rankS(A) = r}

is a connected set.
(ii) When d is even, the set of symmetric rank-r real tensors

{A ∈ Sd(V ) : rankS(A) = r}

has r + 1 connected components.

Proof. (i) Since the set of symmetric rank-r tensors is the image of (X̂(R) \ {0})r \
s−1
r

(
sr−1

(
X(R)

))
under the continuous map sr, it suffices to show that this set is 

connected. Now note that the required connectedness follows from Proposition 4.3
and Theorem 3.5.

(ii) For each i ∈ {0, . . . , r}, let

Pi := {A ∈ Sd(V ) : A = v⊗d
1 + · · · + v⊗d

i − v⊗d
i+1 − · · · − v⊗d

r , rankS(A) = r}.

Note that the pair of numbers4 (i, r− i) associated to Pi is GL(V )-invariant. Hence 
Pi ∩ Pj = ∅ when i �= j. For each i ∈ {0, . . . , r}, define the map Σi by

Σi : (V \ {0})r → Sr(V ), (v1, . . . , vr) �→ v⊗d
1 + · · · + v⊗d

i − v⊗d
i+1 − · · · − v⊗d

r .

Let Dr := {A ∈ Sr(V ) : rankS(A) < r}. By an argument similar to the proof of 
Proposition 4.3,

4 When d = 2, the set Pi may be regarded as n ×n symmetric matrices of rank r and signature (i, r− i). 
Here we may view these pairs of numbers as a generalization of signature to arbitrary d ≥ 3.
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codimR

(
Σ−1

i (im(Σi) ∩Dr), (V \ {0})i
)
> 1.

Thus by Theorem 3.5 and the fact that the image of a connected set under a con-
tinuous map is connected, Pi is connected. Since

{A ∈ Sd(V ) : rankS(A) = r} =
⋃r

i=0
Pi,

the set {A ∈ Sd(V ) : rankS(A) = r} has r + 1 connected components. �
Since for any symmetric border rank-r tensor B ∈ Sd(V ), there is a continuous curve 

γ : [0, 1] → Sd(V ) with γ(0) = B and γ(t) ⊆ {A ∈ Sd(V ) : rankS(A) = r} for t ∈ (0, 1], 
we obtain the border rank analogue of Theorem 4.4.

Theorem 4.5 (Connectedness of symmetric border rank-r real symmetric tensors). Let V
be a real vector space of dimension n > 2 and let r <

(
n+d−1

d

)
/n be a positive integer.

(i) When d is odd, the set of symmetric border rank-r real tensors

{A ∈ Sd(V ) : rankS(A) = r}

is a connected set.
(ii) When d is even, the set of symmetric border rank-r real tensors

{A ∈ Sd(V ) : rankS(A) = r}

has r + 1 connected components.

4.2. Path-connectedness of real tensor rank and real border rank

We next turn our attention to tensors that are not necessarily symmetric, i.e., X =
Seg(PW1 × · · · × PWd) and X(R) = Seg(PV1 × · · · × PVd). As in the case of symmetric 
tensors, we first address the rank-one case, i.e., the connectedness of X̂(R) \ {0}, and 
later generalize it to arbitrary rank. Note that the set of rank-one tensors and the set of 
border rank-one tensors are equal.

Proposition 4.6. The set of rank-one real tensors

{A ∈ V1 ⊗ · · · ⊗ Vd : rank(A) = 1} = {A ∈ V1 ⊗ · · · ⊗ Vd : rank(A) = 1}

is connected.

Proof. The idea is the same as in the proof of Proposition 4.2(i). Upon absorbing signs 
and scaling, it suffices to show that for any A = λu1 ⊗ · · · ⊗ ud and B = μv1 ⊗ · · · ⊗ svd
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with λ, μ > 0 and ‖uj‖ = ‖vj‖ = 1, j = 1, . . . , d, there exists a curve γ(t) in V1⊗· · ·⊗Vd

connecting A and B such that γ(t) has rank one for any t ∈ [0, 1]. For each j = 1, . . . , d, we 
pick a curve τj(t) on the unit sphere Snj−1 ⊆ Vj connecting uj and vj , where nj = dimVj . 
Then the curve γ : [0, 1] → V1 ⊗ · · · ⊗ Vd defined by

γ(t) =
(
tλ + (1 − t)μ

)
· τ1(t) ⊗ · · · ⊗ τd(t)

has the desired property. �
Now we address the connectedness of the set of rank-r tensors and the set of border-

rank-r tensors. Here the condition that X is not r-defective in the symmetric case can be 
slightly weakened and replaced by a condition on the codimension plus the requirement 
that r < rg(X).

Theorem 4.7 (Connectedness of rank-r and border-rank-r real tensors). Let V1, . . . , Vd be 
real vector spaces of real dimensions n1, . . . , nd respectively, where 2 ≤ n1 ≤ · · · ≤ nd. 
Let r ∈ N be strictly smaller than the complex generic rank. If

codimC

(
σr−1(X), σr(X)

)
> n1 + · · · + nd−1 − d + 2, (4.5)

then the set of real rank-r tensors

{A ∈ V1 ⊗ · · · ⊗ Vd : rank(A) = r}

and the set of real border rank-r tensors

{A ∈ V1 ⊗ · · · ⊗ Vd : rank(A) = r}

are connected sets. Equivalently, in coordinates, the following sets of hypermatrices are 
connected:

{A ∈ Rn1×···×nd : rank(A) = r} and {A ∈ Rn1×···×nd : rank(A) = r}.

Proof. As in the proofs of Theorems 4.4 and 4.5, it suffices to show that

codimR

(
s−1
r

(
σ̂r−1(X)(R)

)
,
(
X̂(R) \ {0}

)r)
> 1.

Suppose not. Let x1, . . . , xr−1 ∈ X̂(R) be general points and v1 ∈ V1, . . . , vd−1 ∈ Vd−1
be general vectors. We set

Y := {v ∈ Vd : v1 ⊗ · · · ⊗ vd−1 ⊗ v + x1 + · · · + xr−1 ∈ σ̂r−1(X)(R)}.

As in the proof of Proposition 4.3, we have codimR(Y, Vd) = 1. Choose a general vd ∈ Y

and a general v ∈ Vd. Let xr = v1 ⊗· · ·⊗ vd and x = v1 ⊗· · ·⊗ vd−1 ⊗ v. Since the vector 
space v1 ⊗ · · · ⊗ vd−1 ⊗ Vd is contained in both Txr

X̂(R) and TxX̂(R), by (4.3), we get
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dimR

(
σ̂r(X)(R)

)
= dimR

(
Tx1X̂(R) + · · · + Txr−1X̂(R) + TxX̂(R)

)
≤ dimR

(
Tx1X̂(R) + · · · + Txr

X̂(R)
)

+ (n1 + · · · + nd−1 − d + 1)

≤ 1 + dimR

(
Tx1X̂(R) + · · · + Txr−1X̂(R)

)
+ (n1 + · · · + nd−1 − d + 1)

= 1 + dimR

(
σ̂r−1(X)(R)

)
+ (n1 + · · · + nd−1 − d + 1),

which contradicts the assumption that codimC

(
σr−1(X), σr(X)

)
> n1+· · ·+nd−1−d +2

as dimR

(
σ̂j(X)(R)

)
= dimC

(
σ̂j(X)

)
for all j = 1, . . . , rg(X). �

Note that the condition on codimension (4.5) in Theorem 4.7 is guaranteed whenever 
Seg(PW1 × · · · × PWd) is not r-defective, i.e.,

dimC

(
σr(Seg(PW1 × · · · × PWd))

)
= dimC

(
σr−1(Seg(PW1 × · · · × PWd))

)
+ n1 + · · · + nd − d + 1.

Corollary 4.8 (Connectedness of rank-r and border-rank-r real tensors). Let W1, . . . , Wd

be complexifications of the real vector spaces V1, . . . , Vd respectively. If Seg(PW1 ×· · ·×
PWd) is not r-defective, then the sets

{A ∈ V1 ⊗ · · · ⊗ Vd : rank(A) = r} and {A ∈ V1 ⊗ · · · ⊗ Vd : rank(A) = r}

are connected sets.

We would like to point out that determining r-defectivity of Seg(PW1 × · · · × PWd), 
or more generally, the dimension of σr(Seg(PW1×· · ·×PWd)), is a problem that has not 
been completely resolved (unlike the case of symmetric tensors, where the r-defectivity 
of νd(PU) is completely known thanks to the work of Alexander and Hirschowitz). How-
ever, there has been remarkable progress in recent years [1,8,17,18] and we know the 
dimensions (and therefore r-defectivity) in many cases. In particular, when nd > 3, all 
known cases satisfy condition (4.5) of Theorem 4.7. It is possible that the condition (4.5)
is always satisfied and may be dropped from the theorem.

We conclude this section by showing that the condition r < rg(X) cannot be omitted. 
The reason being that when r ≥ rg(X), we have dim sr(X(R)) = dim sr+1(X(R)), 
and the set of real (border) rank-r points may have several connected components. We 
illustrate this with a specific example.

Proposition 4.9. The set of real border rank-three 2 × 2 × 2 hypermatrices, i.e.,

{A ∈ R2×2×2 : rank(A) = 3},

has four connected components.

Proof. In fact, this result is not coordinate dependent and we will give a coordinate-free 
proof. Let U, V, W be real two-dimensional vector spaces. Pick any bases {u1, u2} on U , 
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{v1, v2} on V , and {w1, w2} on W . It is known [20] that in the space U ⊗ V ⊗W , the 
set of border rank-three tensors {A ∈ U ⊗ V ⊗W : rank(A) = 3} is the orbit of

B = u1 ⊗ v1 ⊗ w1 + u2 ⊗ v2 ⊗ w1 − u1 ⊗ v2 ⊗ w2 + u2 ⊗ v1 ⊗ w2

under the action of the group G = GL(U) × GL(V ) × GL(W ). For (g1, g2, g3) ∈ G and 
A ∈ U ⊗ V ⊗W , we write (g1, g2, g3) ·A for the action of (g1, g2, g3) on A.

Let H be the stabilizer of B in G. Let H0 be the connected component of H containing 
the identity element. The Lie algebra h of H0 takes the form

h =
{([

α1 −α2
α2 α1

]
,

[
β1 −β2
β2 β1

]
,

[
γ1 −γ2
γ2 γ1

])
∈ gl(U) ⊕ gl(V ) ⊕ gl(W )

: α1 + β1 + γ1 = α2 − β2 − γ2 = 0
}
.

Taking the exponential map, any (g1, g2, g3) ∈ H0 is then of the form([
eα1 cosα2 −eα1 sinα2
eα1 sinα2 eα1 cosα2

]
,

[
eβ1 cosβ2 −eβ1 sin β2
eβ1 sin β2 eβ1 cosβ2

]
,

[
eγ1 cos γ2 −eγ1 sin γ2
eγ1 sin γ2 eγ1 cos γ2

])
,

where α1 + β1 + γ1 = α2 − β2 − γ2 = 0. An argument similar to [23, Lemma 2.1] shows 
that H is contained in NG(H0), the normalizer of H0. In fact any (g1, g2, g3) ∈ NG(H0)
is of the form ([

±η1 0
0 η1

]
h1,

[
±η2 0
0 η2

]
h2,

[
±η3 0
0 η3

]
h3

)
,

where (h1, h2, h3) ∈ H0, and η1η2η3 �= 0. If (g1, g2, g3) ∈ H, then η1η2η3 = ±1. Thus any 
(g1, g2, g3) ∈ H takes one of the following eight forms:

([1 0
0 1

]
h1,
[1 0
0 1

]
h2,
[1 0
0 1

]
h3

)
,
([1 0

0 −1
]
h1,
[1 0
0 −1

]
h2,
[1 0
0 −1

]
h3

)
,([1 0

0 1
]
h1,
[−1 0

0 −1
]
h2,
[−1 0

0 −1
]
h3

)
,
([1 0

0 −1
]
h1,
[−1 0

0 1
]
h2,
[−1 0

0 1
]
h3

)
,([−1 0

0 −1
]
h1,
[1 0
0 1

]
h2,
[−1 0

0 −1
]
h3

)
,
([−1 0

0 1
]
h1,
[1 0
0 −1

]
h2,
[−1 0

0 1
]
h3

)
,([−1 0

0 −1
]
h1,
[−1 0

0 −1
]
h2,
[1 0
0 1

]
h3

)
,
([−1 0

0 1
]
h1,
[−1 0

0 1
]
h2,
[1 0
0 −1

]
h3

)
,

where (h1, h2, h3) ∈ H0. For any (h1, h2, h3) ∈ H0, we have det(hi) > 0 for i = 1, 2, 3, 
and so for any (g1, g2, g3) ∈ H, we have either det(gi) > 0 or det(gi) < 0 for all i = 1, 2, 3.

Therefore S = G/H has the following four connected components:

{(g1, g2, g3) ·B : det(g1) det(g2) > 0, det(g1) det(g3) > 0, det(g2) det(g3) > 0},
{(g1, g2, g3) ·B : det(g1) det(g2) > 0, det(g1) det(g3) < 0, det(g2) det(g3) < 0},
{(g1, g2, g3) ·B : det(g1) det(g2) < 0, det(g1) det(g3) > 0, det(g2) det(g3) < 0},
{(g1, g2, g3) ·B : det(g1) det(g2) < 0, det(g1) det(g3) < 0, det(g2) det(g3) > 0}. �
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5. Higher-order connectedness of X-rank

In general it is difficult to compute the fundamental and higher homotopy groups of 
sr(X), the set of X-rank-r points. We will instead compute it for an open dense subset 
of identifiable points, defined as follows.

Definition 5.1. Let W be a finite-dimensional vector space over F = R or C, and X � PW

be an irreducible nondegenerate nonsingular projective variety. Here an X-rank-r point 
is called identifiable if it has a unique X-rank-r decomposition. We say that X is r-
identifiable if a general point of sr(X) has a unique X-rank-r decomposition.

More precisely, if X is r-identifiable, then sr(X) contains an open dense subset U ⊆
sr(X) such that any point in U has a unique X-rank-r decomposition, i.e., a general 
point is simply a point in U. This also makes precise the intuitive interpretation of “X is 
r-identifiable” as “almost all points in sr(X) admit a unique X-rank-r decomposition.”

We will first need to define the set of points to be excluded from consideration. Let

Dr := {x ∈ sr(X) : rank(x) < r or x has non-unique rank-r decompositions}. (5.1)

The next result gives the fundamental and higher homotopy groups of sr(X) \Dr under 
some mild conditions.

Proposition 5.2. If X is r-identifiable over F and

c := codimR

(
s−1
r (Dr), (X̂ \ {0})r

)
> 2, (5.2)

then

πk(sr(X) \Dr) ∼=
{
π1(X̂ \ {0})r �Sr if k = 1,
πk(X̂ \ {0})r if c ≥ 4 and 2 ≤ k ≤ c− 2.

Here the semidirect product � is given by the action of the symmetric group Sr on 
π1(X̂ \ {0})r as permutations.

Proof. Recall that sr also denotes the map in (2.2). Slightly abusing notation, we will 
also use sr to denote the restriction of sr on (X̂ \ {0})r \ s−1

r (Dr).
Since Sr acts on (X̂ \ {0})r as Deck transformations and

sr : (X̂ \ {0})r \ s−1
r (Dr) → sr(X) \Dr

gives an r!-fold normal covering space of sr(X) \Dr, the quotient group

π1(sr(X) \Dr)
/
π1
(
(X̂ \ {0})r \ s−1

r (Dr)
)

= Sr. (5.3)
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If X is r-identifiable and the codimension condition is satisfied, then by Theorem 3.5,

π1
(
(X̂ \ {0})r \ s−1

r (Dr)
) ∼= π1((X̂ \ {0})r) ∼= π1(X̂ \ {0})r,

and by (5.3),

π1(sr(X) \Dr) ∼= π1(X̂ \ {0})r �Sr,

the semidirect product of π1(X̂ \ {0})r and Sr.
If c ≥ 4 and 2 ≤ k ≤ c −2, the isomorphism between πk(sr(X) \Dr) and πk(X̂ \{0})r)

follows from Theorem 3.5 and the fact that the k-sphere Sk is simply connected when k ≥
2, which implies that every map from Sk to sr(X) \Dr can be lifted to (X̂\{0})r\s−1

r (Dr), 
by the lifting property of covering spaces. �

Proposition 5.2 and, as we will soon see, most of the results in Section 6, will depend 
on identifiability. For the case of Segre variety, i.e., X = Seg(PW1 × · · · × PWd), the 
best known result for identifiability is the Kruskal uniqueness theorem [32]. Here we 
will present another result of this nature that holds for more general X. Under generic 
identifiability condition, it tells us that there is a close relation between the nonsingularity 
of a point and the uniqueness of its X-rank-r decomposition. When applied to tensors, 
this will allow us to use the same line of arguments in [18] to find more identifiable points 
than those given by the Kruskal uniqueness theorem.

Proposition 5.3. Let X be r-identifiable over F = C or R. If x = x1 + · · · + xr ∈ sr(X)
is a nonsingular point of σ̂r(X) and dimF (Tx1X̂ + · · · + Txr

X̂) = r dimF X̂, then x has 
a unique X-rank-r decomposition.

Proof. Since X is r-identifiable, dimF σ̂r(X) = r dimF X̂. Since x is nonsingular, by [3, 
Corollary 1.8], x = x1 + · · · + xr has X-rank r. Since dimF (Tx1X̂ + · · · + Txr

X̂) =
r dimF X̂ = dimF σ̂r(X), we have

sr∗(Tx1X̂ ⊕ · · · ⊕ Txr
X̂) = Tx1X̂ + · · · + Txr

X̂ = Txσ̂r(X),

and so the linear map sr∗ has full rank at (x1, . . . , xr). Therefore, for each xi ∈ X̂, there 
is an open ball B(xi, εi) ⊆ X̂ such that the restricted map

sr
∣∣
B(x1,ε1)×···×B(xr,εr)

is a local diffeomorphism. Suppose x1 + · · ·+ xr = y1 + · · ·+ yr for some y1, . . . , yr ∈ X̂, 
and {x1, . . . , xr} �= {y1, . . . , yr}. By [41, Lemma 1], for each yi, there is an open ball 
B(yi, δi) such that the image sr

(
B(y1, δ1) × · · · × B(yr, δr)

)
contains a nonempty open 

subset U ⊆ σ̂r(X). By the curve selection lemma [39, Chapter 3], x is an accumulation 
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point of U. Since sr
(
B(x1, ε1) × · · · × B(xr, εr)

)
is open and contains x as an interior 

point,

sr
(
B(x1, ε1) × · · · ×B(xr, εr)

)
∩ sr

(
B(y1, δ1) × · · · ×B(yr, δr)

)
contains a nonempty open subset V ⊆ σ̂r(X) such that x is an accumulation point of V. 
As {x1, . . . , xr} �= {y1, . . . , yr}, there is at least one open ball B(xi, εi) satisfying

B(xi, εi) ∩B(yj , δj) = ∅

for all j = 1, . . . , r. This shows that a general point in U has at least two X-rank-r
decompositions, contradicting the r-identifiability of X. �
6. Higher-order connectedness of tensor rank

Our calculations of the fundamental groups and higher homotopy groups of fixed-rank 
tensors will rely heavily on geometric information, notably knowledge of the singular loci 
of the secant varieties. As such our discussion will be limited to rank-r tensors where 
r = 1, 2, 3. The main difficulty in extending these calculations to rank-r tensors for 
r ≥ 4 is that the singular loci of the rth secant varieties of the Segre variety are still 
unknown for r ≥ 4. The same difficulty will prevent us from extending our homotopy 
group calculations in Section 7 to symmetric tensors of symmetric rank ≥ 4.

Parts of our results in Propositions 6.2, 6.3, 6.5, and 6.6 will be stated in terms of 
higher homotopy groups of spheres πk(Sn). So in cases5 where these are known, we may 
determine the explicit homotopy group for the set of low-rank tensors in question. This 
is a consequence of our relating higher homotopy groups of low-rank identifiable tensors 
to higher homotopy groups of spheres via (6.3) and (6.5). For instance, the vanishing of 
higher homotopy groups in Propositions 6.2 and 6.3 are directly obtained from these. In 
principle, we could derive many more explicit results easily using the list in [46], but we 
omit these calculations to avoid a tedious case-by-case discussion.

6.1. Fundamental and higher homotopy groups of complex rank-r tensors

To deduce the fundamental group of the set of rank-r tensors for small values of r, 
we apply the results in Section 6.1 to the case where X is the Segre variety. To be 
precise, let W1, . . . , Wd be finite dimensional vector spaces over F = C or R. As usual, 
we will assume that all complex vector spaces are of (complex) dimensions at least two 
throughout this section. Let d ≥ 3 and X = Seg(PW1 ×· · ·×PWd) be the Segre variety. 
When r = 2, by [38], the singular locus of σ2(X) takes the form

5 See [46] for an extensive list of known πk(Sn) for many values of (k, n).



P. Comon et al. / Advances in Mathematics 367 (2020) 107128 23
Y :=
⋃

1≤i≤j≤d

PW1 × · · · × PWi−1 × PWi+1 × · · · × PWj−1 × PWj+1 × . . .

× PWd × σ2(PWi × PWj).

Note that although the set

PW1 × · · · × PWi−1 × PWi+1 × · · · × PWj−1 × PWj+1 × · · · × PWd × σ2(PWi × PWj)

lies in a different tensor space P
((⊗

k 	=i,j Wk

)
⊗ Wi ⊗ Wj

)
for different i and j, we 

adopt the convention6 of identifying images under the isomorphism induced by permuting 
factors (⊗

k 	=i,j
Wk

)
⊗Wi ⊗Wj

∼=
⊗d

k=1
Wk.

With this convention, we may safely write Y ⊆ σ2(X).
If x ∈ Ŷ ∩s2(X), then rank(x) < 2 or x does not have a unique rank-2 decomposition. 

On the other hand, by [15, Proposition 1.1],

s2(X) \ Ŷ =
{
a1 ⊗ · · · ⊗ ad + b1 ⊗ · · · ⊗ bd ∈ W1 ⊗ · · · ⊗Wd :

ai, bi linearly independent for at least three i ∈ {1, . . . , d}
}
.

By Proposition 5.3, every point in s2(X) \Ŷ has a unique decomposition, i.e., s2(X) \D2 =
s2(X) \ Ŷ , where D2 is as defined in (5.1). This explicit description allows us to deduce 
the fundamental group of s2(X) \D2.

Theorem 6.1 (Fundamental group of complex tensor rank). Let d ≥ 3 and let W1, . . . , Wd

be complex vector spaces of dimensions n1, . . . , nd respectively.

(i) The set of rank-one complex tensors has fundamental group

π1
(
{A ∈ W1 ⊗ · · · ⊗Wd : rank(A) = 1}

)
= 0.

(ii) If n1 ≤ · · · ≤ nd and (n1 − 1) + · · · + (nd−2 − 1) > 1, then the set of rank-two 
identifiable complex tensors has fundamental group

π1
(
{A ∈ W1 ⊗ · · · ⊗Wd : rank(A) = 2, A is identifiable}

)
= Z/2Z.

Proof. (i) Let O◦
X(−1) be the bundle in (3.1) with S = X = Seg(PW1 × · · · × PWd). 

The projection p2 : O◦
X(−1) → W1⊗· · ·⊗Wd is a homeomorphism between O◦

X(−1)

6 The standard isomorphisms U ⊗ V ∼= V ⊗ U and U ⊗ (V ⊗ W ) ∼= (U ⊗ V ) ⊗ W allows us to ignore the 
ordering of the vector spaces appearing in a tensor product.
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and the set of rank-one tensors. So the fundamental group of the set of rank-one 
tensors is the same as that of O◦

X(−1). If we fix a choice of Hermitian metrics on 
W1, . . . , Wd, we have the following commutative diagram

S1 S2ni−1 PWi

C \ {0} O◦
PWi

(−1) PWi

where S2ni−1 is regarded as the unit sphere in Wi and S1 as that in C. Thus 
O◦
PWi

(−1) has the same homotopy type as S2ni−1. Consider the sequence

Z
j∗−→ π1

(
O◦

X(−1)
)
→ 0

induced by C \ {0} 
j−→ O◦

X(−1) → X. For any [v1 ⊗ · · · ⊗ vd] ∈ X, we may assume 
that ‖v1‖ = · · · = ‖vd‖ = 1. Thus a generator of π1(C \ {0}) = Z can be realized as 
the unit circle in the complex line spanned by v1 ⊗ · · · ⊗ vd, i.e., λ · v1 ⊗ · · · ⊗ vd, 
where λ ∈ C has |λ| = 1. Since

λ · v1 ⊗ · · · ⊗ vd = (λv1) ⊗ v2 ⊗ · · · ⊗ vd,

this unit circle can be realized as the unit circle in the complex line spanned by 
v1 ∈ W1, i.e., a generator of π1(S1) = Z in the sequence π1(S1) → π1(S2n1−1) →
π1(PW1). Since π1(S2n1−1) = 0 for n1 ≥ 2, we get j∗(Z) = 0, and therefore 
π1(O◦

X(−1)) = 0.
(ii) Let x = a1 ⊗ · · · ⊗ ad−2 ⊗ ad−1 ⊗ ad + a1 ⊗ · · · ⊗ ad−2 ⊗ bd−1 ⊗ bd ∈ D2. Then

s−1
2 (x) = {(a1 ⊗ · · · ⊗ ad−2 ⊗ ud−1 ⊗ ud, a1 ⊗ · · · ⊗ ad−2 ⊗ vd−1 ⊗ vd) ∈ X̂2 :

ud−1 ⊗ ud + vd−1 ⊗ vd = ad−1 ⊗ ad + bd−1 ⊗ bd},

which implies that

codimC

(
s−1
2 (Dr), (X̂ \ {0})2

)
= (n1 − 1) + · · · + (nd−2 − 1) > 1.

Let W be a complex vector space, and N � M ⊆ W be two subsets in W . Recall 
that for two complex manifolds N � M ,

codimR(N,M) = 2 codimC(N,M), (6.1)

and that this extends to the case where M and N are each a union of finitely many 
disjoint complex manifolds (where dimension is defined as the maximum dimension 
of the constituent manifolds). Therefore we have
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codimR

(
s−1
2 (Dr), (X̂ \ {0})2

)
> 2.

Given that π1(X̂ \ {0}) = 0 by part (i), it follows from Proposition 5.2 that the set 
of complex rank-two identifiable d-tensors has fundamental group Z/2Z. �

We will move on to the higher homotopy groups. Again X = Seg(PW1 × · · · × PWd)
will denote the Segre variety in the proofs below. Note that there is no loss of generality in 
assuming that W1, . . . , Wd are arranged in nondecreasing order of dimension — otherwise 
we just replace n1 with min{n1, . . . , nd} in the statements of the next two results.

Theorem 6.2 (Higher homotopy groups of complex rank-one tensors). Let d ≥ 3 and let 
W1, . . . , Wd be complex vector spaces of dimensions n1 ≤ · · · ≤ nd respectively. Then

π2
(
{A ∈ W1 ⊗ · · · ⊗Wd : rank(A) = 1}

)
= Zd,

and

πk

(
{A ∈ W1 ⊗ · · · ⊗Wd : rank(A) = 1}

) ∼=∏d

j=1
πk(S2nj−1) for all k ≥ 3.

In particular, if 3 ≤ k ≤ 2n1 − 2, then

πk

(
{A ∈ W1 ⊗ · · · ⊗Wd : rank(A) = 1}

)
= 0.

Proof. By Theorem 3.6, the fiber bundle C \ {0} → O◦
X(−1) → X yields the long exact 

sequence

· · · → πk(C \ {0}) → πk(O◦
X(−1)) → πk(X) → πk−1(C \ {0}) → · · ·

As πk(C \ {0}) = 0 for all k ≥ 2, and π1(C \ {0}) is isomorphic to π1(O◦
X(−1)), we get

πk

(
{A ∈ W1 ⊗ · · · ⊗Wd : rank(A) = 1}

) ∼= πk(X) ∼=
∏d

j=1
πk(PWj) (6.2)

for all k ≥ 2, as required. From the fiber bundle S1 → S2n+1 → CPn we obtain7

πk(CPn) ∼=

⎧⎪⎪⎨⎪⎪⎩
0 if k = 1 or 3 ≤ k ≤ 2n,
Z if k = 2 or 2n + 1,
πk(S2n+1) if k ≥ 2n + 2.

(6.3)

Combined with (6.2), we obtain the required higher homotopy groups for the set of 
complex rank-one tensors. �
7 Recall that CP1 may be identified with S2 topologically, so πk(CP1) = πk(S2) for all k.
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Theorem 6.3 (Higher homotopy groups of identifiable complex rank-two tensors). Let d ≥
3 and let W1, . . . , Wd be complex vector spaces of dimensions n1 ≤ · · · ≤ nd respectively 
with

n1 + · · · + nd−2 ≥ d.

We have

π2
(
{A ∈ W1 ⊗ · · · ⊗Wd : rank(A) = 2, A identifiable}

)
= Z2d.

Let k be such that

1 < k/2 ≤
(∑d−2

j=1
nj

)
− d + 1.

Then

πk

(
{A ∈ W1 ⊗ · · · ⊗Wd : rank(A) = 2, A identifiable}

) ∼=∏d

j=1
πk(S2nj−1)2.

In particular, if d ≥ 4 and 3 ≤ k ≤ 2(n1 − 1) or d = 3, n1 ≥ 3, and 3 ≤ k ≤ 2(n1 − 2), 
then

πk

(
{A ∈ W1 ⊗ · · · ⊗Wd : rank(A) = 2, A identifiable}

)
= 0.

Proof. Let

c := codimR

(
s−1
2 (D2), (X̂ \ {0})2

)
= 2
(∑d−2

j=1
nj

)
− (d− 2).

By Proposition 5.2, if c ≥ 4 and 2 ≤ k ≤ c − 2, then

πk(s2(X) \D2) ∼= πk(X̂ \ {0})2,

and since X̂ \ {0} is exactly the set of complex rank-one tensors, by (6.2),

πk(s2(X) \D2) ∼=
∏d

j=1
πk(PWj)2. (6.4)

By (6.3) and (6.4), we obtain the kth homotopy group of the set of identifiable complex 
rank-two tensors for 2 ≤ k ≤ c − 2, assuming that c ≥ 4. �
6.2. Fundamental and higher homotopy groups of real rank-r tensors

We now turn our attention to the real case, using ideas similar to those used in 
the complex case: We will consider a fiber bundle and a double covering for real rank-
one tensors and identifiable real rank-two tensors respectively. From these geometric 
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constructions, we will calculate the homotopy groups of these real low rank tensors: 
Theorems 6.4, 6.5, and 6.6 are respectively the real analogues of Theorems 6.1, 6.2, and 
6.3. As usual, throughout this section, we will assume that all real vector spaces have 
(real) dimensions at least two.

Theorem 6.4 (Fundamental groups of real tensor rank). Let d ≥ 3 and let V1, . . . , Vd be 
real vector spaces of real dimensions n1, . . . , nd respectively. Let m := #{i : dimR(Vi) =
2}.

(i) The set of rank-one real tensors has fundamental group

π1
(
{A ∈ V1 ⊗ · · · ⊗ Vd : rank(A) = 1}

)
=
{
Zd if m = d,

Zm × (Z/2Z)d−m−1 if 0 ≤ m < d.

(ii) Let n1 ≤ · · · ≤ nd and (n1 − 1) + · · · + (nd−2 − 1) > 2. Then the set of rank-two 
identifiable real tensors has fundamental group

π1
(
{A ∈ V1 ⊗ · · · ⊗ Vd : rank(A) = 2, A is identifiable}

)
=
{
Z2d � Z/2Z if m = d,

(Z2m × (Z/2Z)2d−2m−2) � Z/2Z if 0 ≤ m < d.

Proof. Let X = Seg(PV1×· · ·×PVd) and let O◦
X(−1) be the bundle in (3.1) with S = X.

(i) As in the proof of the complex case in Theorem 6.1, the projection p2 : O◦
X(−1) →

V1⊗· · ·⊗Vd is a homeomorphism and it suffices to determine the fundamental group 
of O◦

X(−1). The fiber bundle

R \ {0} → O◦
X(−1) → X

induces the long exact sequence

0 → π1(O◦
X(−1)) → π1(X) → π0(R \ {0}) → 0.

Since π1(X) = Zm × (Z/2Z)d−m and π0(R \ {0}) = Z/2Z, we get

π1(O◦
X(−1)) =

{
Zd if m = d,

Zm × (Z/2Z)d−m−1 if 0 ≤ m < d.

(ii) Since

codimR

(
s−1
2 (D2), (X̂ \ {0})2

)
= (n1 − 1) + · · · + (nd−2 − 1) > 2,
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applying Proposition 5.2 with the fundamental group obtained in part (i) gives us 
the required result. �

Theorem 6.5 (Higher homotopy groups of real rank-one tensors). Let d ≥ 3 and let 
V1, . . . , Vd be real vector spaces of real dimensions n1 ≤ · · · ≤ nd respectively. For any 
k ≥ 2, we have

πk

(
{A ∈ V1 ⊗ · · · ⊗ Vd : rank(A) = 1}

) ∼=∏d

j=1
πk(Snj−1).

In particular, if 2 ≤ k ≤ n1 − 1, then

πk

(
{A ∈ V1 ⊗ · · · ⊗ Vd : rank(A) = 1}

)
= 0.

Proof. Let X = Seg(PV1×· · ·×PVd). The fiber bundle R \{0} → O◦
X(−1) → X induces 

an isomorphism

πk

(
{A ∈ V1 ⊗ · · · ⊗ Vd : rank(A) = 1}

) ∼= πk

(
O◦

X(−1)
) ∼= πk(X) ∼=

∏d

j=1
πk(PVj)

for all k ≥ 2 as πk(R \ {0}) = 0. Recall that homotopy groups of real projective spaces 
are isomorphic to those of spheres, i.e., the double cover Sn → RPn gives isomorphism 
πk(RPn) ∼= πk(Sn) for all k ≥ 2. For easy reference, a list8 of homotopy groups of real 
projective n-spaces for n ≥ 2 is as follows:

πk(RPn) ∼=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Z/2Z if k = 1,
0 if 2 ≤ k ≤ n− 1,
Z if k = n,

πk(Sn) if n + 1 ≤ k. �
(6.5)

The homotopy groups of identifiable real rank-two tensors follow directly from Propo-
sition 5.2 with r = 2.

Theorem 6.6 (Higher homotopy groups of identifiable real rank-two tensors). Let d ≥ 3
and let V1, . . . , Vd be real vector spaces of real dimensions n1 ≤ · · · ≤ nd respectively with

n1 + · · · + nd−2 ≥ d + 2.

Let k be such that

2 ≤ k ≤
(∑d−2

j=1
nj

)
− d.

8 When n = 1, π1(RP1) ∼= Z and all higher homotopy groups vanish.
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Then

πk

(
{A ∈ V1 ⊗ · · · ⊗ Vd : rank(A) = 2, A is identifiable}

) ∼=∏d

j=1
πk(Snj−1)2.

In particular, if

2 ≤ k ≤ min
{
n1 − 1,

(∑d−2

j=1
nj

)
− d
}
,

then

πk

(
{A ∈ V1 ⊗ · · · ⊗ Vd : rank(A) = 2, A is identifiable}

)
= 0.

7. Higher-order connectedness of symmetric tensor rank

The remark that we made at the beginning of Section 6 also applies to symmetric 
tensor rank. Here we will again limit ourselves to symmetric rank-r symmetric tensors 
where r = 1, 2, or 3. The difficulty in extending these results to r ≥ 4 is that the singular 
loci of the rth secant varieties of the Veronese variety are still unknown for r ≥ 4. Also, 
as in the previous section, two of our results, Propositions 7.2 and 7.5, will be stated in 
the terms of homotopy groups of spheres.

7.1. Fundamental and higher homotopy groups of complex symmetric rank-r tensors

To deduce the fundamental group of the set of symmetric rank-r symmetric tensors 
for small values of r, we apply the results in Section 6.1 to the case where X = νd(PW )
is the Veronese variety, with W a finite-dimensional vector space over F = C or R of 
dimension at least two.

Theorem 7.1 (Fundamental groups of complex symmetric tensor rank). Let d ≥ 3 and let 
W be a complex vector space.

(i) The set of symmetric rank-one complex symmetric tensors has fundamental group

π1
(
{A ∈ Sd(W ) : rankS(A) = 1}

)
= 0.

(ii) If d ≥ 3 and n > 2, then the set of symmetric rank-two complex symmetric tensors 
has fundamental group

π1
(
{A ∈ Sd(W ) : rankS(A) = 2}

)
= Z/2Z.

(iii) If d ≥ 5 and n > 2, then the set of symmetric rank-three complex symmetric tensors 
has fundamental group

π1
(
{A ∈ Sd(W ) : rankS(A) = 3}

)
= S3.
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Proof. (i) Let O◦
X(−1) be the bundle in (3.1) with S = X = νd(PW ). The projection 

p2 : O◦
X(−1) → Sd(W ) defines a homeomorphism between O◦

X(−1) and the set of 
symmetric rank-one complex tensors. We have the following commutative diagram

S1 S2n−1 PW

C \ {0} O◦
X(−1) X

νd νd

where S1 is the unit circle in C and S2n−1 is the unit sphere in W after fixing a 
Hermitian metric on W . Thus O◦

X(−1) and S2n−1 have the same homotopy type, 
which implies that π1(O◦

X(−1)) = 0.
(ii) When r = 2, the singular locus of σ2(X) is X by [30, Theorem 3.3]. When d ≥ 3, 

since any x ∈ σ̂2(X) with rankS(x) = 2 must take the form u⊗d + v⊗d for some u, v
linearly independent, x is necessarily a nonsingular point. By Proposition 5.3, D2 as 
defined in (5.1) equals X̂. It follows from (6.1) that

codimR

(
s−1
2 (D2), (X̂ \ {0})2

)
= 2 codimC

(
s−1
2 (X̂), (X̂ \ {0})2

)
= 2(n− 1) > 2.

By Proposition 5.2, the required fundamental group is Z/2Z.
(iii) When r = 3, the singular locus of σ3(X) is σ2(X) by [24]. As d ≥ 5, by [16,13], for 

any x ∈ σ̂2(X), we must have rankS(x) �= 3, which implies that σ̂2(X) ∩ s3(X) =
s2(X). By [34, Theorem 1.2] any x ∈ s3(X) \ s2(X), which is a nonsingular point 
of σ̂3(X), has the form x = u⊗d + v⊗d + w⊗d, where [u], [v], [w] are distinct points 
in the projective space PW . By Proposition 5.3, this decomposition of x is unique. 
Hence D3 as defined in (5.1) equals s2(X). Since

codimR

(
s−1
3 (D3), (X̂ \ {0})3

)
= 2 codimC

(
s−1
3 (s2(X)), (X̂ \ {0})3

)
= 2(n− 1) > 2,

it follows from Proposition 5.2 that π1(s3(X) \ s2(X)) = S3. �
For the higher homotopy groups, we combine Proposition 5.2 with the long exact 

sequence of the fiber bundle C \ {0} → O◦
X(−1) → X obtained from Theorem 3.6 and 

employ the same argument as in the proofs of Theorems 6.2, 6.3, 6.5, and 6.6. This gives 
us our next two results.

Theorem 7.2 (Higher homotopy groups of complex symmetric rank-one tensors). Let d ≥
3 and let W be a complex vector space. Then

π2
(
{A ∈ Sd(W ) : rankS(A) = 1}

)
= Z.

Let k ≥ 3. Then
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πk

(
{A ∈ Sd(W ) : rankS(A) = 1}

) ∼= πk(S2n−1).

In particular, if 3 ≤ k ≤ 2(n − 1), then

πk

(
{A ∈ Sd(W ) : rankS(A) = 1}

)
= 0.

Theorem 7.3 (Higher homotopy groups of complex symmetric rank-two and three ten-
sors). Let W be a complex vector space. Then

π2
(
{A ∈ Sd(W ) : rankS(A) = 2}

)
= Z2 if d ≥ 3,

π2
(
{A ∈ Sd(W ) : rankS(A) = 3}

)
= Z3 if d ≥ 5.

Let 3 ≤ k ≤ 2(n − 2). Then

πk

(
{A ∈ Sd(W ) : rankS(A) = 2}

)
= 0 if d ≥ 3,

πk

(
{A ∈ Sd(W ) : rankS(A) = 3}

)
= 0 if d ≥ 5.

7.2. Fundamental and higher homotopy groups of real symmetric rank-r tensors

We next move on to the real case. The next three theorems are the real analogues of 
Theorems 7.1, 7.2, and 7.3.

Theorem 7.4 (Fundamental groups of real symmetric tensor rank). Let V be a real vector 
space of dimension n.

(i) The set of symmetric rank-one real symmetric tensors has fundamental group

π1
(
{A ∈ Sd(V ) : rankS(A) = 1}

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Z if n = 2 and d is odd,
0 if n > 2 and d is odd,
Z if n = 2 and d is even,
Z/2Z if n > 2 and d is even.

(ii) If n > 3 and d ≥ 3, then the set of real symmetric rank-two tensors has fundamental 
group

π1
(
{A ∈ Sd(V ) : rankS(A) = 2}

)
=
{
Z/2Z if d is odd,
(Z/2Z)2 � Z/2Z if d is even.

(iii) If n > 3 and d ≥ 5, then the set of real symmetric rank-three tensors has funda-
mental group
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π1
(
{A ∈ Sd(V ) : rankS(A) = 3}

)
=
{
S3 if d is odd,
(Z/2Z)3 �S3 if d is even.

Proof. (i) Let O◦
X(−1) be the bundle in (3.1) with S = X = νd(PV ). As in the com-

plex case, the projection p2 : O◦
X(−1) → Sd(V ) defines a homeomorphism between 

O◦
X(−1) and the set of symmetric rank-one real tensors. The fiber bundle

R \ {0} → O◦
X(−1) → X

induces a long exact sequence

0 → π1(O◦
X(−1)) → π1(X) → π0(R \ {0}) → π0(O◦

X(−1)) → 0.

Since π0(R \ {0}) = Z/2Z,

π0(O◦
X(−1)) =

{
0 if d is odd,
Z/2Z if d is even,

and π1(X) =
{
Z if n = 2,
Z/2Z if n > 2,

we obtain the required π1(O◦
X(−1)).

(ii) As in the complex case, D2 as defined in (5.1) equals X̂. It follows from (6.1) that

codimR

(
s−1
2 (D2), (X̂ \ {0})2

)
= codimR

(
s−1
2 (X̂), (X̂ \ {0})2

)
= (n− 1) > 2.

By Proposition 5.2,

π1(s2(X) \ X̂) = π1(X̂ \ {0})2 �S2 =
{
Z/2Z if d is odd,
(Z/2Z)2 � Z/2Z if d is even.

(iii) As in the complex case, D3 as defined in (5.1) equals s2(X). Since

codimR

(
s−1
3 (D3), (X̂ \ {0})3

)
= codimR

(
s−1
3 (s2(X)), (X̂ \ {0})3

)
= (n− 1) > 2,

it follows from Proposition 5.2 that

π1(s3(X) \ s2(X)) = π1(O◦
X(−1))3 �S3 =

{
S3 if d is odd,
(Z/2Z)3 �S3 if d is even. �

Again, from (6.5) and the long exact sequence induced by the fiber bundle R \ {0} →
O◦

X(−1) → X, we deduce the higher homotopy groups in the real case.

Theorem 7.5 (Higher homotopy groups of real symmetric rank-one tensors). Let d ≥ 3, 
k ≥ 2, and let V be a real vector space. Then
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πk

(
{A ∈ Sd(V ) : rankS(A) = 1}

) ∼= πk(Sn−1).

In particular, if n ≥ 4 and 2 ≤ k ≤ n − 2, then

πk

(
{A ∈ Sd(V ) : rankS(A) = 1}

)
= 0.

Theorem 7.6 (Higher homotopy groups of real symmetric rank-two and three tensors). 
Let V be a real vector space. If 2 ≤ k ≤ n − 3, then

πk

(
{A ∈ Sd(V ) : rankS(A) = 2}

)
= 0 if d ≥ 3,

πk

(
{A ∈ Sd(V ) : rankS(A) = 3}

)
= 0 if d ≥ 5.

8. Topology of multilinear rank

We will address the connectedness and calculate the homotopy groups of the set of 
tensors of a fixed multilinear rank. We start by recalling the notion.

Definition 8.1. Let V1, . . . , Vd be vector spaces over F = R or C of dimensions n1, . . . , nd

respectively. Let ri ≤ ni be a positive integer i = 1, . . . , d. The subspace variety is the 
set

Subr1,...,rd(V1, . . . , Vd) := {A ∈ V1 ⊗ · · · ⊗ Vd : A ∈ U1 ⊗ · · · ⊗ Ud,

Ui ⊆ Vi, dim(Ui) = ri, i = 1, . . . , d}.

We say that A ∈ V1 ⊗ · · · ⊗ Vd has multilinear rank (r1, . . . , rd), or, in notation,

μrank(A) = (r1, . . . , rd),

if whenever A ∈ Subs1,...,sd(V1, . . . , Vd) for si ≤ ri, i = 1, . . . , d, we must have ri = si
for all i = 1, . . . , d; in other words Subr1,...,rd(V1, . . . , Vd) is the smallest subspace variety 
that contains A.

Clearly, the definition implies that

Subr1,...,rd(V1, . . . , Vd) = {A ∈ V1 ⊗ · · · ⊗ Vd : μrank(A) ≤ (r1, . . . , rd)}.

The subspace variety is very well studied [33] but in this article we are interested in the 
set of all tensors of multilinear rank exactly (r1, . . . , rd), which we will denote by

Xr1,...,rd(V1, . . . , Vd) := {A ∈ V1 ⊗ · · · ⊗ Vd : μrank(A) = (r1, . . . , rd)}. (8.1)

Every d-tensor may be regarded as a 2-tensor via flattening [33,37]. The flattening 
map
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�i : V1 ⊗ · · · ⊗ Vd → Vi ⊗
(⊗

j 	=i
Vj

)
, i = 1, . . . , d, (8.2)

takes a d-tensor and sends it to a 2-tensor by ‘forgetting’ the tensor product structure 
in 
⊗

j 	=i Vj . One may also characterize multilinear rank as

μrank(A) =
(
rank(�1(A)), . . . , rank(�d(A))

)
,

where rank here denotes usual matrix rank, which, being coordinate independent, is 
defined on Vi ⊗

(⊗
j 	=i Vj

)
.

Note that if (r1, . . . , rd) is the multilinear rank of some tensor, then we must have

ri ≤
∏

j 	=i
rj , i = 1, . . . , d, (8.3)

as it follows from (8.2) that rank(�i(A)) ≤ min
{
dimF (Ui), dimF

(⊗
j 	=i Uj

)}
.

8.1. Path-connectedness of multilinear rank

While the subspace variety, being irreducible, is connected (in fact, contractible since 
it is a union of infinitely many linear subspaces of the ambient tensor space), it is less 
clear for the set of tensors of a fixed multilinear rank. For example, over F = R, when 
d = 2 and r1 = r2 = n1 = n2 = n, Xn,n(V1, V2) is the set of n ×n invertible real matrices, 
which is disconnected. As one can surmise from this example, the situation over R is 
more subtle and we will start with this first, leaving the complex case to the end.

For a finite-dimensional real vector space V , we write Gr(r, V ) for the Grassmannian
of r-dimensional linear subspaces of V and TGr(r,V ) for its tautological vector bundle, 
i.e., whose fiber over U ∈ Gr(r, V ) is U . Let V1, . . . , Vd be vector spaces of dimensions 
n1, . . . , nd respectively and r1, . . . , rd be positive integers such that ri ≤ ni, i = 1, . . . , d. 
We write

Gr1,...,rd = Gr(r1, V1) × · · · × Gr(rd, Vd)

and qj : Gr1,...,rd → Gr(rj , Vj) for the jth projection. We write

Tr1,...,rd = q∗1(TGr(r1,V1)) ⊗ · · · ⊗ q∗d(TGr(rd,Vd))

for the tensor product of the pullbacks of the tautological vector bundles, i.e., whose 
fiber over (U1, . . . , Ud) ∈ Gr(r1, V1) × · · · × Gr(rd, Vd) is U1 ⊗ · · · ⊗ Ud.

Let p : Tr1,...,rd → Gr1,...,rd be the projection of the vector bundle Tr1,...,rd onto its 
base space Gr1,...,rd . We define the map

ρr1,...,rd : Tr1,...,rd → V1 ⊗ · · · ⊗ Vd, (U1, . . . , Ud, A) �→ A,
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where (U1, . . . , Ud) ∈ Gr1,...,rd and A ∈ U1 ⊗ · · · ⊗ Ud. The image of ρr1,...,rd is 
Subr1,...,rd(V1, . . . , Vd) and ρr1,...,rd gives a Kempf–Weyman desingularization [49,33] of 
Subr1,...,rd(V1, . . . , Vd).

Theorem 8.2 (Connectedness of multilinear rank over R). Let V1, . . . , Vd be real vector 
spaces of dimensions n1, . . . , nd respectively.

(i) The set of multilinear rank-(r1, . . . , rd) real tensors

{A ∈ V1 ⊗ · · · ⊗ Vd : μrank(A) = (r1, . . . , rd)}

is connected if

ri <
∏
j 	=i

rj for all i = 1, . . . , d,

or if

ri =
∏
j 	=i

rj < ni for some i = 1, . . . , d.

(ii) The set of multilinear rank-(r1, . . . , rd) real tensors

{A ∈ V1 ⊗ · · · ⊗ Vd : μrank(A) = (r1, . . . , rd)}

has two connected components if

ri =
∏
j 	=i

rj = ni for some i = 1, . . . , d.

Proof. For brevity, we will write Xr1,...,rd = Xr1,...,rd(V1, . . . , Vd) for the set of multilinear 
rank-(r1, . . . , rd) tensors in this proof. Let C ∈ V1 ⊗ · · ·⊗Vd and �i(C) ∈ Vi ⊗

(⊗
j 	=i Vj

)
be the ith flattening of C as defined in (8.2). Let

Xr1,...,rd := {(U1, . . . , Ud, C) ∈ Tr1,...,rd : rank(�i(C)) = ri for i = 1, . . . , d}.

Then ρr1,...,rd : Xr1,...,rd → Xr1,...,rd is an isomorphism. For each i = 1, . . . , d, let

Si := {(U1, . . . , Ud, C) ∈ Tr1,...,rd : rank(�i(C)) ≤ ri − 1}.

Then

Xr1,...,rd = Tr1,...,rd \
⋃d

i=1
Si.

We observe that



36 P. Comon et al. / Advances in Mathematics 367 (2020) 107128
dimR(Tr1,...,rd) =
∑d

i=1
ri(ni − ri) +

∏d

i=1
ri

and

dimR(Si) =
∑d

i=1
ri(ni − ri) + (ri − 1) + (ri − 1)

∏
j 	=i

rj

= dimR(Tr1,...,rd) −
(∏

j 	=i
rj − ri + 1

)
. (8.4)

If ri <
∏

j 	=i rj , then (8.4) implies that Si has real codimension at least two in Tr1,...,rd . 
By Theorem 3.5, we see that Xr1,...,rd is connected.

We next consider the case when ri =
∏

j 	=i rj < ni for some i = 1, . . . , d. Without loss 
of generality, we may assume that

r1 =
∏d

i=2
ri < n1.

We want to prove that any two points (U1, . . . , Ud, A) and (U ′
1, . . . , U

′
d, B) in Xr1,...,rd

can be connected by a curve contained in Xr1,...,rd . We will first prove that since the base 
space Gr(r1, V1) × · · · × Gr(rd, Vd) of the bundle Tr1,...,rd is connected, there is a curve 
in Xr1,...,rd connecting (U ′

1, . . . , U
′
d, B) and (U1, . . . , Ud, A′) for some A′ ∈ U ′

1 ⊗ · · · ⊗U ′
d. 

We will then prove that (U1, . . . , Ud, A′) and (U1, . . . , Ud, A) can be connected by a curve 
contained in Xr1,...,rd .

For each i = 1, . . . , d, let γi : [0, 1] → Gr(ri, Vi) be a curve connecting U ′
i = γi(0) ∈

Gr(ri, Vi) and Ui = γi(1) ∈ Gr(ri, Vi). Since B ∈ U ′
1 ⊗ · · · ⊗ U ′

d, we may write

B =
∑r1,...,rd

i1,...,id=1
λi1...idu1,i1 ⊗ · · · ⊗ ud,id ,

where ui,1, . . . , ui,ri form a basis of U ′
i , i = 1, . . . , d. Consider the curve B(·) : [0, 1] →

Xr1,...,rd defined by

B(t) =
∑r1,...,rd

i1,...,id=1
λi1...idu1,i1(t) ⊗ · · · ⊗ ud,id(t),

where ui,1(t), . . . , ui,ri(t) form a basis of γi(t) for any t ∈ [0, 1], with

ui,1(0) = ui,1, . . . , ui,ri(0) = ui,ri .

The curve B(t) connects the point B = B(0) with some B(1) ∈ U ′
1 ⊗ · · · ⊗ U ′

d. More-
over, (γ1(t), . . . , γd(t), B(t)) defines a curve in Xr1,...,rd connecting (U ′

1, . . . , U
′
d, B) and 

(U1, . . . , Ud, B(1)). If (U1, . . . , Ud, B(1)) and (U1, . . . , Ud, A) can also be connected by a 
curve in Xr1,...,rd , then so can (U1, . . . , Ud, A) and (U ′

1, . . . , U
′
d, B).

It remains to show that any two points (U1, . . . , Ud, A) and (U1, . . . , Ud, B) in Xr1,...,rd

can be connected by a curve contained in Xr1,...,rd . Extend the basis u1,1, . . . , u1,r1 of 
the subspace U1 chosen earlier to a basis u1,1, . . . , u1,n1 of V1. With respect to this basis, 
the first flattening of A and B have representation as matrices
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�1(A) =
[
I 0
0 0

]
∈ Rn1 ×R

∏d
i=2 ni , �1(B) =

[
M 0
0 0

]
∈ Rn1 ×R

∏d
i=2 ni ,

where I ∈ Rr1×r1 is the identity matrix and for some M ∈ Rr1×r1 .
We consider the map Φ : Rr1 → Gr(r1, V1) defined by

Φ(t1, . . . , tr1) = span{u1,1 + t1u1,r1+1, . . . , u1,r1 + tr1u1,r1+1},

which is well-defined as u1,1, . . . , u1,r1 are linearly independent. The image Φ(Rr1) ⊆
Gr(r1, V1) is a smooth submanifold — to see this, we determine the rank of the differential

dΦ(t1,...,tr1 ) : T(t1,...,tr1 )R
r1 → TΦ(t1,...,tr1 ) Gr(r1, V1).

Since every point U ∈ Gr(r1, V1) may be written as [u1 ∧ · · · ∧ ur1 ] ∈ PR(n1
r1

) by the 
Plücker embedding, where u1, . . . , ur1 form a basis of U , we obtain

dΦ(t1,...,tr1 )(s1, . . . , sr1) =
(
[u1

r1+1 ∧ u1
2 ∧ · · · ∧ u1

r1 ], . . . , [u
1
1 ∧ · · · ∧ u1

r1−1 ∧ u1
r1+1]

)
,

which has full rank r1 for all (t1, . . . , tr1) ∈ Rr1 . Note that Φ is not necessarily an em-
bedding, but its image Φ(Rr1) must be smooth and hence it is an immersed submanifold 
of Gr(r1, V1).

Recall the notations in the two paragraphs preceding Theorem 8.2. Let (U1, . . . , Ud) ∈
Gr1,...,rd and consider the preimage

U := p−1(Φ(Rr1) × {U1} × · · · × {Ud}) ⊆ Tr1,...,rd .

Since Φ(Rr1) is a smooth submanifold of Gr(r1, V1) and p is the projection map, U is a 
smooth submanifold of Tr1,...,rd . By its definition U contains both (U1, . . . , Ud, A) and 
(U1, . . . , Ud, B). Let (U1, . . . , Ud, C) ∈ U. Then its first flattening takes the form

�1(C) =
[
L 0
0 0

]
∈ Rn1×

∏d
i=2 ni ,

for some L ∈ R(r1+1)×r1 . Set

Ri := {(U1, . . . , Ud, C) ∈ U : rank(�i(C)) ≤ ri − 1}, i = 1, . . . , d.

We will show that U \
⋃d

i=1 Ri is connected by comparing dimensions. Clearly,

dimR(U) = r1 +
∏d

i=1
ri

since Φ(Rr1) has dimension r1 and the fiber of p has dimension 
∏d

i=1 ri. The codimension 
of R1 in U is at least two: R1 is the intersection of U with the set V = {(U1, . . . , Ud, C) ∈
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Tr1,...,rd : rank(�1(C)) ≤ r1 − 1}; as all r1 × r1 minors of �1(C) =
[
L 0
0 0

]
vanishes and L

is an (r1 + 1) × r1 matrix, R1 = U ∩ V must be of codimension at least two in U. The 
same is true for i = 2, . . . , d, where

dimR(Ri) ≤ r1 + (ri − 1)
∏d

j 	=i
rj + (ri − 1) = r1 +

∏d

i=1
ri −

(∏d

j 	=i
rj − ri + 1

)
;

by assumption, 
∏d

j 	=i rj > ri for i = 2, . . . , d, and so we have dimR(Ri) ≤ r1 +
∏d

i=1 ri −
2. Hence U \

⋃d
i=1 Ri is connected by Theorem 3.5. In particular, there is a curve in 

U \
⋃d

i=1 Ri ⊆ Xr1,...,rd connecting (U1, . . . , Ud, A) and (U1, . . . , Ud, B), completing the 
proof in this case.

Finally, if r1 =
∏d

i=2 ri = n1, we consider the map

f : Xr1,...,rd → R, f(A) = det(�1(A)).

We see that Xr1,...,rd is a disjoint union of the preimages f−1(0, ∞) and f−1(−∞, 0). It 
is straightforward — by an argument similar to the case r1 =

∏d
i=2 ri < n1 — to show 

that both f−1(0, ∞) and f−1(−∞, 0) are connected. Hence Xr1,...,rd has two connected 
components in this case. �

As multilinear rank must necessarily satisfy (8.3), the three cases in Theorem 8.2
cover all possibilities. For the case F = C, it follows from (8.3) that the real codimension 
in (8.4) is always at least two, and we easily obtain the following for complex tensors.

Theorem 8.3 (Connectedness of multilinear rank over C). Let W1, . . . , Wd be complex 
vector spaces. The set of multilinear rank-(r1, . . . , rd) complex tensors

{A ∈ W1 ⊗ · · · ⊗Wd : μrank(A) = (r1, . . . , rd)}

is always connected.

8.2. Higher homotopy groups of multilinear rank

Let V be a real vector space of dimension n and let r ≤ n. Theorem 3.6 allows one to 
determine πk(Gr(r, V )) from the fiber bundle

O(r) → St(r, V ) → Gr(r, V ),

where O(r) is the orthogonal group and St(r, V ) is the Stiefel manifold of r-frames in 
V . Since St(r, V ) is (n − r − 1)-connected [27], πk(St(r, V )) = 0 and thus

πk

(
Gr(r, V )

) ∼= πk−1
(
O(r)

)
(8.5)

for all k ≤ n − r − 1.
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We will study the homotopy groups of Xr1,...,rd(V1, . . . , Vd) for real vector spaces 
V1, . . . , Vd. For nondegenerate results, we will assume that each ri ≥ 2. By (8.3), we 
must have

r0 := min
i=1,...,d

[(∏
j 	=i

rj

)
− ri

]
≥ 0.

We will impose a slight restriction that r0 ≥ 1. Then it follows from (8.4) that

codimR

(⋃d

i=1
Si, Tr1,...,rd

)
= r0 + 1 ≥ 2.

So by Theorems 3.5 and 3.6, for k < r0,

πk

(
Xr1,...,rd(V1, . . . , Vd)

) ∼= πk(Tr1,...,rd) ∼= πk

(
Gr(r1, V1) × · · · × Gr(rd, Vd)

)
∼= πk

(
Gr(r1, V1)

)
× · · · × πk

(
Gr(rd, Vd)

)
,

which implies that when ni = dimR(Vi) is large enough, the homotopy groups 
πk(Xr1,...,rd(V1, . . . , Vd)) do not depend on V1, . . . , Vd, a consequence of (8.5). Hence 
when k ≤ min{r0 − 1, n1 − r1 − 1, . . . , nd − rd − 1}, it follows from (8.5) that

πk

(
Xr1,...,rd(V1, . . . , Vd)

) ∼= πk−1
(
O(r1)

)
× · · · × πk−1

(
O(rd)

)
.

The required homotopy groups then follows from the Bott Periodicity Theorem [10,11]. 
We will state these formally below.

We introduce a further abbreviation for the set of multilinear rank-(r1, . . . , rd) real 
tensors in (8.1) by writing

Xr1,...,rd(n1, . . . , nd) := Xr1,...,rd(V1, . . . , Vd)

if V1, . . . , Vd are real vector spaces of dimensions n1, . . . , nd. The colimit of the sequence

Xr1,...,rd(n1, . . . , nd) ⊆ Xr1,...,rd(n1 + 1, . . . , nd + 1) ⊆ Xr1,...,rd(n1 + 2, . . . , nd + 2) ⊆ · · ·

will be denoted by Xr1,...,rd(∞). Note that the homotopy groups πk

(
Xr1,...,rd(∞)

)
also 

repeat periodically for small k by Bott periodicity.

Theorem 8.4 (Higher homotopy groups of multilinear rank over R).

(i) For large enough ri < ni, when 0 < k ≤ min{r0 − 1, n1 − r1 − 1, . . . , nd − rd − 1}, 
we have:

k mod 8 0 1 2 3 4 5 6 7
π
(
X (n , . . . , n )

)
Zd (Z/2Z)d (Z/2Z)d 0 Zd 0 0 0
k r1,...,rd 1 d
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(ii) For large enough ri, when 0 < k < r0, we have:

k mod 8 0 1 2 3 4 5 6 7
πk

(
Xr1,...,rd(∞)

)
Zd (Z/2Z)d (Z/2Z)d 0 Zd 0 0 0

The same argument applies to complex tensors of multilinear rank (r1, . . . , rd) with 
the unitary group U(r) in place of O(r). More precisely, let W1, . . . , Wd be complex 
vector spaces of complex dimensions n1, . . . , nd respectively. We write

XC
r1,...,rd

(n1, . . . , nd) := Xr1,...,rd(W1, . . . ,Wd)

for the set of multilinear rank-(r1, . . . , rd) complex tensors. In addition, let XC
r1,...,rd

(∞)
denote the colimit of the sequence

XC
r1,...,rd

(n1, . . . , nd) ⊆ XC
r1,...,rd

(n1 + 1, . . . , nd + 1) ⊆ XC
r1,...,rd

(n1 + 2, . . . , nd + 2) ⊆ · · ·

Then when k ≤ min{r0 − 1, 2n1 − 2r1, . . . , 2nd − 2rd},

πk

(
XC

r1,...,rd
(n1, . . . , nd)

) ∼= πk−1(U(r1)) × · · · × πk−1(U(rd)).

Theorem 8.5 (Higher homotopy groups of multilinear rank over C).

(i) For large enough ri < ni, when 0 < k ≤ min{r0 − 1, 2n1 − 2r1, . . . , 2nd − 2rd}, we 
have:

k mod 8 0 1 2 3 4 5 6 7
πk

(
XC

r1,...,rd
(n1, . . . , nd)

)
Zd 0 Zd 0 Zd 0 Zd 0

(ii) For large enough ri, when 0 < k < r0, we have:

k mod 8 0 1 2 3 4 5 6 7
πk

(
XC

r1,...,rd
(∞)

)
Zd 0 Zd 0 Zd 0 Zd 0

9. Topology of symmetric multilinear rank

It is easy to see that for a symmetric tensor A ∈ Sd(V ) ⊆ V ⊗d, its multilinear rank 
(r1, . . . , rd) must satisfy r1 = · · · = rd. We may therefore define a corresponding notion 
of symmetric subspace variety and symmetric multilinear rank.

Definition 9.1. Let V be a vector space over F = R or C of dimension n. Let r ≤ n be a 
positive integer. The symmetric subspace variety is the set

Subr(V ) := {A ∈ Sd(V ) : A ∈ Sd(U), U ⊆ V, dim(U) = r}.
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We say that A ∈ Sd(V ) has symmetric multilinear rank r, or, in notation,

μrankS(A) = r,

if whenever A ∈ Subs(V ), we must have r = s; in other words Subr(V ) is the smallest 
symmetric subspace variety that contains A.

Clearly, the definition implies that

Subr(V ) = {A ∈ Sd(V ) : μrankS(A) ≤ r}.

We are also interested in the set of tensors of multilinear rank exactly r, which we will 
denote by

Yr(V ) := {A ∈ Sd(V ) : μrankS(A) = r}. (9.1)

9.1. Path-connectedness of symmetric multilinear rank

We study the connectedness of the set of symmetric tensors of symmetric multilinear 
rank r, i.e., Yr(V ) as defined in (9.1). Here V is an n-dimensional vector space over 
F = R or C, and r = 1, . . . , n. Our approach in this section mirrors the one we used 
in Section 8.1 but is somewhat simpler this time. Let F = R. We consider the vector 
bundle Qr over Gr(r, V ) defined by

Qr := {(U,A) ∈ Gr(r, V ) × Sd(V ) : A ∈ Sd(U)} (9.2)

and the map

ρr : Qr → Sd(V ), (U,A) �→ A.

The image of ρr is precisely Subr(V ), the symmetric subspace variety as defined in 
Definition 9.1.

Theorem 9.2 (Connectedness of symmetric multilinear rank over R). Let V be a real 
vector space of dimension n.

(i) When r = 1 and d is odd, the set of symmetric multilinear rank-one real tensors

{A ∈ Sd(V ) : μrankS(A) = 1}

is a connected set.
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(ii) When r = 1 and d is even, the set of symmetric multilinear rank-one real tensors

{A ∈ Sd(V ) : μrankS(A) = 1}

has two connected components.
(iii) When d = 2, the set of symmetric multilinear rank-r real tensors

{A ∈ Sd(V ) : μrankS(A) = r}

has r + 1 connected components.
(iv) When r ≥ 2 and d ≥ 3, the set of symmetric multilinear rank-r real tensors

{A ∈ Sd(V ) : μrankS(A) = r}

is a connected set.

Proof. Note that when r = 1 or when d = 2, symmetric multilinear rank and symmetric 
rank coincide. Since the connectedness of the latter has been addressed in Proposition 4.2
and Theorem 4.4, we will focus on the last case where r ≥ 2 and d ≥ 3. Let

Yr := {(U,A) ∈ Qr : μrankS(A) = r}, Lr := {(U,A) ∈ Qr : μrankS(A) < r}. (9.3)

Then ρr : Yr → Yr(V ) is a homeomorphism and Yr = Qr \ Lr. Observe that

dimR(Qr) = r(n− r) +
(
r + d− 1

d

)
and

dimR(Lr) = r(n−r)+(r−1)+
(
r + d− 2

d

)
= dimR(Qr)−

[(
r + d− 2
d− 1

)
−r+1

]
. (9.4)

If r ≥ 2 and d ≥ 3, then by (9.4), Lr has real codimension at least two in Qr. Hence, 
by Theorem 3.5, Yr is connected. �

For the case F = C, when d ≥ 3 and r ≥ 2, the real codimension in (9.4) is always at 
least two. So the connectedness in the complex case follows easily from Theorem 3.7.

Theorem 9.3 (Connectedness of symmetric multilinear rank over C). Let W be a complex 
vector space. The set of symmetric multilinear rank-r complex tensors

{A ∈ Sd(W ) : μrankS(A) = r}

is always connected.
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9.2. Higher homotopy groups of symmetric multilinear rank

Let V be a vector space of dimension n over F = R or C. We will study the homotopy 
groups of the set Yr(V ) of symmetric multilinear rank-r tensors. We will focus on the 
interesting case when d ≥ 3, r ≥ 2, and n ≥ 2. In this case,

s0 :=
(
r + d− 2
d− 1

)
− r ≥ 1,

and it follows from (9.4) that

codimR

(
Lr, Qr

)
= s0 + 1 ≥ 2,

where Lr and Qr are as defined in (9.3) and (9.2). So by Theorems 3.5 and 3.6, for 
k < s0,

πk

(
Yr(V )

) ∼= πk(Qr) ∼= πk

(
Gr(r, V )

)
, (9.5)

implying that when dimF (V ) is large enough, the homotopy group πk

(
Yr(V )

)
does not 

depend on V . As in Section 8.2, we will write

Yr(V ) =
{
Yr(n) if V is a real vector space of real dimension n,

Y C
r (n) if V is a complex vector space of complex dimension n,

The colimits of the sequences

Yr(n) ⊆ Yr(n + 1) ⊆ Yr(n + 2) ⊆ · · · and Y C
r (n) ⊆ Y C

r (n + 1) ⊆ Y C
r (n + 2) ⊆ · · ·

will be denoted by Yr(∞) and Y C
r (∞) respectively. As in Section 8.2, we obtain the 

following results from (9.5) and Bott periodicity.

Theorem 9.4 (Higher homotopy groups of symmetric multilinear rank over R).

(i) For large enough r < n, when 0 < k ≤ min{s0 − 1, n − r − 1}, we have:

k mod 8 0 1 2 3 4 5 6 7
πk

(
Yr(n)

)
Z Z/2Z Z/2Z 0 Z 0 0 0

(ii) For large enough r, when 0 < k < s0, we have:

k mod 8 0 1 2 3 4 5 6 7
πk

(
Yr(∞)

)
Z Z/2Z Z/2Z 0 Z 0 0 0

Theorem 9.5 (Higher homotopy groups of symmetric multilinear rank over C).
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(i) For large enough r < n, when 0 < k ≤ min{s0 − 1, 2n − 2r}, we have:

k mod 8 0 1 2 3 4 5 6 7
πk

(
Y C
r (n)

)
Z 0 Z 0 Z 0 Z 0

(ii) For large enough ri, when 0 < k < r0, we have:

k mod 8 0 1 2 3 4 5 6 7
πk

(
Y C
r (∞)

)
Z 0 Z 0 Z 0 Z 0

10. Conclusion

We view our work in this article as a first step towards unraveling the topology of the 
set of fixed-rank tensors for various common notions of rank. There are still many unan-
swered questions, notably the higher homotopy groups of rank-r tensors and symmetric 
rank-r symmetric tensors when r ≥ 4. However, from an applications point-of-view, the 
results in this article about path-connectedness and fundamental groups are relatively 
complete and provide full answers to questions about the feasibility of Riemannian opti-
mization methods and homotopy continuation methods in low-rank approximations and 
rank decompositions of tensors. Two other aspects we left unexplored are: (i) possible 
connections with the very substantial body of work9 on the topology of algebraic va-
rieties, and (ii) more general relations between singular loci and fundamental groups, 
leaving room for further future work.
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