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Fundamental Problem

Problem

Learn a function
f: X—=Y

from partial information on f.

Data: Know f on a (very small) subset Q2 C X, i.e. know
{(w,f(w) JweQ} T X xY.

Model: Know that f belongs to some class of functions
F(X,Y)CYX
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Fundamental Objective

Objective
Want graph of f, i.e. want (x, f(x)) for all x € X. J

Prediction: Given x & Q, want f(x).

Approximation: Y has some measure of nearness, want f such that
d(f(x), f(x)) is small.

Classification: YAno intrinsic measure of nearness, want f such that
Pr{f(x) # f(x) | x & Q} is small.
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Familiar Example: Dirichlet Problem

Problem: Want f : X — Y where X CR", Y = R.
Data: Know f on 0X, boundary value/initial value.
Model: f satisfies
Af =
for some given ¢ (say, fluid potential).
Objective: Want f or an approximation f on X, i.e. solve PDE

analytically or numerically.
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Another Example: Spam Filter

Problem:
Data:
Model:

Objective:

Want f : X — Y where X C emails,

Y = {spam, ham}.

Know f on T C X, training set, i.e. for email € T, we
know whether f(email) = spam or f(email) = ham.
What equations do f satisfies? What class of functions
should it belong to?

Want f or an approximation fon X, ie. design a spam
filter.
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One Major Difference

PDE: We have a physical law of nature describing how f
behaves:
Af = .

Spam: No law of nature — the ‘fundamental laws of emails’
too numerous and imprecise to list.

@ How to get a reasonable F(X, Y) for spam filters?
@ Use Green functions, just like in PDE (cf. Lecture II).
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More Examples

Problems of the latter type increasingly common.

Collaborative filtering: f : movies X viewers — ratings.
Computer vision: f : handwritten digits — {0,1,2,...,9}
Machine translation: f : French — Japanese.

Cancer genetics: f : SNPs — [0, 1]; f = likelihood of cancer.
Cancer metabonomics: f : metabolytes — {cancer,healthy}.
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Modern Massive Data Sets

Characteristics of modern data sets: complex, high-dimensional,
massive, nonlinear, non-Gaussian.

@ Human-generated data
» digitization of the entire collections of libraries, medical records
of a country;
» user information collected by data centers of Facebook, Google,
Twitter, etc.
@ Scientific data
» genome — proteome — transcriptome — metabolome —
physiome [P. Hunter];
» sequencing entire ecosystem with high-speed sequencers
[C. Venter].

@ Plug: http://mmds.stanford.edu.
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Trouble with Massive Data Sets

o Traditional statistical tools may not work.
@ Take example of ranking.

» Statistics:

* order statistics,
* rank statistics,
* beautiful work of Diaconis with Fourier analysis on G,,.

» Problems:
* combinatorial in nature,
* |G, = nl,
* Kemeny optimal is NP-hard.
» OKif n=T1:
* Number of political parties in Japan.
» Not OK if n = 1,000,000,000,000:
* Unique URLs indexed by Google (July 2008).
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Continuum Approximation for Massive Data Sets?

Some examples that we will discuss in these four lectures.
Heat flow: Web search (PageRank).
Green's functions: Spam filtering (Kernel Learning).
Helmholtz decomposition: Product recommendations (HodgeRank).

Elasticity: Cancer metabonomics (Higher-order Tensors).
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Web Search

@ Suppose you type in a term, say, ‘iPod’ in Google. What
happens next?

@ Essentially two things:
Retrieval: Find all webpages (inverted index) containing or
concerning the term ‘iPod’ and return them.

Ranking: Order the results and present them to you through your
browser.

@ Second step particularly important.
@ Sets modern search engines apart from older ones:

» Ask.com, Baidu, Bing, Google, Yahoo!
» Alta Vista, Excite, HotBot, Infoseek, Lycos
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Web Search (2009)

Question: How does Google rank its search results nowadays?
Short Answer: No one (not even Google folks) really knows.

Longer Answer: From reliable sources,

@ PageRank accounts for about 70% of its ranking methodology.
@ Remaining 30% accounted for by about 100 other factors:
click-through rate,

immediacy,

term document analysis,

training by human test users,

> ...

v vV VvV VY

@ These factors are used to tweak the PageRank result.

@ Seeks to maximize happiness index, i.e. the likelihood that
what you want is the first result/among the first five results/in
the first screen full of results returned.
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Web Search (1999)

Question: How did Google rank its search results in 19997

Figure: Original Google site http://google.stanford.edu

Answer: PageRank.
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The Web as a Directed Graph

® Gy = (V,E):
» nodes i € V are webpages,

» directed edges (/,j) € E are hyperlinks,
» n=|VI|.

o Adjacency matrix A = [a;] € R™",

1 if(i,j E
BUZ{ if (i,j) € E,

0 otherwise.

@ Stochastic adjacency matrix P = [p;] € R™*",

oy {1/ deg(i) if (i,j) € E,

0 otherwise.
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PageRank

@ Proposed by Larry Page, 1998.
@ Used by Google, eigenfactor.org (new ISI impact factor).

@ Intuition: a webpage is important if it is pointed to by other
important webpages:

1—
aP’ + —( a)eeT X = X.
n
Random surfer model: e = [1,...,1]", a = 0.85.
Matrix is irreducible.

Perron-Frobenius theorem guarantees existence of x > 0.

x; = PageRank of webpage .
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HITS

@ Proposed by Jon Kleinberg, 1999.
@ Used by Ask.com, Teoma.
@ Each webpage i has a hub score v; and an authority score u;.
@ Intuition: a good authority is pointed to by may good hubs and
a good hub points to many good authorities:
=y v vi= Y uwi ouw=u/ul, =V
J:U,i)EE J:(ij)EE
@ Singular values and singular vectors:

u=Av, vV =Au, u=d/|u||, v=v/|V|.
@ u; = authority score of 7, v; = hub score of /.
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Diffusion Geometry

@ Ronald Coifman’s generalization, 2006.

@ Graph replaced by data set X. (X, A, ;1) measure space.

@ Kernel K : X x X — R continuous, K(x,y) = K(y, x), and
K(x,y) = 0.

o Degree replaced by volume d(x) = [, K(x,y) du(y).

@ Transition matrix replaced by transition kernel
p(x,y) = K(x,y)/d(x). Note that [, p(x,y)du(y) = 1.
@ Markov chain replaced by diffusion operator

Pf(x) = /X p(x, Y)F(y)dply).

@ Random surfer model becomes random walk on data set X.

@ Connections with Fokker-Plank diffusion, Neumann heat kernel.
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Mercer Kernels

@ Stronger condition on K: for any n € N, xq,...,x, € X, want
[K(xi, x;)]7 =1 € R™" to be positive definite.

e Canonical example: Gaussian K(x, y) = exp(—||x — y||*/252).

@ Integral transform L is compact operator on L?(X, i) (clearly
self-adjoint)

LF(x) = /X K(x, y)F(y)du(y).

@ Spectral Theorem: A, @i kth eigenvalue/function of L

(e 9]

KOay) =D dpk)en(y),

absolutely for any (x, y), uniformly on X (assumed compact).
@ What | meant by ‘Green functions’ earlier (cheated a bit).
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Reproducing Kernel Hilbert Space

@ Given Mercer kernel K, there is unique Hilbert space Hy with

Q K(X, ) € Hg;
@ span{K(x,-) | x € X} dense in H;
Q 7(x) = (K(x,-),f)k for all f € H.

e Furthermore ® : X — ?(N), x — (v/Akpr(x))ken well-defined,
continuous, and

K(x,y) = (®(x), ®(y)).

o Earlier question revisited. What class of function to use for spam
filter? Answer:
F(X,R) = Hgk

for appropriate K.
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How to Design a Spam Filter

o f: X — Y where X C emails, Y = {spam, ham}.
@ Pick kernel K, Galerkin approach:

where x; € T, training set.

@ Since we know f(x;) = y;, may solve linear system

f()(.l) = ZfZl Oél'K(Xia)(j)) _/: 1, o, n,

for coefficients sy, ..., a,.

@ Finite element method without PDE!
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Classification and Regression

@ In practice, need to approximate. E.g. regularized least squares:

1

min - ijl(f(xj) —y)? + A%

@ Other loss functions possible. E.g. support vector machines use
V(y. f(x)) = (1 — yf(x))+ in place of (f(x) — y)*.
o Given x ¢ T, f(x) > 0= xis ham, f(x) < 0 = x is spam.

@ Applies to other problems as well: collaborative filtering,
computer vision, machine translation, cancer genetics.

L.-H. Lim (Berkeley) Lectures | & Il: The Mathematics of Data December 21, 2009 21 /23



References |

e R. Coifman, S. Lafon, “Diffusion maps,” Appl. Comput.
Harmon. Anal., 21 (2006), no. 1, pp. 5-30.

e R. Coifman, I. Kevrekidis, S. Lafon, M. Maggioni, B. Nadler,
“Diffusion maps, reduction coordinates, and low dimensional
representation of stochastic systems,” Multiscale Model. Simul.,
7 (2008), no. 2, pp. 842-864.

@ S.-I. Amari, H. Nagaoka, Methods of Information Geometry,
AMS, 2000.

@ B. Croft, D. Metzler, T. Strohman, Search Engines: Information
retrieval in practice, Addison-Wesley, 2010.

e C. Manning, P. Raghavan, H. Schiitze, Introduction to
Information Retrieval, Cambridge, 2008.

L.-H. Lim (Berkeley) Lectures | & Il: The Mathematics of Data December 21, 2009 22 /23



References ||

@ T. Hastie, R. Tibshirani, J. Friedman, The Elements of
Statistical Learning, 2nd edition, Springer, 2009.

C. Bishop, Pattern Recognition and Machine Learning, Springer,
2006.

o F. Cucker, D.-X. Zhou, Learning Theory: An Approximation
Theory Viewpoint, Cambridge, 2007.

F. Cucker, S. Smale, “On the mathematical foundations of
learning,” Bull. Amer. Math. Soc., 39 (2002), no. 1, pp. 1-49.
S. Mallat, A Wavelet Tour of Signal Processing, 3rd edition,
Academic Press, 2008.

N. Nisan, T. Roughgarden, E. Tardos, V. Vazirani, Algorithmic
Game Theory, Cambridge, 2007.

L.-H. Lim (Berkeley) Lectures | & Il: The Mathematics of Data December 21, 2009 23 /23



