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Abstract. Is it possible for a first-order method, i.e., only first derivatives allowed, to be quadrat-
ically convergent? For univariate loss functions, the answer is yes — the Steffensen method avoids
second derivatives and is still quadratically convergent like Newton method. By incorporating a
specific step size we can even push its convergence order beyond quadratic to 1 +

√
2 ≈ 2.414.

While such high convergence orders are a pointless overkill for a deterministic algorithm, they be-
come rewarding when the algorithm is randomized for problems of massive sizes, as randomization
invariably compromises convergence speed. We will introduce two adaptive learning rates inspired
by the Steffensen method, intended for use in a stochastic optimization setting and requires no
hyperparameter tuning aside from batch size. Extensive experiments show that they compare fa-
vorably with several existing first-order methods. When restricted to a quadratic objective, our
stochastic Steffensen methods reduce to randomized Kaczmarz method — note that this is not true
for SGD or SLBFGS — and thus we may also view our methods as a generalization of randomized
Kaczmarz to arbitrary objectives.

1. Introduction

In minimizing a univariate function f with an iteration xk+1 = xk − f ′(xk)/g(xk), possibilities
for g include

gradient: g(xk) = 1, Newton: g(xk) = f ′′(xk),

secant: g(xk) =
f ′(xk)− f ′(xk−1)

xk − xk−1
, Steffensen: g(xk) =

f ′(xk + f ′(xk))− f ′(xk)

f ′(xk)
,

with different orders of convergence q, i.e., |xk+1 − x∗| ≤ c|xk − x∗|q. Gradient descent has q = 1,
secant method q = (1 +

√
5)/2, Newton and Steffensen methods both have q = 2.

Steffensen method [41, 42] is a surprise. Not only does it not require second derivatives (like
Newton) to achieve quadratic convergence, it also does not achieve its superior convergence through
the use of multisteps (like secant). In other words, the kth Steffensen iterate only depends on xk
but not xk−1, xk−2, etc.

Nevertheless, while the other three methods have widely used multivariate generalizations (secant
method has several, as quasi-Newton methods, as Barzilai–Borwein step size, etc), all existing
multivariate generalizations of Steffensen method [1, 9, 13, 15, 16, 22, 25, 26, 28, 29, 30, 31, 32]
involve multivariate divided differences that require O(n2) function evaluations and are no less
expensive than using the full Hessian. Furthermore these multivariate generalizations are no longer
one-step methods. As a result they have not found widespread use.

Our contributions are as follows:

(i) We show that by incorporating a carefully chosen step size parameter the convergence of
Steffensen method may be further improved beyond quadratic to q = 1 +

√
2.

(ii) We extend Steffensen method to a multivariate setting as an adaptive learning rate, avoiding
divided differences, requiring just two gradient evaluations, and remaining a one-step method.

(iii) We show that when used in a randomized setting, our methods outperform SGD, SVRG, and
SLBFGS on a variety of standard machine learning tasks on real data sets.

The performance in (iii) is measured in actual running time. But aside from speed, our methods
have two advantages over SLBFGS, which has become a gold standard in machine learning:
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(a) Quasi-Newton methods may involve matrix-vector product, a two-loop recursion with O(d2)
computation. Although deterministic LBFGS does not form matrix-vector product explicitly,
stochastic LBFGS does. Our multivariate Steffensen methods, whether deterministic or sto-
chastic, are free of such products.

(b) Quasi-Newton methods come in two flavors: Hessian or inverse Hessian updates. The latter
seems a nobrainer as it avoids matrix inversion but this is a fallacy. It is common knowledge
among practitioners [11, Section 4.5.2.2] that the inverse Hessian version often conceals an
ill-conditioned approximate Hessian; one should instead update the Cholesky factors of the
approximate Hessian in order to detect ill-conditioning. By its design, LBFGS inevitably
uses the inverse Hessian version. Our multivariate Steffensen methods are not quasi-Newton
methods and do not involve approximate Hessians, avoiding this issue entirely.

A theoretical counterpart to (iii) is that when measured by the number of stochastic gradient
evaluations, we have the following complexity estimates:

O
(
(n+ κ2) log(1/ε)

)
,SSM/SSBB:

O
(
(n+ κ3) log(1/ε)

)
,SVRG–BB:

O
(
(n+ κ2+2(d+h)) log(1/ε)

)
,SLBFGS:

to minimize a d-variate convex function of the form f = f1+ · · ·+fn to ε-accuracy. So our proposed
methods SSM and SSBB are at least an order of magnitude faster than SVRG–BB and SLBFGS
in terms of the condition number κ. Here h refers to the ‘history size’ of SLBFGS. The algorithms
and quantities involved will all be explained in due course.

Johan Steffensen first proposed his eponymous method [41] in 1933. See [4] for an informative
history of the method and a biography of its inventor. The method was described in the classic
books of Henrici [13, pp. 91–95] and Householder [14, p. 164] but has remained more of a textbook
curiosity. One reason, as we mentioned above and will elaborate in Section 2.2, is that there has
been no viable multivariate version.

Another reason, as we will speculate, is that much like the Kaczmarz method [18, 19] for iterative
solution of linear systems had lingered in relative obscurity until it was randomized [43], Steffensen
method is also most effective in a randomized setting. This is in fact more than an analogy; we
will show in Section 2.4 that the stochastic Steffensen method we propose reduces to randomized
Kaczmarz method when applied to a quadratic objective — not true for SGD, SVRG, or SLBFGS.
So one may also view our stochastic Steffensen method as a generalization of randomized Kaczmarz
method to arbitrary differentiable objective functions.

In Section 3 we will supply proofs of linear convergence of our methods and a theoretical compar-
ison with other existing methods. In Section 4 we show how to adapt our methods for nonsmooth
functions. In the numerical experiments in Section 5, we will see that our stochastic Steffensen
method compares favorably with SGD, SVRG (with or without Barzilai–Borwein step size), and
SLBFGS across different tasks in the LIBSVM datasets: ridge regression, logistic regression, and
support vector machines with squared hinge loss.

Background. As in the usual setting for stochastic gradient descent and its variants, our goal is
to minimize an objective function of the form

(1.1) f(x) =
1

n

n∑
i=1

fi(x),

where x ∈ Rd is the model parameter. Such functions are ubiquitous in machine learning, arising
from the empirical risk minimization (ERM) problem where fi takes the form

fi(x) = ℓ(wT
i x; yi) + λR(x),
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with ℓ : R × R → R+ the loss function, R : Rd → R+ the regularizer, λ ≥ 0 the regularization
parameter, and {(wi, yi) ∈ Rd ×R : i = 1, . . . , n} the training set with labels. Different choices of ℓ
and R give l2-regularized logistic regression, lasso regression, soft-margin support vector machine,
etc.

The challenge here is that the dimension d and sample size n are extremely large in modern
situations, mandating the use of first-order methods that rely only on first derivatives. But when
n is large, even computing the full gradient of all f1, . . . , fn is intractable, and we need stochastic
optimization methods that update x only after processing a small subset of data, permitting progress
in the time deterministic methods make only a single step. Consequently, stochastic first-order
methods have become the method of choice, with stochastic gradient descent (SGD) [37] and its
many variants [39, 7, 17] and various stochastic quasi-Newton methods [21, 6, 46] ruling the day.

Stochastic optimization has grown into a vast subject. We have limited our comparison in this
article to stochastic variants of classical methods that rely primarily on gradients. We did not
include more sophisticated stochastic optimization algorithms that bring in additional features like
moments [8, 20] or momentum [24, 33, 35, 36] for two reasons. Firstly these more sophisticated
algorithms invariably require heavy tuning compared to purely gradient-based methods. Secondly
we view them as enhancements to gradients-based methods and our proposed stochastic Steffensen
methods likewise lend themselves to such enhancements. As such, the most appropriate and equi-
table comparisons for us would be the aforementioned gradient-based methods.

Convention. In this article, we use the terms learning rate and step size slightly differently. Take
for example our Steffensen–Barzilai–Borwein iteration in (2.9):

xk+1 = xk −
βk∥∇f(xk)∥2

[∇f(xk + βk∇f(xk))−∇f(xk)]T∇f(xk)
∇f(xk),

the coefficient

ηSBB
k :=

βk∥∇f(xk)∥2

[∇f(xk + βk∇f(xk))−∇f(xk)]T∇f(xk)

will be called a learning rate whereas the coefficient

βk :=
∥xk − xk−1∥2

[∇f(xk)−∇f(xk−1)]T(xk − xk−1)

will be called a step size. In general, the term ‘learning rate’ will be used exclusively to refer to the
coefficient of a search direction, which may be a gradient, a stochastic gradient, a variance-reduced
stochastic gradient, etc. The term ‘step size’ will be used for coefficients in other contexts like βk
in the definition of the learning rate ηSBB

k .
We will use ηk to denote a general learning rate. For the learning rate of a particular algorithm,

we will indicate the algorithm in superscript. For example, ηSBB
k above is the learning rate of

Steffensen–Barzilai–Borwein method (SBB). The Barzilai–Borwein step size above will always be
denoted βk throughout.

2. Stochastic Multivariate Steffensen Methods

Our three-step strategy is to (a) push the convergence order of the univariate Steffensen method
to its limit, (b) extend the resulting method to a multivariate setting, and then (c) randomize the
multivariate algorithm. For (a), we are led naturally to the Barzilai–Borwein step size; for (b), we
emulate the multivariate extension of secant method into quasi-Newton method; and for (c), we
draw inspiration from stochastic gradient descent and its various derivatives.
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2.1. Deterministic univariate setting. As we saw in Section 1, univariate Steffensen method:

(2.1) xk+1 = xk −
f ′(xk)

2

f ′(xk + f ′(xk))− f ′(xk)

avoids second-order derivatives and yet preserves quadratic convergence with the use of two first-
order derivatives f ′(xk+f ′(xk)) and f ′(xk). With modern hindsight, it is clear that we may obtain
an immediate improvement in (2.1), one that is essentially free, by incorporating a coefficient βk
that only depends on quantities already computed. The analysis in the next two results will lead
us to an appropriate choice of βk. Note that although the algorithms require only first derivatives
of f , the convergence results assume that f has a higher degree of smoothness.

Proposition 2.1 (Convergence order of Steffensen method). Let f be a function that is C3 in a
neighborhood of a stationary point x∗ with f ′(x∗) = 0 and f ′′(x∗) ̸= 0. Let α ∈ R be a nonzero
constant parameter and

xk+1 := xk −
αf ′(xk)

2

f ′
(
xk + αf ′(xk)

)
− f ′(xk)

for k = 0, 1, 2, . . . . If limk→∞ xk = x∗, then

lim
k→∞

|εk+1|
|ε2k|

=
1

2

∣∣∣∣f ′′′(x∗)

f ′′(x∗)

∣∣∣∣ ∣∣1 + αf ′′(x∗)
∣∣ ,

where εk := xk − x∗ denotes the error in iteration k.

Proof. Let εk = xk − x∗. Subtracting x∗ from both sides, we get

εk+1 = εk −
αf ′(xk)

2

f ′(xk + αf ′(xk))− f ′(xk)
.

Taylor expanding f ′(xk + αf ′(xk)) about xk, we get

f ′(xk + αf ′(xk)) = f ′(xk) + f ′′(xk)αf
′(xk) +

f ′′′(ξk)

2
α2f ′(xk)

2

for some ξk between xk and xk + ηf ′(xk). Combining the previous two equations, we have

(2.2) εk+1 = εk −
f ′(xk)

f ′′(xk) +
f ′′′(ξk)

2 αf ′(xk)
=

−f ′(xk) + f ′′(xk)εk +
1
2f

′′′(ξk)αf
′(xk)εk

f ′′(xk) +
1
2f

′′′(ξk)αf ′(xk)
.

Taylor expanding f ′ about xk, we get

0 = f ′(x∗) = f ′(xk)− f ′′(xk)εk +
f ′′′(ξ∗k)

2
ε2k

for some ξ∗k between xk and x∗. Plugging f ′(xk) into (2.2) gives us

εk+1 =
f ′′′(ξ∗k)ε

2
k + αf ′′′(ξk)f

′′(xk)ε
2
k −

α
2 f

′′′(ξk)f
′′′(ξ∗k)ε

3
k

2f ′′(xk) + f ′′′(ξk)αf ′(xk)
.

Taking limit k → ∞ and using continuity of f ′, f ′′, and f ′′′ at x∗, we have

lim
k→∞

|εk+1|
|ε2k|

= lim
k→∞

∣∣∣∣f ′′′(ξ∗k) + αf ′′′(ξk)f
′′(xk)− α

2 f
′′′(ξk)f

′′′(ξ∗k)εk

2f ′′(xk) + f ′′′(ξk)αf ′(xk)

∣∣∣∣
=

1

2

∣∣∣∣f ′′′(x∗)

f ′′(x∗)

∣∣∣∣|1 + αf ′′(x∗)|

as required. □
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We next show that with an appropriate choice of α, we can push Steffensen method into the
superquadratically convergent regime. The quadratic convergence in Proposition 2.1 is independent
of the value α and we may thus choose a different α at every step. Of course if we simply set
αk = −1/f ′′(xk) in Proposition 2.1, we will obtain a cubically convergent algorithm. However since
we want a first-order method whose learning rate depends only on previously computed quantities,
we set αk = −(xk − xk−1)/[f

′(xk)− f ′(xk−1)] to be the finite difference to avoid second derivatives
— as it turns out, this improves convergence order to 1 +

√
2.

Theorem 2.2 (Convergence order of Steffensen method with Barzilai–Borwein step size). Let f
be a function that is C4 in a neighborhood of a stationary point x∗ with f ′(x∗) = 0 and f ′′(x∗) ̸= 0.
Let

βk = − xk − xk−1

f ′(xk)− f ′(xk−1)

and

(2.3) xk+1 = xk −
βkf

′(xk)
2

f ′
(
xk + βkf ′(xk)

)
− f ′(xk)

for k = 0, 1, 2, . . . . If limk→∞ xk → x∗, then

lim
k→∞

|εk+1|
|ε2kεk−1|

=
( f ′′′(x∗)

2f ′′(x∗)

)2
.

In particular, the order of convergence of (2.3) is superquadratic with 1 +
√
2 ≈ 2.414.

Proof. Taylor expanding f ′(xk + βkf
′(xk)) at xk, we get

f ′(xk + βkf
′(xk)) = f ′(xk) + f ′′(xk)βkf

′(xk) +
f (3)(xk)

2
β2
kf

′(xk)
2 +

f (4)(ξk)

6
β3
kf

′(xk)
3

for some ξk between xk and xk + ηkf
′(xk). Let εk = xk − x∗, we have

(2.4)

εk+1 = εk −
f ′(xk)

f ′′(xk) +
1
2f

(3)(xk)βkf ′(xk) +
1
6f

(4)(ξk)β
2
kf

′(xk)2

=
−f ′(xk) + f ′′(xk)εk +

1
2f

(3)(xk)βkf
′(xk)εk +

1
6f

(4)(ξk)β
2
kf

′(xk)
2εk

f ′′(xk) +
1
2f

(3)(xk)βkf ′(xk) +
1
6f

(4)(ξk)β
2
kf

′(xk)2
.

Taylor expanding f ′(x∗) at xk to 4th, 3th, and 2nd order, we get

0 = f ′(x∗) = f ′(xk)− f ′′(xk)εk +
f (3)(xk)

2
ε2k −

f (4)(ξ∗k)

6
ε3k,

0 = f ′(x∗) = f ′(xk)− f ′′(xk)εk +
f (3)(ξ′k)

2
ε2k,

0 = f ′(x∗) = f ′(xk)− f ′′(ξ†k)εk.

Plugging these into (2.4) and defining

Ak := f ′′(xk) +
f (3)(xk)

2
βkf

′(xk) +
f (4)(ξk)β

2
kf

′(xk)
2

6
,

Bk :=
f (4)(ξk)

6
β2
kf

′′(ξ†k)
2ε3k −

f (4)(ξ∗k)

6
ε3k −

f (3)(xk)

4
f (3)(ξ′k)βkε

3
k,

we obtain

εk+1 =
1
2f

(3)(xk)ε
2
k(f

′′(xk)βk + 1) +Bk

Ak
.
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Since βk = −(xk − xk−1)/(f
′(xk)− f ′(xk−1)), we may Taylor expand f ′(xk−1) at xk to get

f ′(xk−1) = f ′(xk) + f ′′(xk)(εk−1 − εk) +
f (3)(ξ‡k)

2
(εk−1 − εk)

2

for some ξ‡k between xk−1 and xk. Plugging it into

βk = − 1

f ′′(xk) +
1
2f

(3)(ξ‡k)(εk−1 − εk)

gives us

εk+1 =

f (3)(xk)f
(3)(ξ‡k)ε

2
k(εk−1 − εk)

2(2f ′′(xk) + f (3)(ξ‡k)(εk−1 − εk))
+Bk

Ak
.

We deduce that

lim
k→∞

|εk|
|εk−1|

= 0, lim
k→∞

|Bk|
|ε2kεk−1|

= 0,

and therefore

lim
k→∞

|εk+1|
|ε2kεk−1|

=
( f (3)(x∗)

2f (2)(x∗)

)2
.

Hence the convergence order is 1 +
√
2. □

The choice of βk above is exactly the Barzilai–Borwein (BB) step size for a univariate function
[3]. In the multivariate setting, βk will be replaced by the multivariate BB step size. Theorem 2.2
provides the impetus for a first-order method with Steffensen updates and BB step size, namely, it is
superquadratically convergent for univariate functions. Such a high convergence order is clearly an
overkill for a deterministic algorithm but our experiments in Section 5 show that they are rewarding
when the algorithm is randomized, as randomization inevitably compromises convergence speed.
For easy comparison, we tabulate the convergence order, i.e., the largest q such that |εk+1| ≤ c|εk|q
for some c > 0 and all k sufficiently large, of various methods below:

Method Convergence Derivatives Steps
Steepest descent 1 1st single step

Secant = Barzilai–Borwein = quasi-Newton (1 +
√
5)/2 1st mutltistep

Newton 2 2nd single step
Steffensen 2 1st single step

Steffensen–Barzilai–Borwein 1 +
√
2 1st multistep

Note that for a univariate function, Barzilai–Borwein step size and any quasi-Newton method with
Broyden class updates (including BFGS, DFP, SR1) reduce to the secant method. In particular,
they are all two-step methods, i.e., its iterate at step k depends on both xk and xk−1. As a result
Steffensen–Barzilai–Borwein method is also a two-step method as it involves the Brazlai–Borwein
step size but Steffensen method is a one-step method.

2.2. Deterministic multivariate setting. There have been no shortage of proposals for extend-
ing Steffensen method to a multivariate or even infinite-dimensional setting [1, 9, 13, 15, 16, 22,
25, 26, 28, 29, 30, 31, 32]. However all of them rely on various multivariate versions of divided
differences that require evaluation and storage of O(n2) first derivatives in each step. Although
they do avoid second derivatives, computationally they are just as expensive as Newton method
and are unsuitable for modern large scale applications like training deep neural networks.

We will propose an alternative class of multivariate Steffensen methods that use only O(n) first
derivatives, by emulating quasi-Newton methods [5, 10, 12, 40] and Barzilai–Borwein method [3]
respectively. Our observation is that expensive multivariate divided differences can be completely
avoided if we just use the ideas in Section 2.1 to define learning rates. Another advantage is
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that these learning rates could be readily used in conjunction with existing stochastic optimization
methods, as we will see in Section 2.3.

The key idea behind quasi-Newton method is the extension of univariate secant method to a
multivariate objective function f : Rd → R by replacing the finite difference approximation of
f ′′(xk), i.e., hk = [f ′(xk)− f ′(xk−1)]/(xk − xk−1), with the secant equation Hksk = yk or

(2.5) Bkyk = sk

where sk = xk−xk−1 and yk = ∇f(xk)−∇f(xk−1), avoiding the need to divide vectorial quantitites.
Here Hk (resp. Bk) is the approximate (resp. inverse) Hessian.

We use the same idea to extend Steffensen method to a multivariate setting, solving (2.5) with

sk = ∇f(xk), yk = ∇f(xk +∇f(xk))−∇f(xk).

Note that with these choices, (2.5) roughly says that “Bk = sk/yk = ∇f(xk)/[∇f(xk +∇f(xk))−
∇f(xk)],” which gives us f ′(xk)/[f

′(xk + f ′(xk)) − f ′(xk)] as in the univariate Steffensen method
when d = 1 but is of course meaningless when d > 1. Nevertheless we may pick a minimum-norm
solution to (2.5), which is easily seen to be given by the rank-one matrix

Bk = argmin
Byk=sk

∥B∥ =
sky

T
k

yT
kyk

regardless of whether ∥ · ∥ is the Frobenius or spectral norm. Hence we obtain a multivariate
analogue of Steffensen method (2.1) as

(2.6) xk+1 = xk −Bk∇f(xk) = xk −
[∇f(xk +∇f(xk))−∇f(xk)]

T∇f(xk)

∥∇f(xk +∇f(xk))−∇f(xk)∥2
∇f(xk).

We will call this quasi-Steffensen method in analogy with quasi-Newton methods.
The key idea behind the Barzilai–Borwein method [3] is an alternative way of treating the secant

equation (2.5), whereby the approximate Hessian Bk is assumed to take the form Bk = σkI for
some scalar σk > 0. Since in general it is not possible to find σk so that (2.5) holds exactly with
Bk = σkI, a best approximation is used instead. We seek σk so that the residual of the secant
equation ∥yk − (1/σk)sk∥2 or ∥σkyk − sk∥2 is minimized. The first minimization problem gives us

(2.7) σk = argmin
σ>0

∥yk − (1/σ)sk∥2 =
sT
ksk
sT
kyk

=
∥∇f(xk)∥2

[∇f(xk +∇f(xk))−∇f(xk)]T∇f(xk)
,

and the second minimization gives the same expression as (2.6). We will call the resulting iteration

xk+1 = xk −
∥∇f(xk)∥2

[∇f(xk +∇f(xk))−∇f(xk)]T∇f(xk)
∇f(xk)

Steffensen method since it most resembles the univariate Steffensen method in (2.1). Note that the
Barzilai–Borwein step size derived in [3] is

(2.8) βk =
∥xk − xk−1∥2

[∇f(xk)−∇f(xk−1)]T(xk − xk−1)

and differs significantly from (2.7). In particular, xk+1 = xk − βk∇f(xk) is a multistep method
whereas xk+1 = xk − σk∇f(xk) remains a single step method.

Both (2.6) and (2.7) reduce to (2.1) when f is univariate. Motivated by the univariate discussion
before Theorem 2.2, we combine features from (2.7) and (2.8) to obtain a Steffensen–Barzilai–
Borwein method in analogy with the univariate case (2.3):

(2.9) xk+1 = xk −
βk∥∇f(xk)∥2

[∇f(xk + βk∇f(xk))−∇f(xk)]T∇f(xk)
∇f(xk).
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Note that (2.9) reduces to (2.3) when f is univariate. The stochastic version of (2.9) will be our
method of choice, supported by extensive empirical evidence some of which we will present in
Section 5.

In summary, we have four plausible learning rates.

ηqS

k =
[∇f(xk +∇f(xk))−∇f(xk)]

T∇f(xk)

∥∇f(xk +∇f(xk))−∇f(xk)∥2
,quasi-Steffensen:

ηqSBB

k =
βk[∇f(xk + βk∇f(xk))−∇f(xk)]

T∇f(xk)

∥∇f(xk + βk∇f(xk))−∇f(xk)∥2
,quasi-Steffensen–Barzilai–Borwein:

ηS
k =

∥∇f(xk)∥2

[∇f(xk +∇f(xk))−∇f(xk)]T∇f(xk)
,Steffensen:

ηSBB
k =

βk∥∇f(xk)∥2

[∇f(xk + βk∇f(xk))−∇f(xk)]T∇f(xk)
.Steffensen–Barzilai–Borwein:

Here βk is the Barzilai–Borwein step size in (2.8). For a univariate function, the iterations with ηqS

k

and ηS
k reduce to (2.1) whereas those with ηqSBB

k and ηSBB
k reduce to (2.3). The computational costs

of all four learning rates are the same: two gradient evaluations and two inner products.
Note that our muiltivariate Steffensen and quasi-Steffensen methods are one-step methods —

ηS
k and ηqS

k depend only on xk — just like the univariate Steffensen method. Steffensen–Barzilai–
Borwein and quasi-Steffensen–Barzilai–Borwein are inevitably two-step methods because they in-
volve the Barzilai–Borwein step size βk, which has a two-step formula.

The main difference between our multivariate Steffensen methods and those in the literature
[1, 9, 13, 15, 16, 22, 25, 26, 28, 29, 30, 31, 32] is that ours are encapsulated as learning rates and
avoid expensive multivariate divided differences. Recall that for g = (g1, . . . , gn) : Rn → Rn, its
divided difference [34] at x, y ∈ Rn is the matrix Jx, yK ∈ Rn×n whose (i, j)th entry is

Jx, yKij :=


gi(x1, . . . , xj , yj+1, . . . , yn)− gi(x1, . . . , xj−1, yj , . . . , yn)

xj − yj
xj ̸= yj ,

∂gi
∂xj

(x1, . . . , xj , yj+1, . . . , yn) xj = yj ,

for i, j = 1, . . . , n.
In a stochastic setting, the learning rates ηS

k, η
qS

k , η
SBB
k , ηqSBB

k share the same upper and lower
bounds in Lemma 3.6 and as a result, the linear convergence conclusion in Theorem 3.9 applies
alike to all four of them. Our experiments also indicate that ηqS

k and ηS
k have similar performance

and likewise for ηqSBB

k and ηSBB
k , although there is a slight difference between ηS

k and ηSBB
k . One

conceivable advantage of the ‘quasi’ variants is that for a given ∇f(xk), the denominator vanishes
only at a single point, e.g., when ∇f(xk +∇f(xk)) = ∇f(xk), as opposed to a whole hyperplane,
e.g., whenever ∇f(xk +∇f(xk))−∇f(xk) ⊥ ∇f(xk). Nevertheless, in all our experiments on their
stochastic variants, this has never been an issue.

We prefer the slightly simpler expressions of the Steffensen and Steffensen–Barzilai–Borwein
methods and will focus our subsequent discussions on them. Their ‘quasi’ variants may be taken
as nearly equivalent alternatives for users who may have some other reasons to favor them.

2.3. Stochastic multivariate setting. Encapsulating Steffensen method in the form of learning
rates offers an additional advantage — it is straightforward to incorporate them into many stochastic
optimization algorithms, which we will do next.

Standard gradient descent applied to (1.1) requires the evaluation of n gradients. The stochastic
gradient descent (SGD), instead of using the full gradient ∇f(xk), relies on an unbiased estimator
gk with E[gk] = ∇f(xk) [37]. One common randomization is to draw ik ∈ {1, . . . , n} randomly and
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set gk = ∇fik(xk), giving the update:

xk+1 = xk − ηk∇fik(xk).

Note that E[∇fik(xk) | xk] = ∇f(xk) and its obvious advantage is that each step relies only on a
single gradient ∇fik , resulting in a computational cost that is 1/n that of the standard gradient
descent. While we could adopt this procedure to randomize our Steffensen and Steffensen–Barzilai–
Borwein iterations, we will use a slightly more sophisticated variant with variance reduction and
minibatching.

The price of randomization is paid in the form of variance, as the stochastic gradient ∇fik(xk)
equals the gradient ∇f(xk) only in expectation but each ∇fik(xk) is different. Of the many variance
reduction strategies, one of the best known and simplest is the stochastic variance reduced gradient
method (SVRG) [17], based on the tried-and-tested notion of control variates in Monte Carlo
methods. We will emulate SVRG to randomize (2.6) and (2.9).

The basic idea of SVRG is to compute the full gradient once every m iterations for some fixed
m and use it to generate stochastic gradients with lower variance in the next m iterations:

xk+1 = xk − ηk
(
∇fik(xk)−∇fik(x̃) +∇f(x̃)

)
.

Here x̃ denotes the point where full gradient is computed. Notice that when k → ∞, xk and x̃
are very close to the optimal point x∗. As xk and x̃ are highly correlated, the variability of the
stochastic gradient is reduced as a result [17].

We may similarly randomize multivariate Steffensen method. Our stochastic Steffensen method
(SSM) in Algorithm 1 operates in two nested loops. In the kth iteration of the outer loop, we
compute two full gradients ∇f(xk) and ∇f(xk +∇f(xk)). Note that xk plays the role of x̃ in the
above paragraph. These two terms are used for computing the Steffensen learning rate:

(2.10) ηSS
k =

1√
m

· ∥∇f(xk)∥2

[∇f(xk +∇f(xk))−∇f(xk)]T∇f(xk)
.

In the (t+1)th iteration of the inner loop, we use ∇f(xk) to generate the stochastic gradient with
lower variance

vk,t = ∇fit(xk,t)−∇fit(xk) +∇f(xk),

with it ∈ {1, . . . , n} sampled uniformly. The updating rule takes the form

xk,t+1 = xk,t − ηSS
k vk,t

where the search direction is known as the variance-reduced stochastic gradient. Note that the
learning rate ηk given by (2.10) has an extra 1/

√
m factor to guarantee the linear convergence. The

1/
√
m factor may be replaced by 1/mp for any p ∈ (0, 1), although not p = 1, while preserving

linear convergence. The optimal complexity, as measured by the number of stochasic gradient
evaluations, is achieved when p = 1/2, with details to follow in Section 3.

Aside from variance reduction, we include another common enhancement called minibatching.
Minibatched SGD is a trade-off between SGD and gradient descent (GD) where the cost function
(and therefore its gradient) is averaged over a small number of samples. SGD has a batch size of
one whereas GD has a batch size that includes all training samples. In each iteration, we sample a
minibatch Sk ⊆ {1, . . . , n} with |Sk| = b a small number and update

xk+1 = xk − ηk
1

|Sk|
∑
j∈Sk

∇fj(xk) =: xk − ηk∇fSk
(xk).

Minibatched SGD smooths out some of the noise in SGD but maintains the ability to escape local
minima. The minibatch size b is kept small, thus preserving the cost-saving benefits of SGD. As
in the discussion after (2.10), the coefficient 1/

√
m may be replaced by 1/mp for any p ∈ (0, 1)

while preserving linear convergence, but p = 1/2 gives the minimum number of stochastic gradient
evaluations, as we will see in Section 3.
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Algorithm 1 Stochastic Steffensen Method (SSM)

1: Input: initial state x0, inner loop size m, data size n.
2: for k = 0, 1, . . . do
3: Compute full gradients ∇f(xk) and ∇f(xk +∇f(xk)).
4: Compute stochastic Steffensen learning rate

ηSS
k =

1√
m

· ∥∇f(xk)∥2

[∇f(xk +∇f(xk))−∇f(xk)]T∇f(xk)
.

5: Set xk,0 = xk.
6: for t = 0 to m− 1 do
7: Sample it ∈ {1, . . . , n} uniformly.
8: Compute variance-reduced stochastic gradient

vk,t = ∇fit(xk,t)−∇fit(xk) +∇f(xk).

9: Update xk,t+1 = xk,t − ηSS
k vk,t.

10: end for
11: Set xk+1 = xk,i for uniformly chosen i ∈ {0, . . . ,m− 1}.
12: end for

Upon incorporating (i) a Barzilai–Borwein step size, (ii) variance reduction, and (iii) minibatch-
ing, we arrive at the stochastic Steffensen–Barzilai–Borwein method (SSBB) in Algorithm 2. This
is our method of choice in this article.

Although we did not include minibatching in Algorithm 1’s pseudocode to avoid clutter, we will
henceforth assume that it is also minibatched. The randomization, variance reduction, and mini-
batching all apply verbatim when the learning rates in Algorithms 1 and 2 are replaced respectively
by the quasi-Steffensen and quasi-Steffensen–Barzilai–Borwein learning rates on p. 8. Nevertheless,
as we have mentioned, our numerical experiments do not show that the resulting algorithms differ
in performance from that of Algorithms 1 and 2.

2.4. Randomized Kaczmarz method as a special case. Given A ∈ Rm×n of full row rank
with row vectors a1, . . . , am ∈ Rn and b ∈ Rm in the image of A, the Kaczmarz method [18, 19]
solves the consistent linear system Ax = b via

xk+1 = xk +
bi − aT

i xk
∥ai∥2

ai,

with i = k mod m, i = 1, . . . ,m. The iterative method has remained relatively obscure, almost
unheard of in numerical linear algebra, until it was randomized in [43], which essentially does

xk+1 = xk +
bik − aT

ik
xk

∥aik∥2
aik ,

where ik ∈ {1, . . . ,m} is now sampled with probability ∥aik∥2/∥A∥2.
We will see that randomized Kaczmarz method is equivalent to applying stochastic Steffensen

method, with or without Barzilai–Borwein step size, to minimize the quadratic function f : Rn → R,

f(x) :=
1

2

m∑
i=1

fi(x) =
1

2

m∑
i=1

(aT
i x− bi)

2.

While it is sometimes claimed that SGD has this property, this is not quite true. Suppose ik ∈
{1, . . . ,m} is the random row index sampled at the kth step, the update rule in SGD gives

xk+1 = xk − ηk(a
T
ik
xk − bi)aik ,
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Algorithm 2 Stochastic Steffensen–Barzilai–Borwein Method (SSBB)

1: Input: initial state x0, inner loop size m, minibatch size b, data size n, Barzilai-Borwein step
size β0 = −1.

2: for k = 0, 1, . . . do
3: Compute full gradient ∇f(xk).
4: if k > 0 then
5: Set sk = xk − xk−1 and yk = ∇f(xk)−∇f(xk−1).
6: Compute Barzilai–Borwein step size

βk = −∥sk∥2

sT
kyk

.

7: end if
8: Compute the stochastic Steffensen–Barzilai–Borwein learning rate

ηSSBB
k =

1√
m

· βk∥∇f(xk)∥2

[∇f(xk + βk∇f(xk))−∇f(xk)]T∇f(xk)
.

9: Set xk,0 = xk.
10: for t = 0 to m− 1 do
11: Sample minibatch Sk,t ⊆ {1, . . . , n} uniformly with |Sk,t| = b.
12: Compute variance-reduced stochastic gradient

vk,t = ∇fSk,t
(xk,t)−∇fSk,t

(xk,t) +∇f(xk,t).

13: Update xk,t+1 = xk,t − ηSSBB
k vk,t.

14: end for
15: Set xk+1 = xk,i for uniformly chosen i ∈ {0, . . . ,m− 1}.
16: end for

and the update rule in SLBFGS is even further from this. So one needs to impose further as-
sumptions [23] on the learning rate to get randomized Kaczmarz method, which requires that
ηk = 1/∥a2ik∥. If we use the Steffensen method, we get from (2.9) that

ηS
k =

∥∇fik(xk)∥2

[∇fik
(
xk +∇fik(xk)

)
−∇fik(xk)]

T∇fik(xk)
=

1

∥aik∥2
;

and using Steffensen–Barzilai–Borwein method makes no difference:

ηSBB
k =

βk∥∇fik(xk)∥2

[∇fik
(
xk + βk∇fik(xk)

)
−∇fik(xk)]

T∇fik(xk)
=

1

∥aik∥2
,

as βk = ∥xk − xk−1∥2/(xk − xk−1)
T[∇fik(xk)−∇fik(xk−1)] = 1/∥aik∥2.

3. Convergence Analysis

In this section, we establish the linear convergence of our stochastic Steffensen methods Algo-
rithm 1 (SSM) and Algorithm 2 (SSBB) for solving (1.1) under standard assumptions. We would
like to stress that these convergence results are intended to provide a minimal theoretical guaran-
tee and do not really do justice to the actual performance of SSBB. The experiments in Section 5
indicate that the convergence of SSBB is often superior to other existing methods like SGD and
SVRG, with or without Barzilai–Borwein step size, or even SLBFGS. However, we are unable to
prove this theoretically, only that it is linearly convergent like the other methods.
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For easy reference, we reproduce the minibatched SVRG algorithm in [2, Algorithm 1] as Algo-
rithm 3. We need to establish the linear convergence of Algorithm 3 for our own convergence results

Algorithm 3 Minibatched SVRG

1: Input: initial state x0, inner loop size m, minibatch size b, data size n.
2: for k = 0, 1, . . . do
3: Compute full gradient ∇f(xk).
4: Set xk,0 = xk.
5: for t = 0 to m− 1 do
6: Sample minibatch Sk,t ⊆ {1, . . . , n} uniformly with |Sk,t| = b.
7: Compute variance-reduced stochastic gradient

vk,t = ∇fSk,t
(xk,t)−∇fSk,t

(xk) +∇f(xk).

8: Update xk,t+1 = xk,t − ηkvk,t.
9: end for

10: Set xk+1 = xk,i for uniformly chosen i ∈ {0, . . . ,m− 1}.
11: end for

in Sections 3.1 and 3.2 but we are unable to find such a result in the literature. In particular, the
convergence results in [2, Propositions 2–4] and [45, Theorem 1] are for more sophisticated variants
of Algorithm 3. So we will provide a version following the same line of arguments in [45, Theorem 1]
but tailored to our own requirements.

Our linear convergence proofs for SSM and SSBB are a combination of the proofs in [27, 45]
adapted for our purpose. In particular, we quote [27, Lemma A] and prove a simplied version of
[45, Lemma 3] for easy reference.

Lemma 3.1 (Nitanda). Let ξ1, . . . , ξn ∈ Rd and ξ̄ := 1
n

∑n
i=1 ξi. Let S be a b-element subset chosen

uniform randomly from all b-element subsets of {1, 2, . . . , n}. Then

ES

∥∥∥1
b

∑
i∈S

ξi − ξ̄
∥∥∥2 = n− b

b(n− 1)
Ei

∥∥ξi − ξ̄
∥∥2.

Here ES denotes expectation of the random subset S ⊆ {1, . . . , n} and Ei that of the uniform
random variable i ∈ {1, . . . , n}. More specifically, if S = {i1, . . . , ib}, then

ES

∥∥∥1
b

∑
i∈S

ξi − ξ̄
∥∥∥2 = b!(n− b)!

n!

∑
S⊆{1,...,n}

∥∥∥1
b

b∑
j=1

ξij − ξ̄
∥∥∥2, Ei

∥∥ξi − ξ̄
∥∥2 = 1

n

n∑
j=1

∥∥ξj − ξ̄
∥∥2.

For the rest of this section, we will need to assume, as is customary in such proofs of linear
convergence, that our objective f is µ-strongly convex, the gradient of each additive component
fi is L-Lipschitz continuous (and therefore so is ∇f), and that all iterates are well-defined (the
denominators appearing in our learning rates ηk are nonzero).

Assumption 3.2. Assume that the function f in (1.1) satisfies

f(w) ≥ f(v) +∇f(v)T(w − v) +
µ

2
∥v − w∥2,

∥∇fi(v)−∇fi(w)∥ ≤ L∥v − w∥

for any v, w ∈ Rd, i = 1, . . . , n.

Applying Lemma 3.1 with ξi = vk,ti and [45, Corollary 3], we may bound the variance of a
minibatched variance-reduced gradient as follows.
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Lemma 3.3. Let f be as in Assumption 3.2 with x∗ := argminx f(x). Let

vk,ti = ∇fi(xk,t)−∇fi(xk) +∇f(xk), vk,t =
1

b

∑
i∈Sk,t

vk,ti .

Then

E∥vk,t −∇f(xk,t)∥2 ≤
4L

b

[
f(xk,t)− f(x∗) + f(xk)− f(x∗)

]
.

The next lemma, a simplified version of [45, Lemma 3], gives a lower bound of the optimal value
f(x∗) useful in our proof of linear convergence.

Lemma 3.4. Let ∆k,t := vk,t −∇f(xk,t) and ηk be a learning rate with 0 < ηk ≤ 1/L. Then with
the same assumptions and notations in Lemma 3.3, we have

f(x∗) ≥ f(xk,t+1) + vT
k,t(x

∗ − xk,t) +
ηk
2
∥vk,t∥2 +

µ

2
∥x∗ − xk,t∥2 +∆T

k,t(xk,t+1 − x∗).

Proof. By the strong convexity of f , we have

f(x∗) ≥ f(xk,t) +∇f(xk,t)
T(x∗ − xk,t) +

µ

2
∥x∗ − xk,t∥2.

By the smoothness of f , we have

f(xk,t) ≥ f(xk,t+1)−∇f(xk,t+1)
T(xk,t+1 − xk,t)−

L

2
∥xk,t+1 − xk,t∥2.

Summing the two inequalities, we get

f(x∗) ≥ f(xk,t+1) +∇f(xk,t)
T(x∗ − xk,t+1) +

µ

2
∥x∗ − xk,t∥2 −

Lη2k
2

∥vk,t∥2.

The second term on the right simplifies as

∇f(xk,t)
T(x∗ − xk,t+1) = ∇f(xk,t)

T(x∗ − xk,t+1) + (vk,t − vk,t)
T(x∗ − xk,t+1)

= vT
k,t(x

∗ − xk,t+1) + (vk,t −∇f(xk,t))
T(xk,t+1 − x∗)

= vT
k,t(x

∗ − xk,t+1) + ηk∥vk,t∥2.

If the learning rate satisfies 0 < ηk ≤ 1/L, then

f(x∗) ≥ f(xk,t+1) + vT
k,t(x

∗ − xk,t) +
ηk
2
(2− Lηk) ∥vk,t∥2 +

µ

2
∥x∗ − xk,t∥2 +∆T

k,t(xk,t+1 − x∗)

≥ f(xk,t+1) + vT
k,t(x

∗ − xk,t) +
ηk
2

∥vk,t∥2 +
µ

2
∥x∗ − xk,t∥2 +∆T

k,t(xk,t+1 − x∗),

as required. □

Theorem 3.5 (Linear convergence of Algorithm 3). Let f be as in Assumption 3.2 with x∗ :=
argminx f(x). For the (k + 1)th iteration of outer loop in Algorithm 3,

E[f(xk+1)− f(x∗)] ≤
[

b

mµηk(b− 4Lηk)
+

4(m+ 1)Lηk
m(b− 4Lηk)

]
[f(xk)− f(x∗)].

If m, ηk, and b are chosen so that

ρk =
b

mµηk(b− 4Lηk)
+

4(m+ 1)Lηk
m(b− 4Lηk)

≤ ρ < 1, ηk < min
( b

4L
,
1

L

)
,

then Algorithm 3 converges linearly in expectation with

E[f(xk)− f(x∗)] ≤ ρk[f(x0)− f(x∗)].
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Proof. For the iteration in the inner loop, we apply Lemma 3.4 to get

(3.1)
∥xk,t+1 − x∗∥2 = ∥xk,t − x∗∥2 − 2ηkv

T
k,t(xk,t − x∗) + η2k ∥vk,t∥

2

≤ ∥xk,t − x∗∥2 + 2ηk[f(x
∗)− f(xk,t+1)]− 2ηk∆

T
k,t(xk,t+1 − x∗).

Lemma 3.4 requires that the learning rate ηk ≤ 1/L. Let x̄k,t+1 := xk,t− ηk∇f(xk,t). Then the last
term in (3.1) may be written as

−2ηk∆
T
k,t(xk,t+1 − x∗) = −2ηk∆

T
k,t(xk,t+1 − x̄k,t+1)− 2ηk∆

T
k,t(x̄k,t+1 − x∗)

= 2η2k ∥∆k,t∥2 − 2ηk∆
T
k,t(x̄k,t+1 − x∗).

Plugging this into (3.1) and taking expectations on both sides conditioned on xk,t and xk respec-
tively, we get

E∥xk,t+1 − x∗∥2 ≤ ∥xk,t − x∗∥2 + 2ηk[ηkE∥∆k,t∥2 − E[∆T
k,t(x̄k,t+1 − x∗)]− (f(xk,t+1)− f(x∗))]

= ∥xk,t − x∗∥2 + 2ηk[ηkE∥∆k,t∥2 − (f(xk,t+1)− f(x∗))],

where the last equality follows from E[∆k,t] = 0. Set γ := 8Lη2k/b. By Lemma 3.3, we have

E∥xk,t+1 − x∗∥2 ≤ ∥xk,t − x∗∥2 + γ[f(xk,t)− f(x∗) + f(xk)− f(x∗)]− 2ηkE[f(xk,t+1)− f(x∗)].

For t = 0, . . . ,m− 1, we have

E ∥xk,t+1 − x∗∥2 + 2ηkE[f(xk,t+1)− f(x∗)] ≤ ∥xk,t − x∗∥2 + γ[f(xk,t)− f(x∗) + f(xk)− f(x∗)].

Summing this inequality over all t = 0, . . . ,m− 1, the left hand side becomes

LHS =
m−1∑
t=0

E ∥xk,t+1 − x∗∥2 + 2ηk

m−1∑
t=0

E[f(xk,t+1)− f(x∗)],

and the right hand side becomes

RHS =
m−1∑
t=0

∥xk,t − x∗∥2 + γ
m−1∑
t=0

E[f(xk,t)− f(x∗)] + γmE[f(xk)− f(x∗)].

By the definition of xk+1 in Algorithm 3,

E[f(xk+1)] =
1

m

m∑
t=1

f(xk,t),

and so, bearing in mind that LHS ≤ RHS,

E∥xk,m − x∗∥2 + 2ηkmE[f(xk+1)− f(x∗)]

≤ E ∥xk,0 − x∗∥2 + γmE[f(xk)− f(x∗)] + γ
m−1∑
t=0

E[f(xk,t)− f(x∗)]

= E ∥xk,0 − x∗∥2 + γmE[f(xk)− f(x∗)] + γmE[f(xk+1)− f(x∗)] + γ[f(xk)− f(x∗)],

where the last step follows by replacing
∑m−1

t=0 with
∑m

t=0, which preserves inequality. Thus

2ηkmE[f(xk+1)− f(x∗)] ≤ 2ηkmE[f(xk+1)− f(x∗)] + E ∥xk,m − x∗∥2

≤ E ∥xk − x∗∥2 + γ(m+ 1)E[f(xk)− f(x∗)] + γmE[f(xk+1)− f(x∗)].
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Rearranging terms and applying strong convexity of f , we have(
2ηk −

8Lη2k
b

)
mE[f(xk+1)− f(x∗)] ≤ E ∥xk − x∗∥2 +

8(m+ 1)Lη2k
b

E[f(xk)− f(x∗)]

≤ 2

µ
[f(xk)− f(x∗)] +

8(m+ 1)Lη2k
b

E[f(xk)− f(x∗)].

Here we require that 2ηk > 8Lη2k/b and thus ηk < b/(4L), leading to

E[f(xk+1)− f(x∗)] ≤ ρk[f(xk)− f(x∗)]

with

ρk :=
b

mµηk(b− 4Lηk)
+

4(m+ 1)Lηk
m(b− 4Lηk)

.

Choose m, ηk so that ρk ≤ ρ < 1 and apply the last inequality recursively, we get

E[f(xk)− f(x∗)] ≤ ρk[f(x0)− f(x∗)]

as required. □

3.1. Linear convergence of stochastic Steffensen method. With Theorem 3.5, we may de-
duce the linear convergence of Algorithm 1 as a special case of Algorithm 3 with b = 1 (no
minibatching) and ηk = ηSS

k (SSM learning rate).

Lemma 3.6. Let f be as in Assumption 3.2. Then the stochastic Steffensen learning rate

ηSS
k =

1√
m

· ∥∇f(xk)∥2

∇f(xk)
T(∇f(xk +∇f(xk))−∇f(xk))

satisfies
1√
mL

≤ ηSS
k ≤ 1√

mµ
.

Proof. Since ∇f is L-Lipschitz, a lower bound is given by

ηSS
k ≥ 1√

m
· ∥∇f(xk)∥2

L∥∇f(xk)∥2
=

1√
mL

.

The required upper bound follows the µ-strong convexity of f . □

Corollary 3.7 (Linear convergence of SSM). Let f be as in Assumption 3.2 with x∗ := argminx f(x).
If m is chosen so that

ρ :=
(5 + 4/m)κ√

m− 4κ
< 1,

where κ = L/µ is the condition number, then Algorithm 1 converges linearly in expectation with

E[f(xk)− f(x∗)] ≤ ρk[f(x0)− f(x∗)].

Proof. By Theorem 3.5, we have

E[f(xk+1)− f(x∗)] ≤
[

1

mµηSS
k (1− 4LηSS

k )
+

4(m+ 1)LηSS
k

m(1− 4LηSS
k )

]
E[f(xk)− f(x∗)]

as long as ηSS
k < 1/(4L). Lemma 3.6 shows that this holds for m > 16κ2, which follows from ρ < 1.

The upper and lower bounds in Lemma 3.6 also give

ρSS
k =

1

mµηSS
k (1− 4LηSS

k )
+

4(m+ 1)LηSS
k

m(1− 4LηSS
k )

≤ 1

mµ 1√
mL

(1− 4L 1√
mµ

)
+

4(m+ 1)L 1√
mµ

m(1− 4L 1√
mµ

)
=

(5 + 4/m)κ√
m− 4κ

.
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Hence if m is chosen so that ρ < 1, we have

E[f(xk)− f(x∗)] ≤ ρk[f(x0)− f(x∗)]

as required. □

3.2. Linear convergence of stochastic Steffensen–Barzilai–Borwein. The linear conver-
gence of Algorithm 2 likewise follows from Theorem 3.5 with ηk = ηSSBB

k .

Lemma 3.8. Let f be as in Assumption 3.2. Then the stochastic Steffensen–Barzilai–Borwein
learning rate

ηSSBB
k =

1√
m

· βk∥∇f(xk)∥2

[∇f(xk + βk∇f(xk))−∇f(xk)]T∇f(xk)

satisfies
1√
mL

≤ ηSSBB
k ≤ 1√

mµ
.

Proof. Similar to that of Lemma 3.6. □

Corollary 3.9 (Linear convergence of SSBB). Let f be as in Assumption 3.2 with x∗ := argminx f(x).
If m and b are chosen so that

ρ :=
(b+ 4/m+ 4)κ√

mb− 4κ
< 1,

where κ = L/µ is the condition number, then Algorithm 2 converges linearly in expectation with

E[f(xk)− f(x∗)] ≤ ρk[f(x0)− f(x∗)].

Proof. Because SSBB is a special case of Algorithm 3, then we can easily get

E[f(xk+1)− f(x∗)] ≤
[

b

mµηSSBB
k (b− 4LηSSBB

k )
+

4(m+ 1)LηSSBB
k

m(b− 4LηSSBB
k )

]
E[f(xk)− f(x∗)]

when ηSSBB
k < b/(4L) and ηSSBB

k < 1/L. From Lemma 3.8, this is valid for m > max(κ2, 16κ2/b2),
which holds because ρ < 1. Also, from Lemma 3.8, we have

ρSSBB
k =

b

mµηSSBB
k (b− 4LηSSBB

k )
+

4(m+ 1)LηSSBB
k

m(b− 4LηSSBB
k )

≤ b

mµ 1√
mL

(b− 4L 1√
mµ

)
+

4(m+ 1)L 1√
mµ

m(b− 4L 1√
mµ

)
=

(b+ 4/m+ 4)κ√
mb− 4κ

.

Hence if m and b are chosen so that ρ < 1, we have

E[f(xk)− f(x∗)] ≤ ρk[f(x0)− f(x∗)]

as required. □

3.3. Optimal number of stochastic gradient evaluations. Observe that in the proof of Corol-
lary 3.7 and 3.9, we may replace 1/

√
m by 1/mp for any p ∈ (0, 1) without affecting the linear

convergence conclusion. More precisely, to reach ε-accuracy, the proofs of Corollaries 3.7 and 3.9
show that when we set b = O(1) and m = O

(
max(κ1/p, κ1/(1−p))

)
, then both SSM and SSBB

require evaluation of

O
(
(n+max(κ1/p, κ1/(1−p))) log(1/ε)

)
stochastic gradients. Clearly, this is minimized when p = 1/2. It follows that for p = 1/2, b = O(1),
and m = O(κ2), both SSM and SSBB require evaluation of

SSM/SSBB: O
(
(n+ κ2) log(1/ε)

)
,

stochastic gradients to reduce to ε-accuracy.
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3.4. Comparison with other methods. For a theoretical comparison with other methods on
equal footing, we will have to limit ourselves to the ones that do not leave the step size ηk unspecified.
This automatically excludes SGD and SVRG, which treat ηk as a hyperparameter to be tuned
separately. A standard choice is to choose ηk to be the Barzilai–Borwein step size, resulting in the
SVRG–BB method [44], which requires evaluation of

SVRG–BB: O
(
(n+ κ3) log(1/ε)

)
stochastic gradients to achieve ε-accuracy when κ is sufficiently large. On the other hand, the
SLBFGS method [21] requires evaluation of

SLBFGS: O
(
(n+ κ2+2(d+h)) log(1/ε)

)
,

stochastic gradients where h is ‘history size,’ the number of previous updates kept in LBFGS.
Evidently both SVRG–BB and SLBFGS are at least an order of magnitude slower than SSM and
SSBB as measured by the condition number κ. It is worth noting that for a d-variate objective, the
number of stochastic gradients required by SLBFGS depends on d. Our methods, like SVRG–BB,
are free of such dependence.

4. Proximal variant

As shown in [45], SGD and SVRG may be easily extended to cover nondifferentiable objective
functions of the form

(4.1) F (x) = f(x) +R(x) =
1

n

n∑
i=1

fi(x) +R(x),

where f satisfies Assumption 3.2 and R is a nondifferentiable function such as R(x) = ∥x∥1. In this
section we will see that SSBB may likewise be extended, and the linear convergence is preserved.

To solve (4.1), the proximal gradient method does

xk = proxηR
(
xk−1 − η∇f(x)

)
,

with a proximal map defined by

proxR(y) = argmin
x∈Rd

{
1

2
∥x− y∥2 +R(x)

}
.

As in [45], we replace the update rule xk,t+1 = xk,t − ηSSBB
k vk,t in Algorithm 2 by

(4.2) xk,t+1 = proxηSSBBk R

(
xk,t − ηSSBB

k vk,t
)
.

We will see that the resulting algorithm, which we will call prox-SSBB, remains linearly convergent
as long as the following assumption holds for some µ > 0.

Assumption 4.1. The function R is µ-strongly convex in the sense that

R(y) ≥ R(x) + g(x)T(y − x) +
µ

2
∥y − x∥2

for all x ∈ dom(R), g(x) ∈ ∂R(x), y ∈ Rd, and R(y) := +∞ whenever y /∈ dom(R). Here ∂R(x)
denotes subgradient at x.

It is a standard fact [38, p. 340] that if R is a closed convex function on Rd, then

(4.3) ∥proxR(x)− proxR(y)∥ ≤ ∥x− y∥
for all x, y ∈ dom(R). We will write µf for the convexity parameter of f in Assumption 3.2 and
µR for that of R in Assumption 4.1. This implies that the overall objective function F is strongly
convex with µ ≥ µf + µR.

To establish linear convergence for prox-SSBB, we need an analogue of Lemma 3.4, which is
provided by [45, Lemma 3], reproduced here for easy reference.
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Algorithm 4 Proximal Stochastic Steffensen–Barzilai–Borwein Method (prox-SSBB)

1: Input: initial state x0, inner loop size m, minibatch size b, data size n, Barzilai-Borwein step
size β0 = −1.

2: for k = 0, 1, . . . do
3: Compute full gradient ∇f(xk).
4: if k > 0 then
5: Set sk = xk − xk−1 and yk = ∇f(xk)−∇f(xk−1).
6: Compute Barzilai–Borwein step size

βk = −∥sk∥2

sT
kyk

.

7: end if
8: Compute the stochastic Steffensen–Barzilai–Borwein learning rate

ηSSBB
k =

1√
m

· βk∥∇f(xk)∥2

[∇f(xk + βk∇f(xk))−∇f(xk)]T∇f(xk)
.

9: Set xk,0 = xk.
10: for t = 0 to m− 1 do
11: Sample minibatch Sk,t ⊆ {1, . . . , n} uniformly with |Sk,t| = b.
12: Compute variance-reduced stochastic gradient

vk,t = ∇fSk,t
(xk,t)−∇fSk,t

(xk,t) +∇f(xk,t).

13: Update xk,t+1 = proxηSSBBk R

(
xk,t − ηSSBB

k vk,t
)
.

14: end for
15: Set xk+1 = xk,i for uniformly chosen i ∈ {0, . . . ,m− 1}.
16: end for

Lemma 4.2 (Xiao–Zhang). Let f be as in Assumption 3.2, R as in Assumptions 3.2, and F = f+R
with x∗ := argminx F (x). Let ∆k,t := vk,t −∇f(xk,t) and

gk,t :=
1

ηk
(xk,t − xk,t+1) =

1

ηk

(
xk,t − proxηkR(xk,t − ηkvk,t)

)
.

If 0 < ηk < 1/L, then

F (x∗) ≥ F (xk,t+1) + gT
k,t(x

∗ − xk,t) +
ηk
2
∥gk,t∥2

+
µf

2
∥xk,t − x∗∥2 + µR

2
∥xk,t+1 − x∗∥2 +∆T

k,t(xk,t+1 − x∗).

Corollary 4.3 (Linear convergence of prox-SSBB). Let F and x∗ be as in Lemma 4.2 and ηk =
ηSSBB
k . Then Corollary 3.9 holds verbatim with F in place of f .

Proof. To apply Lemma 4.2, we need ηk ≤ 1/L and this holds as we have m ≥ (L/µ)2 = κ2 among
the assumptions of Lemma 3.8. In the notations of Lemma 4.2, the update (4.2) is equivalent to
xk,t+1 = xk,t − ηkgk,t. So

∥xk,t+1 − x∗∥2 = ∥xk,t − x∗∥2 − 2ηkg
T
k,t(xk,t − x∗) + η2k∥gk,t∥2.
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By Lemma 4.2, we have

− gT
k,t(xk,t − x∗) +

ηk
2
∥gk,t∥2

≤ F (x∗)− F (xk,t+1)−
µf

2
∥xk,t − x∗∥2 − µR

2
∥xk,t+1 − x∗∥2 −∆T

k,t(xk,t+1 − x∗).

Therefore,

∥xk,t+1 − x∗∥2 ≤ ∥xk,t − x∗∥2 − 2ηk∆
T
k,t(xk,t+1 − x∗) + 2ηk[F (x∗)− F (xk,t+1)].

We bound the middle term on the right. Let x̄k,t+1 := proxηkR(xk,t − ηk∇f(xk,t)). Then

−2ηk∆
T
k,t(xk,t+1 − x∗) = −2ηk∆

T
k,t(xk,t+1 − x̄k,t+1)− 2ηk∆

T
k,t(x̄k,t+1 − x∗)

≤ 2ηk∥∆k,t∥∥xk,t+1 − x̄k,t+1∥ − 2ηk∆
T
k,t(x̄k,t+1 − x∗)

≤ 2ηk∥(xk,t − ηkvk,t)− (xk,t − ηk∇f(xk,t))∥ − 2ηk∆
T
k,t(x̄k,t+1 − x∗)

= 2η2k∥∆k,t∥2 − 2ηk∆
T
k,t(x̄k,t+1 − x∗),

where the first inequality is Cauchy–Schwarz and the second follows from Lemma 4.3. The remain-
ing steps are as in the proofs of Theorem 3.5 and Corollary 3.9 with F in place of f . □

5. Numerical Experiments

As mentioned earlier, for smooth objectives, our method of choice is Algorithm 2, the stochastic
Steffensen–Barzilai–Borwein method (SSBB) with minibatching. We will compare it with several
benchmarking algorithms: stochastic gradient descent (SGD), stochastic variance reduced gradient
(SVRG) [17], stochastic LBFGS [21], and the first two with Barzilai–Borwein step size (SGD–BB
and SVRG–BB) [44]. For nonsmooth objectives, we compare Algorithm 4, the proximal stochastic
Steffensen–Barzilai–Borwein method (prox-SSBB), with proximal variants of the previously men-
tioned algorithms: prox-SGD, prox-SVRG [45], prox-SLBFGS, and prox-SVRG–BB.

We test these algorithms on popular empirical risk minimization problems — ridge regression,
logistic regression, support vector machines with squared hinge loss, l1-regularized logistic regression
— on standard datasets in LIBSVM.1 The parameters involved are summarized in Table 1. Our
experiments show that SSBB and prox-SSBB compare favorably with these benchmark algorithms.
All our codes are available at https://github.com/Minda-Zhao/stochastic-steffensen.

Data set Loss function n d m b λ2 λ1

synthetic squared loss 10000 100 4n 4 10−5 0
w6a logistic loss 17188 300 2n 16 10−4 0
a6a squared hinge loss 11220 123 2n 16 10−3 0
w6a l1-regularized logistic loss 17188 300 2n 32 10−4 10−4

Table 1. Sample size n, dimension d, batch size b, l2-regularization parameter λ2,
l1-regularization parameter λ1.

For a fair comparison, all algorithms are minibatched. We set a batch size of b = 4 for ridge
regression, b = 16 for logistic loss and squared hinge loss, b = 32 for l1-regularized logistic loss.
The inner loop size is set at m = 2n or 4n. The learning rates in SGD, SVRG, and SLBFGS are
hyperparameters that require separate tuning; we pick the best possible values with a grid search.
SLBFGS requires more hyperparameters: As suggested by the authors of [21], we set the Hessian
update interval to be L = 10, Hessian batch size to be bH = Lb, and memory length to be M = 10.

1https://github.com/cjlin1/libsvm

https://github.com/Minda-Zhao/stochastic-steffensen
https://github.com/cjlin1/libsvm
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All experiments are initialized with x0 = 0. We repeat every experiment ten times and report
average results.

In all figures, we present the convergence trajectory of each method. The vertical axis represents
in log scale the value f(xk) − f(x∗) where we estimate f(x∗) by running full gradient descent or
Newton method multiple times. The horizontal axis represents computational cost as measured
by either number of gradient computations divided by n or the actual running time — we present
both. In all experiments, we note that the convergence trajectories of SSBB and prox-SSBB agree
with the linear convergence established in Sections 3 and 4.

Figure 1. Ridge regression on synthetic dataset regularized with λ2 = 10−5. Left:
number of passes through data. Right: running time.

5.1. Ridge Regression. Figure 1 shows a simple ridge regression on a synthetic dataset generated
in a controlled way to give us the true global solution. We generate x∗ ∈ Rd with x∗i ∼ N (0, 1)
and A ∈ Rn×d with row vectors a1, . . . , an ∈ Rd and entries aij ∼ N (0, 1). We form y = Ax∗ + b
with b an n-dimensional standard normal variate. We then attempt to recover x∗ from A and y by
optimizing, with λ2 = 10−5,

min
x∈Rd

1

n

n∑
i=1

(yi − aT
i x)

2 +
λ2

2
∥x∥22.

5.2. Logistic Regression. Figure 2 shows the results of a binary classification problem on the w6a
dataset from LIBSVM using an l2-regularized binary logistic regression. The associated optimization
problem with regularization λ2 = 10−4 and labels yi ∈ {−1,+1} is

min
x∈Rd

1

n

n∑
i=1

log
(
1 + e−yi(a

T
i x)

)
+

λ2

2
∥x∥22.

5.3. Squared Hinge Loss. Figure 3 shows the results of a support vector machine classifier with
l2-regularized squared hinge loss and λ2 = 10−3 on the a6a dataset from LIBSVM. The optimization
problem in this case is

min
x∈Rd

1

n

n∑
i=1

[(1− yia
T
i x)+]

2 +
λ2

2
∥x∥22.

The results are clear: SSBB solves the problems to high levels of accuracy and is the fastest, whether
measured by running time or by number of passes through data, in all experiments. When measured
by running times, SLBFGS performs relatively poorly because of the additional computational cost
of its matrix-vector products that other methods avoid.
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Figure 2. l2-regularized logistic regression on w6a dataset from LIBSVM regularized
with λ2 = 10−4. Left: number of passes through data. Right: running time.

Figure 3. l2-regularized squared hinge loss on a6a from LIBSVM regularized with
λ2 = 10−3. Left: number of passes through data. Right: running time.

5.4. Proximal Variant. Figure 4 shows the results of a binary classification problem on the
w6a dataset from LIBSVM using a binary logistic regression with both l2- and l1-regularizations, a
problem considered in [45]:

min
x∈Rd

1

n

n∑
i=1

log
(
1 + e−yi(a

T
i x)

)
+

λ2

2
∥x∥22 + λ1∥x∥1.

We set regularization parameters to be λ2 = 10−4, λ1 = 10−4.
The results obtained are consistent with those in Sections 5.1–5.3, demonstrating that prox-SSBB

solves the problem to high levels of accuracy and is the fastest among all algorithms compared,
whether measured by running time or by the number of passes through data.

6. Conclusion

The stochastic Steffensen methods introduced in this article are (i) simple to implement, (ii)
efficient to compute, (iii) easy to incorporate, (iv) tailored for massive data and high dimensions,
have (v) minimal memory requirements and (vi) a negligible number of hyperparameters to tune.
The last point is in contrast to more sophisticated methods involving moments [8, 20] or momentum
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Figure 4. Logistic regression with l2 and l1 regularizations on w6a dataset from
LIBSVM regularized with λ2 = 10−4 and λ1 = 10−4. Left: number of passes through
data. Right: running time.

[24, 33, 35, 36], which require heavy tuning of many more hyperparameters. SSM and SSBB require
just two — minibatch size b and inner loop size m.

The point (iii) also deserves special mention. Since SSM and SSBB are ultimately encapsulated
in the respective learning rates ηSS

k and ηSSBB
k , they are versatile enough to be incorporated into

other methods such as those in [8, 20, 24, 33, 35, 36], assuming that we are willing to pay the price
in hyperparameters tuning. We hope to explore this in future work.
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