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Hypermatrices

Totally ordered finite sets: [n] = {1 < 2 < · · · < n}, n ∈ N.

Vector or n-tuple
f : [n]→ R.

If f (i) = ai , then f is represented by a = [a1, . . . , an]> ∈ Rn.

Matrix
f : [m]× [n]→ R.

If f (i , j) = aij , then f is represented by A = [aij ]
m,n
i ,j=1 ∈ Rm×n.

Hypermatrix (order 3)

f : [l ]× [m]× [n]→ R.

If f (i , j , k) = aijk , then f is represented by A = JaijkKl ,m,ni ,j ,k=1 ∈ Rl×m×n.

Normally RX = {f : X → R}. Ought to be R[n],R[m]×[n],R[l ]×[m]×[n].
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Hypermatrices and tensors

Up to choice of bases

a ∈ Rn can represent a vector in V (contravariant) or a linear
functional in V ∗ (covariant).

A ∈ Rm×n can represent a bilinear form V ∗ ×W ∗ → R
(contravariant), a bilinear form V ×W → R (covariant), or a linear
operator V →W (mixed).

A ∈ Rl×m×n can represent trilinear form U × V ×W → R
(covariant), bilinear operators V ×W → U (mixed), etc.

A hypermatrix is the same as a tensor if

1 we give it coordinates (represent with respect to some bases);

2 we ignore covariance and contravariance.

L.-H. Lim (Berkeley) Tensor approximations April 23, 2008 3 / 37



Basic operation on a hypermatrix

A matrix can be multiplied on the left and right: A ∈ Rm×n,
X ∈ Rp×m, Y ∈ Rq×n,

(X ,Y ) · A = XAY> = [cαβ] ∈ Rp×q

where
cαβ =

∑m,n

i ,j=1
xαiyβjaij .

A hypermatrix can be multiplied on three sides: A = JaijkK ∈ Rl×m×n,
X ∈ Rp×l , Y ∈ Rq×m, Z ∈ Rr×n,

(X ,Y ,Z ) · A = JcαβγK ∈ Rp×q×r

where

cαβγ =
∑l ,m,n

i ,j ,k=1
xαiyβjzγkaijk .
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Basic operation on a hypermatrix

Covariant version:

A · (X>,Y>,Z>) := (X ,Y ,Z ) · A.

Gives convenient notations for multilinear functionals and multilinear
operators. For x ∈ Rl , y ∈ Rm, z ∈ Rn,

A(x, y, z) := A · (x, y, z) =
∑l ,m,n

i ,j ,k=1
aijkxiyjzk ,

A(I , y, z) := A · (I , y, z) =
∑m,n

j ,k=1
aijkyjzk .
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Symmetric hypermatrices

Cubical hypermatrix JaijkK ∈ Rn×n×n is symmetric if

aijk = aikj = ajik = ajki = akij = akji .

Invariant under all permutations σ ∈ Sk on indices.

Sk(Rn) denotes set of all order-k symmetric hypermatrices.

Example

Higher order derivatives of multivariate functions.

Example

Moments of a random vector x = (X1, . . . ,Xn):

mk(x) =
[
E(xi1xi2 · · · xik )

]n
i1,...,ik=1

=

[∫
· · ·
∫

xi1xi2 · · · xik dµ(xi1) · · · dµ(xik )

]n

i1,...,ik=1

.
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Symmetric hypermatrices

Example

Cumulants of a random vector x = (X1, . . . ,Xn):

κk(x) =

 ∑
A1t···tAp={i1,...,ik}

(−1)p−1(p − 1)!E

( ∏
i∈A1

xi

)
· · ·E

( ∏
i∈Ap

xi

)n

i1,...,ik=1

.

For n = 1, κk(x) for k = 1, 2, 3, 4 are the expectation, variance, skewness,
and kurtosis.

Important in Independent Component Analysis (ICA).
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Inner products and norms

`2([n]): a,b ∈ Rn, 〈a,b〉 = a>b =
∑n

i=1 aibi .

`2([m]× [n]): A,B ∈ Rm×n, 〈A,B〉 = tr(A>B) =
∑m,n

i ,j=1 aijbij .

`2([l ]× [m]× [n]): A,B ∈ Rl×m×n, 〈A,B〉 =
∑l ,m,n

i ,j ,k=1 aijkbijk .

In general,

`2([m]× [n]) = `2([m])⊗ `2([n]),

`2([l ]× [m]× [n]) = `2([l ])⊗ `2([m])⊗ `2([n]).

Frobenius norm

‖A‖2F =
∑l ,m,n

i ,j ,k=1
a2
ijk .
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DARPA mathematical challenge eight

One of the twenty three mathematical challenges announced at DARPA
Tech 2007.

Problem

Beyond convex optimization: can linear algebra be replaced by algebraic
geometry in a systematic way?

Algebraic geometry in a slogan: polynomials are to algebraic
geometry what matrices are to linear algebra.

Polynomial f ∈ R[x1, . . . , xn] of degree d can be expressed as

f (x) = a0 + a>1 x + x>A2x +A3(x, x, x) + · · ·+Ad(x, . . . , x).

a0 ∈ R, a1 ∈ Rn,A2 ∈ Rn×n,A3 ∈ Rn×n×n, . . . ,Ad ∈ Rn×···×n.

Numerical linear algebra: d = 2.

Numerical multilinear algebra: d > 2.
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Multilinear spectral theory

Let A ∈ Rn×n×n (easier if A symmetric).

1 How should one define its eigenvalues and eigenvectors?

2 What is a decomposition that generalizes the eigenvalue
decomposition of a matrix?

Let A ∈ Rl×m×n

1 How should one define its singular values and singular vectors?

2 What is a decomposition that generalizes the singular value
decomposition of a matrix?

Somewhat surprising: (1) and (2) have different answers.
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Multilinear spectral theory

May define eigenvalues/vectors of A ∈ Sk(Rn) as critical
values/points of the multilinear Raleigh quotient

A(x, . . . , x)/‖x‖kk .

Lagrangian
L(x, λ) := A(x, . . . , x)− λ(‖x‖kk − 1).

At a critical point
A(In, x, . . . , x) = λxk−1.

Ditto for singular values/vectors of A ∈ Rd1×···×dk .

Perron-Frobenius theorem for irreducible non-negative hypermatrices,
spectral hypergraph theory:

I L, “Singular values and eigenvalues of tensors: a variational approach,”
Proc. IEEE Int. Workshop on Computational Advances in Multi-Sensor
Adaptive Processing, 1 (2005).
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Tensor ranks (Hitchcock, 1927)

Matrix rank. A ∈ Rm×n.

rank(A) = dim(spanR{A•1, . . . ,A•n}) (column rank)

= dim(spanR{A1•, . . . ,Am•}) (row rank)

= min{r | A =
∑r

i=1uiv
T
i } (outer product rank).

Multilinear rank. A ∈ Rl×m×n. rank�(A) = (r1(A), r2(A), r3(A)),

r1(A) = dim(spanR{A1••, . . . ,Al••})
r2(A) = dim(spanR{A•1•, . . . ,A•m•})
r3(A) = dim(spanR{A••1, . . . ,A••n})

Outer product rank. A ∈ Rl×m×n.

rank⊗(A) = min{r | A =
∑r

i=1ui ⊗ vi ⊗wi}

where u⊗ v ⊗w : = JuivjwkKl ,m,ni ,j ,k=1.
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Eigenvalue and singular value decompositions

Rank revealing decompositions associated with outer product rank.

Symmetric eigenvalue decomposition of A ∈ S3(Rn),

A =
∑r

i=1
λivi ⊗ vi ⊗ vi (1)

where rankS(A) = min
{

r
∣∣ A =

∑r
i=1 λivi ⊗ vi ⊗ vi

}
= r .

I P. Comon, G. Golub, L, B. Mourrain, “Symmetric tensor and
symmetric tensor rank,” SIAM J. Matrix Anal. Appl.

Singular value decomposition of A ∈ Rl×m×n,

A =
∑r

i=1
σiui ⊗ vi ⊗wi (2)

where rank⊗(A) = r .

I V. de Silva, L, “Tensor rank and the ill-posedness of the best low-rank
approximation problem,” SIAM J. Matrix Anal. Appl.

(1) used in applications of ICA to signal processing; (2) used in
applications of the parafac model to analytical chemistry.
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Eigenvalue and singular value decompositions

Rank revealing decompositions associated with the multilinear rank.

Symmetric eigenvalue decomposition of A ∈ S3(Rn),

A = (U,U,U) · C (3)

where rank�(A) = (r , r , r), U ∈ Rn×r has orthonormal columns and
C ∈ S3(Rr ).

Singular value decomposition of A ∈ Rl×m×n,

A = (U,V ,W ) · C (4)

where rank�(A) = (r1, r2, r3), U ∈ Rl×r1 , V ∈ Rm×r2 , W ∈ Rn×r3

have orthonormal columns and C ∈ Rr1×r2×r3 .

I L. De Lathauwer, B. De Moor, J. Vandewalle “A multilinear singular
value decomposition,” SIAM J. Matrix Anal. Appl., 21 (2000), no. 4.

I B. Savas, L, “Best multilinear rank approximation with quasi-Newton
method on Grassmannians,” preprint.
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Segre variety and its secant varieties

The set of all rank-1 hypermatrices is known as the Segre variety in
algebraic geometry.

It is a closed set (in both the Euclidean and Zariski sense) as it can
be described algebraically:

Seg(Rl ,Rm,Rn) = {A ∈ Rl×m×n | A = u⊗ v ⊗w} =

{A ∈ Rl×m×n | ai1i2i3aj1j2j3 = ak1k2k3al1l2l3 , {iα, jα} = {kα, lα}}

Hypermatrices that have rank > 1 are elements on the higher secant
varieties of S = Seg(Rl ,Rm,Rn).

E.g. a hypermatrix has rank 2 if it sits on a secant line through two
points in S but not on S , rank 3 if it sits on a secant plane through
three points in S but not on any secant lines, etc.
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Decomposition approach to data analysis

More generally, F = C, R, R+,Rmax (max-plus algebra), R[x1, . . . , xn]
(polynomial rings), etc.

Dictionary, D ⊂ FN , not contained in any hyperplane.

Let D2 = union of bisecants to D , D3 = union of trisecants to D ,
. . . , Dr = union of r -secants to D .

Define D-rank of A ∈ FN to be min{r | A ∈ Dr}.
If ϕ : FN × FN → R is some measure of ‘nearness’ between pairs of
points (e.g. norms, Bregman divergences, etc), we want to find a best
low-rank approximation to A:

argmin{ϕ(A,B) | D-rank(B) ≤ r}.
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Decomposition approach to data analysis

In the presence of noise, approximation instead of decomposition

A ≈ α1 · B1 + · · ·+ αr · Br ∈ Dr .

Bi ∈ D reveal features of the dataset A.

Note that another way to say ‘best low-rank’ is ‘sparsest possible’.

Examples

1 candecomp/parafac: D = {A | rank⊗(A) ≤ 1},
ϕ(A,B) = ‖A − B‖F .

2 De Lathauwer model: D = {A | rank�(A) ≤ (r1, r2, r3)},
ϕ(A,B) = ‖A − B‖F .
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Fundamental problem of multiway data analysis

A hypermatrix, symmetric hypermatrix, or nonnegative hypermatrix.

Solve
argminrank(B)≤r‖A − B‖.

rank may be outer product rank, multilinear rank, symmetric rank (for
symmetric hypermatrix), or nonnegative rank (nonnegative
hypermatrix).

Example

Given A ∈ Rd1×d2×d3 , find ui , vi ,wi , i = 1, . . . , r , that minimizes

‖A − u1 ⊗ v1 ⊗w1 − u2 ⊗ v2 ⊗w2 − · · · − ur ⊗ vr ⊗ zr‖

or C ∈ Rr1×r2×r3 and U ∈ Rd1×r1 ,V ∈ Rd2×r2 ,W ∈ Rd3×r3 , that minimizes

‖A − (U,V ,W ) · C‖.
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Fundamental problem of multiway data analysis

Example

Given A ∈ Sk(Cn), find ui , i = 1, . . . , r , that minimizes

‖A − u⊗k
1 − u⊗k

2 − · · · − u⊗k
r ‖

or C ∈ Rr1×r2×r3 and U ∈ Rn×ri that minimizes

‖A − (U,U,U) · C‖.
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Separation of variables

Approximation by sum or integral of separable functions

Continuous

f (x , y , z) =

∫
θ(x , t)ϕ(y , t)ψ(z , t) dt.

Semi-discrete

f (x , y , z) =
∑r

p=1
θp(x)ϕp(y)ψp(z)

θp(x) = θ(x , tp), ϕp(y) = ϕ(y , tp), ψp(z) = ψ(z , tp), r possibly ∞.

Discrete
aijk =

∑r

p=1
uipvjpwkp

aijk = f (xi , yj , zk), uip = θp(xi ), vjp = ϕp(yj), wkp = ψp(zk).
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Separation of variables

Useful for data analysis, machine learning, pattern recognition.

Gaussians are separable

exp(x2 + y2 + z2) = exp(x2) exp(y2) exp(z2).

More generally for symmetric positive-definite A ∈ Rn×n,

exp(x>Ax) = exp(z>Λz) =
∏n

i=1
exp(λiz

2
i ).

Gaussian mixture models

f (x) =
∑m

j=1
αj exp[(x− µj)

>Aj(x− µj)],

f is a sum of separable functions.
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Integral kernels

Approximation by sum or integral kernels

Continuous

f (x , y , z) =

∫∫∫
K (x ′, y ′, z ′)θ(x , x ′)ϕ(y , y ′)ψ(z , z ′) dx ′dy ′dz ′.

Semi-discrete

f (x , y , z) =
∑p,q,r

i ′,j ′,k ′=1
ci ′j ′k ′θi ′(x)ϕj ′(y)ψk ′(z)

ci ′j ′k ′ = K (x ′i ′ , y
′
j ′ , z
′
k ′), θi ′(x) = θ(x , x ′i ′), ϕj ′(y) = ϕ(y , y ′j ′),

ψk ′(z) = ψ(z , z ′k ′), p, q, r possibly ∞.

Discrete
aijk =

∑p,q,r

i ′,j ′,k ′=1
ci ′j ′k ′uii ′vjj ′wkk ′

aijk = f (xi , yj , zk), uii ′ = θi ′(xi ), vjj ′ = ϕj ′(yj), wkk ′ = ψk ′(zk).
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Lemma (de Silva, L)

Let r ≥ 2 and k ≥ 3. Given the norm-topology on Rd1×···×dk , the following
statements are equivalent:

1 The set Sr (d1, . . . , dk) := {A | rank⊗(A) ≤ r} is not closed.

2 There exists a sequence An, rank⊗(An) ≤ r , n ∈ N, converging to B
with rank⊗(B) > r .

3 There exists B, rank⊗(B) > r , that may be approximated arbitrarily
closely by hypermatrices of strictly lower rank, i.e.

inf{‖B − A‖ | rank⊗(A) ≤ r} = 0.

4 There exists C, rank⊗(C) > r , that does not have a best rank-r
approximation, i.e.

inf{‖C − A‖ | rank⊗(A) ≤ r}

is not attained (by any A with rank⊗(A) ≤ r).
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Non-existence of best low-rank approximation

For xi , yi ∈ Rdi , i = 1, 2, 3,

A := x1 ⊗ x2 ⊗ y3 + x1 ⊗ y2 ⊗ x3 + y1 ⊗ x2 ⊗ x3.

For n ∈ N,

An := n

(
x1 +

1

n
y1

)
⊗
(

x2 +
1

n
y2

)
⊗
(

x3 +
1

n
y3

)
− nx1 ⊗ x2 ⊗ x3.

Lemma (de Silva, L)

rank⊗(A) = 3 iff xi , yi linearly independent, i = 1, 2, 3. Furthermore, it is
clear that rank⊗(An) ≤ 2 and

limn→∞An = A.

Original result, in a different form, due to:
I D. Bini, G. Lotti, F. Romani, “Approximate solutions for the bilinear

form computational problem,” SIAM J. Comput., 9 (1980), no. 4.
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Outer product approximations are ill-behaved

Such phenomenon can and will happen for all orders > 2, all norms,
and many ranks:

Theorem (de Silva, L)

Let k ≥ 3 and d1, . . . , dk ≥ 2. For any s such that

2 ≤ s ≤ min{d1, . . . , dk},

there exists A ∈ Rd1×···×dk with rank⊗(A) = s such that A has no best
rank-r approximation for some r < s. The result is independent of the
choice of norms.

For matrices, the quantity min{d1, d2} will be the maximal possible
rank in Rd1×d2 . In general, a hypermatrix in Rd1×···×dk can have rank
exceeding min{d1, . . . , dk}.
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Outer product approximations are ill-behaved

Tensor rank can jump over an arbitrarily large gap:

Theorem (de Silva, L)

Let k ≥ 3. Given any s ∈ N, there exists a sequence of order-k
hypermatrix An such that rank⊗(An) ≤ r and limn→∞An = A with
rank⊗(A) = r + s.

Hypermatrices that fail to have best low-rank approximations are not
rare. May occur with non-zero probability; sometimes with certainty.

Theorem (de Silva, L)

Let µ be a measure that is positive or infinite on Euclidean open sets in
Rl×m×n. There exists some r ∈ N such that

µ({A | A does not have a best rank-r approximation}) > 0.

In R2×2×2, all rank-3 hypermatrices fail to have best rank-2 approximation.
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Message

That the best rank-r approximation problem for hypermatrices has no
solution poses serious difficulties.

It is incorrect to think that if we just want an ‘approximate solution’,
then this doesn’t matter.

If there is no solution in the first place, then what is it that are we
trying to approximate? i.e. what is the ‘approximate solution’ an
approximate of?
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Weak solutions

For a hypermatrix A that has no best rank-r approximation, we will
call a C ∈ {A | rank⊗(A) ≤ r} attaining

inf{‖C − A‖ | rank⊗(A) ≤ r}

a weak solution. In particular, we must have rank⊗(C) > r .

It is perhaps surprising that one may completely parameterize all limit
points of order-3 rank-2 hypermatrices.
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Weak solutions

Theorem (de Silva, L)

Let d1, d2, d3 ≥ 2. Let An ∈ Rd1×d2×d3 be a sequence of hypermatrices
with rank⊗(An) ≤ 2 and

limn→∞An = A,

where the limit is taken in any norm topology. If the limiting hypermatrix
A has rank higher than 2, then rank⊗(A) must be exactly 3 and there
exist pairs of linearly independent vectors x1, y1 ∈ Rd1 , x2, y2 ∈ Rd2 ,
x3, y3 ∈ Rd3 such that

A = x1 ⊗ x2 ⊗ y3 + x1 ⊗ y2 ⊗ x3 + y1 ⊗ x2 ⊗ x3.

In particular, a sequence of order-3 rank-2 hypermatrices cannot
‘jump rank’ by more than 1.
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Hyperdeterminant

Work in C(d1+1)×···×(dk+1) for the time being (di ≥ 1). Consider

M := {A ∈ C(d1+1)×···×(dk+1) | ∇A(x1, . . . , xk) = 0

for non-zero x1, . . . , xk}.

Theorem (Gelfand, Kapranov, Zelevinsky)

M is a hypersurface iff for all j = 1, . . . , k,

dj ≤
∑

i 6=j
di .

The hyperdeterminant Det(A) is the equation of the hypersurface,
i.e. a multivariate polynomial in the entries of A such that

M = {A ∈ C(d1+1)×···×(dk+1) | Det(A) = 0}.

Det(A) may be chosen to have integer coefficients.

For Cm×n, condition becomes m ≤ n and n ≤ m, i.e. square matrices.
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2× 2× 2 hyperdeterminant
Hyperdeterminant of A = JaijkK ∈ R2×2×2 [Cayley; 1845] is

Det(A) =
1

4

[
det

([
a000 a010

a001 a011

]
+

[
a100 a110

a101 a111

])
− det

([
a000 a010

a001 a011

]
−
[
a100 a110

a101 a111

])]2

− 4 det

[
a000 a010

a001 a011

]
det

[
a100 a110

a101 a111

]
.

A result that parallels the matrix case is the following: the system of
bilinear equations

a000x0y0 + a010x0y1 + a100x1y0 + a110x1y1 = 0,

a001x0y0 + a011x0y1 + a101x1y0 + a111x1y1 = 0,

a000x0z0 + a001x0z1 + a100x1z0 + a101x1z1 = 0,

a010x0z0 + a011x0z1 + a110x1z0 + a111x1z1 = 0,

a000y0z0 + a001y0z1 + a010y1z0 + a011y1z1 = 0,

a100y0z0 + a101y0z1 + a110y1z0 + a111y1z1 = 0,

has a non-trivial solution iff Det(A) = 0.
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2× 2× 3 hyperdeterminant
Hyperdeterminant of A = JaijkK ∈ R2×2×3 is

Det(A) = det

a000 a001 a002

a100 a101 a102

a010 a011 a012

 det

a100 a101 a102

a010 a011 a012

a110 a111 a112


− det

a000 a001 a002

a100 a101 a102

a110 a111 a112

 det

a000 a001 a002

a010 a011 a012

a110 a111 a112


Again, the following is true:

a000x0y0 + a010x0y1 + a100x1y0 + a110x1y1 = 0,

a001x0y0 + a011x0y1 + a101x1y0 + a111x1y1 = 0,

a002x0y0 + a012x0y1 + a102x1y0 + a112x1y1 = 0,

a000x0z0 + a001x0z1 + a002x0z2 + a100x1z0 + a101x1z1 + a102x1z2 = 0,

a010x0z0 + a011x0z1 + a012x0z2 + a110x1z0 + a111x1z1 + a112x1z2 = 0,

a000y0z0 + a001y0z1 + a002y0z2 + a010y1z0 + a011y1z1 + a012y1z2 = 0,

a100y0z0 + a101y0z1 + a102y0z2 + a110y1z0 + a111y1z1 + a112y1z2 = 0,

has a non-trivial solution iff Det(A) = 0.
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Cayley hyperdeterminant and tensor rank

The Cayley hyperdeterminant Det2,2,2 may be extended to any
A ∈ Rd1×d2×d3 with rank⊗(A) ≤ 2.

Theorem (de Silva, L)

Let d1, d2, d3 ≥ 2. A ∈ Rd1×d2×d3 is a weak solution, i.e.

A = x1 ⊗ x2 ⊗ y3 + x1 ⊗ y2 ⊗ x3 + y1 ⊗ x2 ⊗ x3,

iff Det2,2,2(A) = 0.

Theorem (Kruskal)

Let A ∈ R2×2×2. Then rank⊗(A) = 2 if Det2,2,2(A) > 0 and
rank⊗(A) = 3 if Det2,2,2(A) < 0.

See de Silva-L for a proof via the Cayley hyperdeterminant.
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Symmetric hypermatrices for blind source separation

Problem

Given y = Mx + n. Unknown: source vector x ∈ Cn, mixing matrix
M ∈ Cm×n, noise n ∈ Cm. Known: observation vector y ∈ Cm. Goal:
recover x from y.

Assumptions:

1 components of x statistically independent,
2 M full column-rank,
3 n Gaussian.

Method: use cumulants

κk(y) = (M,M, . . . ,M) · κk(x) + κk(n).

By assumptions, κk(n) = 0 and κk(x) is diagonal. So need to
diagonalize the symmetric hypermatrix κk(y).
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Diagonalizing a symmetric hypermatrix

A best symmetric rank approximation may not exist either:

Example (Comon, Golub, L, Mourrain)

Let x, y ∈ Rn be linearly independent. Define for n ∈ N,

An := n

(
x +

1

n
y

)⊗k

− nx⊗k

and

A := x⊗ y ⊗ · · · ⊗ y + y ⊗ x⊗ · · · ⊗ y + · · ·+ y ⊗ y ⊗ · · · ⊗ x.

Then rankS(An) ≤ 2, rankS(A) = k, and

limn→∞An = A.
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Nonnegative hypermatrices and nonnegative tensor rank

Let 0 ≤ A ∈ Rd1×···×dk . The nonnegative rank of A is

rank+(A) := min
{

r
∣∣ ∑r

i=1
ui ⊗ vi ⊗ · · · ⊗ zi , ui , . . . , zi ≥ 0

}
Clearly nonnegative decomposition exists for any A ≥ 0.

Arises in the Näıve Bayes model.

Theorem (L)

Let A = Jaj1···jk K∈ Rd1×···×dk be nonnegative. Then

inf
{∥∥A−∑r

i=1
ui ⊗ vi ⊗ · · · ⊗ zi

∥∥ ∣∣ ui , . . . , zi ≥ 0
}

is always attained.
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Advertisement

Geometry and representation theory of tensors for computer
science, statistics, and other areas

1 MSRI Summer Graduate Workshop

I July 7 to July 18, 2008
I Organized by J.M. Landsberg, L.-H. Lim, J. Morton
I Mathematical Sciences Research Institute, Berkeley, CA
I http://msri.org/calendar/sgw/WorkshopInfo/451/show sgw

2 AIM Workshop

I July 21 to July 25, 2008
I Organized by J.M. Landsberg, L.-H. Lim, J. Morton, J. Weyman
I American Institute of Mathematics, Palo Alto, CA
I http://aimath.org/ARCC/workshops/repnsoftensors.html
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