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Matrix eigenvalues and eigenvectors

@ One of the most important ideas ever invented.

> R. Coifman et. al.: “Eigenvector magic: eigenvectors as an extension

of Newtonian calculus.”
@ Normal/Hermitian A

» Invariant subspace: Ax = \x.
» Rayleigh quotient: x" Ax/x " x.
» Lagrange multipliers: x" Ax — A(||x[|? — 1).

> Best rank-1 approximation: min—||A — Axx"||.

@ Nonnormal A

Pseudospectrum: a.(A) = {A € C | [[(A— )7 > et}
Numerical range: W(A) = {x*Ax € C | ||x|| = 1}.

Irreducible representations of C*(A) with natural Borel structure.
Primitive ideals of C*(A) with hull-kernel topology.
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@ How can one define these for tensors?
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DARPA mathematical challenge eight

One of the twenty three mathematical challenges announced at DARPA
Tech 2007.

Problem

Beyond convex optimization: can linear algebra be replaced by algebraic
geometry in a systematic way?

o Algebraic geometry in a slogan: polynomials are to algebraic
geometry what matrices are to linear algebra.

@ Polynomial f € R[xy, ..., x,] of degree d can be expressed as
f(x) = ap + a; x +x' Aox + Az(x,%,%) + - - - + Ag(x, ..., X).

a0 € R,a; € R", Ay € R™N A3 € R*nxn A, € R0,
@ Numerical linear algebra: d = 2.

@ Numerical multilinear algebra: d > 2.
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Hypermatrices

Totally ordered finite sets: [n] ={1<2<---<n}, neN.

@ Vector or n-tuple
f:[n]— R

If (i) = a;, then f is represented by a = [ay,...,a,] € R".

@ Matrix
f:[m]x[n] —R.

If £(i,j) = ajj, then f is represented by A = [au],,J ; € R™XN,
@ Hypermatrix (order 3)

fo[l] x [m] x[n] —R.
If £(i,j, k) = ajjk, then f is represented by A = [a;jk]]fdmk" | € Rixmxn,

Normally RX = {f : X — R}. Ought to be RI"l RImIx[nl RUIX[mIx[n]
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Hypermatrices and tensors

Up to choice of bases
@ a € R" can represent a vector in V' (contravariant) or a linear
functional in V* (covariant).
@ A € R™*" can represent a bilinear form V x W — R (contravariant),
a bilinear form V* x W* — R (covariant), or a linear operator
V — W (mixed).
o A e R*™Xn can represent trilinear form U x V x W — R
(contravariant), bilinear operators V x W — U (mixed), etc.
A hypermatrix is the same as a tensor if

@ we give it coordinates (represent with respect to some bases);

@ we ignore covariance and contravariance.
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Basic operation on a hypermatrix

@ A matrix can be multiplied on the left and right: A € R™*",
X e RPXM Y ¢ R9*7,

(X,Y) A= XAYT = [c,5] € RP*Y

where .
CoB = T XaiV3idi-
af E :ile aiYBjaij

@ A hypermatrix can be multiplied on three sides: A = [aji] € R/xmxn
X e RPXI Y e RIXM 7 ¢ RT¥",

(X,Y,Z2)- A= [[cagw]] € RP*axr
where

I,m,n
CaBy = E XeiVBiZyk Aiik-
By Pk=1 aiYBjZykaijk
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Numerical range of a tensor
@ Covariant version:
A- (X", YT, ZT)=(X,Y,2)- A

@ Gives convenient notations for multilinear functionals and multilinear
operators. For x e R,y e R™,z € R",

I,m,n

A(x,y,z) == A-(x,y,2) = Z,J g JikXiYjZk;
m,n

A(lv y, Z) =A- (lv y, Z) = ZJ k=1 QijkYjZk-

@ Numerical range of square matrix A € C™",
W(A) = {x"Ax € C|[|x]2 = 1} = {A(x,x*) € C | [[x]2 = 1}.
@ Plausible generalization to cubical hypermatrix A € C™< %",

{A(x,x*,...,x) € C| ||x||[x =1} odd order,

W(A) =
4) {{A(x,x*, ., x)eC||x|lk =1} even order.
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Symmetric hypermatrices
o Cubical hypermatrix [aji] € R™ ™" is symmetric if
Ajjk = Ajkj = djik = djki = Akij = Aji-

@ Invariant under all permutations o € & on indices.

o SK(R") denotes set of all order-k symmetric hypermatrices.

Example

Higher order derivatives of multivariate functions.

Example

Moments of a random vector x = (X1, ..., X,):

n

mk(x) = [E(X,'lx,-2 . .Xi“)]:'l,.-.,ik=1 = [/ oo ./X,'lx,-2 e X d/L(Xil) o000 dl,L(X,‘k)

ityennsig=1

v
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Symmetric hypermatrices

Example

Cumulants of a random vector x = (X1, ..., X,):

kk(x) = Z. .(—1)”l(p—l)!E(iglx;>~-E<ig‘px,-)]n .

,,,,,

For n =1, k(x) for k =1,2,3,4 are the expectation, variance, skewness,
and kurtosis. )

@ Important in Independent Component Analysis (ICA).
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Multilinear spectral theory

Let A € R"™*"™*" (easier if A symmetric).

@ How should one define its eigenvalues and eigenvectors?

© What is a decomposition that generalizes the eigenvalue
decomposition of a matrix?

Let A € R/xmxn

@ How should one define its singualr values and singular vectors?

@ What is a decomposition that generalizes the singular value
decomposition of a matrix?

Somewhat surprising: (1) and (2) have different answers.
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Tensor ranks (Hitchcock, 1927)

o Matrix rank. A € R™*",

rank(A) = dim(spang{Ae1,...,Aen})  (column rank)
= dim(spang{Aie,...,Ame})  (row rank)
=min{r|A=Y"_ uv} (outer product rank).

o Multilinear rank. A € R"™*™*" rankg(A) = (r(A), n(A), r3(A)),

ri(A) = dim(spang{Aiee, - - -, Ales})
ra(A) = dim(spang{Aeie, - - -, Aeme })
r3(A) = dim(spang{Aee1, - - -, Aeen})
e Outer product rank. A € R/xmxn,
rankg(A) = min{r | A=3"7_ju; ® v; ® w;}
whereu®@vew: = [[Ui‘/jWk]]f':JTLn:r
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Matrix EVD and SVD

@ Rank revealing decompositions.

e Symmetric eigenvalue decomposition of A € S?(R"),

A=VAVT =%

I=

) Aivi @ vj,

where rank(A) = r, V € O(n) eigenvectors, A eigenvalues.

o Singular value decomposition of A € R™*",
— T _ r u; .
A=UzV' = Zizla,u, =%

where rank(A) = r, U € O(m) left singular vectors, V € O(n) right
singular vectors, ¥ singular values.
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One plausible EVD and SVD for hypermatrices

@ Rank revealing decompositions associated with the outer product
rank.

e Symmetric outer product decomposition of A € S3(R"),
r
A= Zi:l AV QV; @ V;

where ranks(A) = r, v; unit vector, A\; € R.
e Outer product decomposition of A € R/*mxn

,
A= Zi:laiui R Vi X wj

where rankg(A) = r, u; € R/, v; € R™, w; € R” unit vectors, o; € R.
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Another plausible EVD and SVD for hypermatrices

@ Rank revealing decompositions associated with the multilinear rank.

e Singular value decomposition of A € R/*Xm*n,
A=(U,V,W)-C

where rankg(A) = (1, n,r3), U € R™X1, V € R™*2, W € R™¥5
have orthonormal columns and C € R *"2%"3,

e Symmetric eigenvalue decomposition of A € S3(R"),
A=(U,U,U)-C

where rankg(A) = (r,r,r), U € R™ has orthonormal columns and
C € S3(R").
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Variational approach to eigenvalues/vectors

o A e R™*" symmetric.
e Eigenvalues and eigenvectors are critical values and critical points of
T 2

x ' Ax/[|x[|3.

o Equivalently, critical values/points of x" Ax constrained to unit
sphere.
o Lagrangian:
L(x, A) = x Ax — A(Ix]3 — 1).

e Vanishing of VL at critical (xc, A\c) € R" x R yields familiar

AXe = AeXe.
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Variational approach to singular values/vectors

o Ac R™"

@ Singular values and singular vectors are critical values and critical
points of

x"Ay/ ||l ]yl

o Lagrangian:
L(x,y,0) = x" Ay — o(|x[|2[lyll2 — 1).
o At critical (x¢,yc,0c) € R” x R" x R,

Aye/llyclle = oexc/lIxcll2,  ATxe/lxcll2 = ocye/|lyell-
@ Writing uc = x./||xc||2 and ve =y /||ycl||2 yields familiar

Av. = ocug, ATuC = OcVe.
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Eigenvalues/vectors of a tensor

o Extends to hypermatrices.

o For x = [x1,...,x,) " €R" write xP := [x0, ..., x}]".

o Define the ‘t%-norm’ ||x||x = (xf + - - - + x)V/k.

o Define eigenvalues/vectors of A € SK(R") as critical values/points of

the multilinear Rayleigh quotient

A(x,...,x)/||x|]£.

Lagrangian
L(X, )‘) = A(X, s ,X) - )‘(HxHﬁ - 1)

At a critical point

Al %, ..., x) = AxkL
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Eigenvalues/vectors of a tensor

o If A is symmetric,
Al %, %, ooy X) = AX, Iny X, ooy X) = oo = A(X, X, .0y X, ).

@ Also obtained by Liqun Qi independently:

» L. Qi, "Eigenvalues of a real supersymmetric tensor,” J. Symbolic
Comput., 40 (2005), no. 6.

» L, “Singular values and eigenvalues of tensors: a variational approach,”
Proc. IEEE Int. Workshop on Computational Advances in Multi-Sensor
Adaptive Processing, 1 (2005).

@ For unsymmetric hypermatrices — get different eigenpairs for different
modes (unsymmetric matrix have different left/right eigenvectors).

o Falls outside Classical Invariant Theory — not invariant under
Q € O(n), ie. [|Qx]l2 = [|x]]2.
e Invariant under Q € GL(n) with ||@x||x = ||x||«-
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Singular values/vectors of a tensor

o Likewise for singular values/vectors of A € R/>*m*7,
o Lagrangian is
L(x,y,z,0) = A(x,y,2) — o([x[[llylll|z]| - 1)

where ¢ € R is the Lagrange multiplier.

@ At a critical point,

Al y/llyll 2/llz]]) = ox/[Ix]l;
A/ Ix[|; Im, 2/l2]]) = ay/llyll,
A/ [ y/lylls 1n) = oz/]|]-

o Normalize to get

Al v,w) = ou,  A(u, I, w) = ov,  A(u,v, ;) = ow.
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Pseudospectrum of a tensor

Pseudospectrum of square matrix A € C"™",

o(A) = (A C (A= AN o > )
= {>‘ eC ‘ Umin(A— )\/) < E}.

@ One plausible generalization to cubical hypermatrix A € C"<*",

o (A) = {\ € C | omin(A—\T) < €}.

Another plausible generalization,

o2 (A) = {r € C |infper, ,B)=ollA— AT =Bl <&}

.....

Fact: hyperdeterminant Det,, ,(B) = 0 iff 0 is a singular value of 3.
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Perron-Frobenius theorem for hypermatrices

o An order-k cubical hypermatrix A € TX(R") is reducible if there
exist a permutation ¢ € &, such that the permuted hypermatrix
[bi,.i,] = [[aa(jl)...g(jk)]]

has the property that for some m € {1,...,n— 1}, bj,...;,, = 0 for all
ihe{l,...,n—m}andall ip,... .0k € {1,..., m}.

@ We say that A is irreducible if it is not reducible. In particular, if
A > 0, then it is irreducible.

Theorem (L)
Let 0 < A= [aj..] € TK(R") be irreducible. Then A has

Q a positive real eigenvalue A with an eigenvector x;

@ x may be chosen to have all entries non-negative;

@ if u is an eigenvalue of A, then |u| < A.
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Hypergraphs

e G =(V,E) is 3-hypergraph.

» V is the finite set of vertices.
» E is the subset of hyperedges, ie. 3-element subsets of V.

o Write elements of E as [x,y, z] (x,y,z € V).

e G is undirected, so [x,y,z] =[y,z,x] =--- = [z,y,x].

@ Hyperedge is said to degenerate if of the form [x, x, y] or [x, x, x]
(hyperloop at x). We do not exclude degenerate hyperedges.

o G is m-regular if every v € V is adjacent to exactly m hyperedges.
@ G is r-uniform if every edge contains exactly r vertices.

@ Good reference: D. Knuth, The art of computer programming, 4,
pre-fascicle Oa, 2008.
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Spectral hypergraph theory
o Define the order-3 adjacency hypermatrix A = [aj;] by

1 if[x,y,z] € E,
a e
vz 0 otherwise.

o A e RIVIXIVIXIVI nonnegative symmetric hypermatrix.

@ Consider cubic form

A(f7 f? f) = Z axyzf(X)f(y)f(Z)v

X’y’Z

where f € RV,

o Eigenvalues (resp. eigenvectors) of A are the critical values (resp.
critical points) of A(f, f, f) constrained to the f € £3(V), ie.

erv f(x)® = 1.
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Spectral hypergraph theory

We have the following.

Lemma (L)

Let G be an m-regular 3-hypergraph. A its adjacency hypermatrix. Then
Q@ m is an eigenvalue of A;

@ if \ is an eigenvalue of A, then |A| < m;
© )\ has multiplicity 1 if and only if G is connected.

Related work: J. Friedman, A. Wigderson, “"On the second eigenvalue of
hypergraphs,” Combinatorica, 15 (1995), no. 1.
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Spectral hypergraph theory

@ A hypergraph G = (V, E) is said to be k-partite or k-colorable if
there exists a partition of the vertices V = V3 U--- U V) such that for
any k vertices u, v, ...,z with a,y.., #0, u,v, ...,z must each lie in
adistinct V; (i =1,..., k).

Lemma (L)

Let G be a connected m-regular k-partite k-hypergraph on n vertices.
Then

Q@ I/f k =1mod4, then every eigenvalue of G occurs with multiplicity a
multiple of k.

@ If k =3 mod4, then the spectrum of G is symmetric, ie. if A is an
eigenvalue, then so is —\.

© Furthermore, every eigenvalue of G occurs with multiplicity a multiple
of k/2, ie. if X is an eigenvalue of G, then \ and —\ occurs with the
same multiplicity.

v
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To do

Cases k =0,2mod 4
Cheeger type isoperimetric inequalities

Expander hypergraphs

Algorithms for eigenvalues/vectors of a hypermatrix
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Advertisement

Geometry and representation theory of tensors for computer
science, statistics, and other areas

@ MSRI Summer Graduate Workshop

July 7 to July 18, 2008

Organized by J.M. Landsberg, L.-H. Lim, J. Morton

Mathematical Sciences Research Institute, Berkeley, CA
http://msri.org/calendar/sgw/WorkshopInfo/451/show_sgw

@ AIM Workshop

July 21 to July 25, 2008

Organized by J.M. Landsberg, L.-H. Lim, J. Morton, J. Weyman
American Institute of Mathematics, Palo Alto, CA
http://aimath.org/ARCC/workshops/repnsoftensors.html

vV vy vYyy
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