Spectrum and Pseudospectrum of a Tensor

Lek-Heng Lim

University of California, Berkeley

July 11, 2008

Matrix eigenvalues and eigenvectors

- One of the most important ideas ever invented.
 - R. Coifman et. al.: "Eigenvector magic: eigenvectors as an extension of Newtonian calculus."
- Normal/Hermitian A
 - Invariant subspace: $A\mathbf{x} = \lambda \mathbf{x}$.
 - ▶ Rayleigh quotient: $\mathbf{x}^{\top} A \mathbf{x} / \mathbf{x}^{\top} \mathbf{x}$.
 - ▶ Lagrange multipliers: $\mathbf{x}^{\top}A\mathbf{x} \lambda(\|\mathbf{x}\|^2 1)$.
 - ▶ Best rank-1 approximation: $\min_{\|\mathbf{x}\|=1} \|A \lambda \mathbf{x} \mathbf{x}^{\top}\|$.
- Nonnormal A
 - ▶ Pseudospectrum: $\sigma_{\varepsilon}(A) = \{\lambda \in \mathbb{C} \mid \|(A \lambda I)^{-1}\| > \varepsilon^{-1}\}.$
 - ▶ Numerical range: $W(A) = \{\mathbf{x}^* A \mathbf{x} \in \mathbb{C} \mid ||\mathbf{x}|| = 1\}.$
 - ▶ Irreducible representations of $C^*(A)$ with natural Borel structure.
 - ▶ Primitive ideals of $C^*(A)$ with hull-kernel topology.
- How can one define these for tensors?

DARPA mathematical challenge eight

One of the twenty three mathematical challenges announced at DARPA Tech 2007.

Problem

Beyond convex optimization: can linear algebra be replaced by algebraic geometry in a systematic way?

- Algebraic geometry in a slogan: polynomials are to algebraic geometry what matrices are to linear algebra.
- Polynomial $f \in \mathbb{R}[x_1, \dots, x_n]$ of degree d can be expressed as

$$f(\mathbf{x}) = a_0 + \mathbf{a}_1^{\top} \mathbf{x} + \mathbf{x}^{\top} A_2 \mathbf{x} + A_3(\mathbf{x}, \mathbf{x}, \mathbf{x}) + \dots + A_d(\mathbf{x}, \dots, \mathbf{x}).$$

$$a_0 \in \mathbb{R}, a_1 \in \mathbb{R}^n, A_2 \in \mathbb{R}^{n \times n}, A_3 \in \mathbb{R}^{n \times n \times n}, \dots, A_d \in \mathbb{R}^{n \times \dots \times n}.$$

- Numerical linear algebra: d = 2.
- Numerical multilinear algebra: d > 2.

Hypermatrices

Totally ordered finite sets: $[n] = \{1 < 2 < \cdots < n\}, n \in \mathbb{N}.$

• Vector or *n*-tuple

$$f:[n]\to\mathbb{R}.$$

If $f(i) = a_i$, then f is represented by $\mathbf{a} = [a_1, \dots, a_n]^{\top} \in \mathbb{R}^n$.

Matrix

$$f:[m]\times[n]\to\mathbb{R}.$$

If $f(i,j) = a_{ij}$, then f is represented by $A = [a_{ij}]_{i,j=1}^{m,n} \in \mathbb{R}^{m \times n}$.

Hypermatrix (order 3)

$$f:[I]\times[m]\times[n]\to\mathbb{R}.$$

If $f(i,j,k) = a_{ijk}$, then f is represented by $\mathcal{A} = \llbracket a_{ijk} \rrbracket_{i,j,k=1}^{l,m,n} \in \mathbb{R}^{l \times m \times n}$.

Normally $\mathbb{R}^X = \{f : X \to \mathbb{R}\}$. Ought to be $\mathbb{R}^{[n]}, \mathbb{R}^{[m] \times [n]}, \mathbb{R}^{[l] \times [m] \times [n]}$.

4 D > 4 A > 4 B > 4 B > B = 90 Q P

Hypermatrices and tensors

Up to choice of bases

- $\mathbf{a} \in \mathbb{R}^n$ can represent a vector in V (contravariant) or a linear functional in V^* (covariant).
- $A \in \mathbb{R}^{m \times n}$ can represent a bilinear form $V \times W \to \mathbb{R}$ (contravariant), a bilinear form $V^* \times W^* \to \mathbb{R}$ (covariant), or a linear operator $V \to W$ (mixed).
- $\mathcal{A} \in \mathbb{R}^{I \times m \times n}$ can represent trilinear form $U \times V \times W \to \mathbb{R}$ (contravariant), bilinear operators $V \times W \to U$ (mixed), etc.

A hypermatrix is the same as a tensor if

- we give it coordinates (represent with respect to some bases);
- we ignore covariance and contravariance.

Basic operation on a hypermatrix

• A matrix can be multiplied on the left and right: $A \in \mathbb{R}^{m \times n}$, $X \in \mathbb{R}^{p \times m}$, $Y \in \mathbb{R}^{q \times n}$,

$$(X,Y)\cdot A=XAY^{\top}=[c_{lphaeta}]\in\mathbb{R}^{p imes q}$$

where

$$c_{\alpha\beta} = \sum_{i,j=1}^{m,n} x_{\alpha i} y_{\beta j} a_{ij}.$$

• A hypermatrix can be multiplied on three sides: $\mathcal{A} = [\![a_{ijk}]\!] \in \mathbb{R}^{I \times m \times n}$, $X \in \mathbb{R}^{p \times I}$, $Y \in \mathbb{R}^{q \times m}$, $Z \in \mathbb{R}^{r \times n}$.

$$(X, Y, Z) \cdot \mathcal{A} = \llbracket c_{\alpha\beta\gamma} \rrbracket \in \mathbb{R}^{p \times q \times r}$$

where

$$c_{\alpha\beta\gamma} = \sum_{i,j,k=1}^{I,m,n} x_{\alpha i} y_{\beta j} z_{\gamma k} a_{ijk}.$$

Numerical range of a tensor

Covariant version:

$$\mathcal{A}\cdot(X^\top,Y^\top,Z^\top):=(X,Y,Z)\cdot\mathcal{A}.$$

• Gives convenient notations for multilinear functionals and multilinear operators. For $\mathbf{x} \in \mathbb{R}^l$, $\mathbf{y} \in \mathbb{R}^m$, $\mathbf{z} \in \mathbb{R}^n$,

$$\begin{split} \mathcal{A}(\mathbf{x}, \mathbf{y}, \mathbf{z}) &:= \mathcal{A} \cdot (\mathbf{x}, \mathbf{y}, \mathbf{z}) = \sum_{i, j, k=1}^{I, m, n} a_{ijk} x_i y_j z_k, \\ \mathcal{A}(I, \mathbf{y}, \mathbf{z}) &:= \mathcal{A} \cdot (I, \mathbf{y}, \mathbf{z}) = \sum_{j, k=1}^{m, n} a_{ijk} y_j z_k. \end{split}$$

• Numerical range of square matrix $A \in \mathbb{C}^{n \times n}$,

$$W(A) = \{ \mathbf{x}^* A \mathbf{x} \in \mathbb{C} \mid \|\mathbf{x}\|_2 = 1 \} = \{ A(\mathbf{x}, \mathbf{x}^*) \in \mathbb{C} \mid \|\mathbf{x}\|_2 = 1 \}.$$

• Plausible generalization to cubical hypermatrix $\mathcal{A} \in \mathbb{C}^{n \times \cdots \times n}$,

$$W(\mathcal{A}) = \begin{cases} \{\mathcal{A}(\mathbf{x}, \mathbf{x}^*, \dots, \mathbf{x}) \in \mathbb{C} \mid \|\mathbf{x}\|_k = 1\} & \text{odd order,} \\ \{\mathcal{A}(\mathbf{x}, \mathbf{x}^*, \dots, \mathbf{x}^*) \in \mathbb{C} \mid \|\mathbf{x}\|_k = 1\} & \text{even order.} \end{cases}$$

Symmetric hypermatrices

• Cubical hypermatrix $[a_{ijk}] \in \mathbb{R}^{n \times n \times n}$ is **symmetric** if

$$a_{ijk} = a_{ikj} = a_{jik} = a_{jki} = a_{kij} = a_{kji}.$$

- Invariant under all permutations $\sigma \in \mathfrak{S}_k$ on indices.
- $S^k(\mathbb{R}^n)$ denotes set of all order-k symmetric hypermatrices.

Example

Higher order derivatives of multivariate functions.

Example

Moments of a random vector $\mathbf{x} = (X_1, \dots, X_n)$:

$$m_k(\mathbf{x}) = \left[E(x_{i_1} x_{i_2} \cdots x_{i_k}) \right]_{i_1, \dots, i_k = 1}^n = \left[\int \cdots \int x_{i_1} x_{i_2} \cdots x_{i_k} \ d\mu(x_{i_1}) \cdots d\mu(x_{i_k}) \right]_{i_1, \dots, i_k = 1}^n.$$

Symmetric hypermatrices

Example

Cumulants of a random vector $\mathbf{x} = (X_1, \dots, X_n)$:

$$\kappa_k(\mathbf{x}) = \left[\sum_{A_1 \sqcup \cdots \sqcup A_p = \{i_1, \ldots, i_k\}} (-1)^{p-1} (p-1)! E\left(\prod_{i \in A_1} x_i\right) \cdots E\left(\prod_{i \in A_p} x_i\right)\right]_{i_1, \ldots, i_k = 1}^n.$$

For n = 1, $\kappa_k(x)$ for k = 1, 2, 3, 4 are the expectation, variance, skewness, and kurtosis.

Important in Independent Component Analysis (ICA).

Multilinear spectral theory

Let $A \in \mathbb{R}^{n \times n \times n}$ (easier if A symmetric).

- How should one define its eigenvalues and eigenvectors?
- What is a decomposition that generalizes the eigenvalue decomposition of a matrix?

Let $A \in \mathbb{R}^{I \times m \times n}$

- How should one define its singualr values and singular vectors?
- What is a decomposition that generalizes the singular value decomposition of a matrix?

Somewhat surprising: (1) and (2) have different answers.

Tensor ranks (Hitchcock, 1927)

• Matrix rank. $A \in \mathbb{R}^{m \times n}$.

$$\begin{aligned} \operatorname{rank}(A) &= \dim(\operatorname{span}_{\mathbb{R}}\{A_{\bullet 1}, \dots, A_{\bullet n}\}) & (\operatorname{column \ rank}) \\ &= \dim(\operatorname{span}_{\mathbb{R}}\{A_{1 \bullet}, \dots, A_{m \bullet}\}) & (\operatorname{row \ rank}) \\ &= \min\{r \mid A = \sum_{i=1}^{r} \mathbf{u}_{i} \mathbf{v}_{i}^{\mathsf{T}}\} & (\operatorname{outer \ product \ rank}). \end{aligned}$$

• Multilinear rank. $A \in \mathbb{R}^{l \times m \times n}$. rank $_{\boxplus}(A) = (r_1(A), r_2(A), r_3(A))$,

$$r_1(A) = \dim(\operatorname{span}_{\mathbb{R}}\{A_{1 \bullet \bullet}, \dots, A_{I \bullet \bullet}\})$$

 $r_2(A) = \dim(\operatorname{span}_{\mathbb{R}}\{A_{\bullet 1 \bullet}, \dots, A_{\bullet m \bullet}\})$
 $r_3(A) = \dim(\operatorname{span}_{\mathbb{R}}\{A_{\bullet \bullet 1}, \dots, A_{\bullet m}\})$

• Outer product rank. $A \in \mathbb{R}^{l \times m \times n}$.

$$\operatorname{rank}_{\otimes}(\mathcal{A}) = \min\{r \mid \mathcal{A} = \sum_{i=1}^{r} \mathbf{u}_{i} \otimes \mathbf{v}_{i} \otimes \mathbf{w}_{i}\}$$

where $\mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w} := [\![u_i v_j w_k]\!]_{i,j,k=1}^{I,m,n}$.

Matrix EVD and SVD

- Rank revealing decompositions.
- Symmetric eigenvalue decomposition of $A \in S^2(\mathbb{R}^n)$,

$$A = V \Lambda V^{\top} = \sum_{i=1}^{r} \lambda_i \mathbf{v}_i \otimes \mathbf{v}_i,$$

where rank(A) = r, $V \in O(n)$ eigenvectors, Λ eigenvalues.

• Singular value decomposition of $A \in \mathbb{R}^{m \times n}$,

$$A = U\Sigma V^{\top} = \sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \otimes \mathbf{v}_{i}$$

where rank(A) = r, $U \in O(m)$ left singular vectors, $V \in O(n)$ right singular vectors, Σ singular values.

One plausible EVD and SVD for hypermatrices

- Rank revealing decompositions associated with the outer product rank.
- Symmetric outer product decomposition of $\mathcal{A} \in S^3(\mathbb{R}^n)$,

$$\mathcal{A} = \sum_{i=1}^r \lambda_i \mathbf{v}_i \otimes \mathbf{v}_i \otimes \mathbf{v}_i$$

where rank_S(A) = r, \mathbf{v}_i unit vector, $\lambda_i \in \mathbb{R}$.

• Outer product decomposition of $A \in \mathbb{R}^{l \times m \times n}$,

$$\mathcal{A} = \sum_{i=1}^r \sigma_i \mathbf{u}_i \otimes \mathbf{v}_i \otimes \mathbf{w}_i$$

where $\operatorname{rank}_{\otimes}(\mathcal{A}) = r$, $\mathbf{u}_i \in \mathbb{R}^I$, $\mathbf{v}_i \in \mathbb{R}^m$, $\mathbf{w}_i \in \mathbb{R}^n$ unit vectors, $\sigma_i \in \mathbb{R}$.

Another plausible EVD and SVD for hypermatrices

- Rank revealing decompositions associated with the multilinear rank.
- Singular value decomposition of $A \in \mathbb{R}^{l \times m \times n}$,

$$\mathcal{A} = (U, V, W) \cdot \mathcal{C}$$

where $\operatorname{rank}_{\boxplus}(A)=(r_1,r_2,r_3),\ U\in\mathbb{R}^{I\times r_1},\ V\in\mathbb{R}^{m\times r_2},\ W\in\mathbb{R}^{n\times r_3}$ have orthonormal columns and $C\in\mathbb{R}^{r_1\times r_2\times r_3}$.

• Symmetric eigenvalue decomposition of $\mathcal{A} \in \mathsf{S}^3(\mathbb{R}^n)$,

$$\mathcal{A} = (U, U, U) \cdot \mathcal{C}$$

where $\operatorname{rank}_{\boxplus}(A)=(r,r,r),\ U\in\mathbb{R}^{n\times r}$ has orthonormal columns and $\mathcal{C}\in\mathsf{S}^3(\mathbb{R}^r).$

Variational approach to eigenvalues/vectors

- $A \in \mathbb{R}^{m \times n}$ symmetric.
- Eigenvalues and eigenvectors are critical values and critical points of

$$\mathbf{x}^{\top} A \mathbf{x} / \|\mathbf{x}\|_{2}^{2}$$
.

- Equivalently, critical values/points of $\mathbf{x}^{\top} A \mathbf{x}$ constrained to unit sphere.
- Lagrangian:

$$L(\mathbf{x}, \lambda) = \mathbf{x}^{\top} A \mathbf{x} - \lambda (\|\mathbf{x}\|_{2}^{2} - 1).$$

ullet Vanishing of abla L at critical $(\mathbf{x}_c, \lambda_c) \in \mathbb{R}^n imes \mathbb{R}$ yields familiar

$$A\mathbf{x}_c = \lambda_c \mathbf{x}_c$$
.

Variational approach to singular values/vectors

- $A \in \mathbb{R}^{m \times n}$.
- Singular values and singular vectors are critical values and critical points of

$$\mathbf{x}^{\top}A\mathbf{y}/{\|\mathbf{x}\|_2\|\mathbf{y}\|_2}.$$

• Lagrangian:

$$L(\mathbf{x}, \mathbf{y}, \sigma) = \mathbf{x}^{\top} A \mathbf{y} - \sigma(\|\mathbf{x}\|_2 \|\mathbf{y}\|_2 - 1).$$

• At critical $(\mathbf{x}_c, \mathbf{y}_c, \sigma_c) \in \mathbb{R}^m \times \mathbb{R}^n \times \mathbb{R}$,

$$A\mathbf{y}_c/\|\mathbf{y}_c\|_2 = \sigma_c \mathbf{x}_c/\|\mathbf{x}_c\|_2, \quad A^{\mathsf{T}}\mathbf{x}_c/\|\mathbf{x}_c\|_2 = \sigma_c \mathbf{y}_c/\|\mathbf{y}_c\|_2.$$

ullet Writing $oldsymbol{\mathbf{u}}_c = oldsymbol{\mathbf{x}}_c/\|oldsymbol{\mathbf{x}}_c\|_2$ and $oldsymbol{\mathbf{v}}_c = oldsymbol{\mathbf{y}}_c/\|oldsymbol{\mathbf{y}}_c\|_2$ yields familiar

$$A\mathbf{v}_c = \sigma_c \mathbf{u}_c, \quad A^{\mathsf{T}} \mathbf{u}_c = \sigma_c \mathbf{v}_c.$$

Eigenvalues/vectors of a tensor

- Extends to hypermatrices.
- For $\mathbf{x} = [x_1, \dots, x_n]^{\top} \in \mathbb{R}^n$, write $\mathbf{x}^p := [x_1^p, \dots, x_n^p]^{\top}$.
- Define the ' ℓ^k -norm' $\|\mathbf{x}\|_k = (x_1^k + \dots + x_n^k)^{1/k}$.
- Define eigenvalues/vectors of $\mathcal{A} \in \mathsf{S}^k(\mathbb{R}^n)$ as critical values/points of the multilinear Rayleigh quotient

$$\mathcal{A}(\mathbf{x},\ldots,\mathbf{x})/\|\mathbf{x}\|_k^k$$
.

Lagrangian

$$L(\mathbf{x}, \lambda) := \mathcal{A}(\mathbf{x}, \dots, \mathbf{x}) - \lambda(\|\mathbf{x}\|_{k}^{k} - 1).$$

At a critical point

$$\mathcal{A}(I_n,\mathbf{x},\ldots,\mathbf{x})=\lambda\mathbf{x}^{k-1}.$$

Eigenvalues/vectors of a tensor

ullet If ${\cal A}$ is symmetric,

$$\mathcal{A}(I_n, \mathbf{x}, \mathbf{x}, \dots, \mathbf{x}) = \mathcal{A}(\mathbf{x}, I_n, \mathbf{x}, \dots, \mathbf{x}) = \dots = \mathcal{A}(\mathbf{x}, \mathbf{x}, \dots, \mathbf{x}, I_n).$$

- Also obtained by Liqun Qi independently:
 - L. Qi, "Eigenvalues of a real supersymmetric tensor," *J. Symbolic Comput.*, **40** (2005), no. 6.
 - L, "Singular values and eigenvalues of tensors: a variational approach," Proc. IEEE Int. Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 1 (2005).
- For unsymmetric hypermatrices get different eigenpairs for different modes (unsymmetric matrix have different left/right eigenvectors).
- Falls outside Classical Invariant Theory not invariant under $Q \in O(n)$, ie. $||Q\mathbf{x}||_2 = ||\mathbf{x}||_2$.
- Invariant under $Q \in GL(n)$ with $||Q\mathbf{x}||_k = ||\mathbf{x}||_k$.

Singular values/vectors of a tensor

- Likewise for singular values/vectors of $\mathcal{A} \in \mathbb{R}^{l \times m \times n}$.
- Lagrangian is

$$L(\mathbf{x}, \mathbf{y}, \mathbf{z}, \sigma) = \mathcal{A}(\mathbf{x}, \mathbf{y}, \mathbf{z}) - \sigma(\|\mathbf{x}\| \|\mathbf{y}\| \|\mathbf{z}\| - 1)$$

where $\sigma \in \mathbb{R}$ is the Lagrange multiplier.

At a critical point,

$$\mathcal{A}(I_{l}, \mathbf{y}/\|\mathbf{y}\|, \mathbf{z}/\|\mathbf{z}\|) = \sigma \mathbf{x}/\|\mathbf{x}\|,$$

$$\mathcal{A}(\mathbf{x}/\|\mathbf{x}\|, I_{m}, \mathbf{z}/\|\mathbf{z}\|) = \sigma \mathbf{y}/\|\mathbf{y}\|,$$

$$\mathcal{A}(\mathbf{x}/\|\mathbf{x}\|, \mathbf{y}/\|\mathbf{y}\|, I_{n}) = \sigma \mathbf{z}/\|\mathbf{z}\|.$$

Normalize to get

$$A(I_I, \mathbf{v}, \mathbf{w}) = \sigma \mathbf{u}, \quad A(\mathbf{u}, I_m, \mathbf{w}) = \sigma \mathbf{v}, \quad A(\mathbf{u}, \mathbf{v}, I_n) = \sigma \mathbf{w}.$$

Pseudospectrum of a tensor

• Pseudospectrum of square matrix $A \in \mathbb{C}^{n \times n}$,

$$\begin{split} \sigma_{\varepsilon}(A) &= \{\lambda \in \mathbb{C} \mid \|(A - \lambda I)^{-1}\|_{2} > \varepsilon^{-1}\} \\ &= \{\lambda \in \mathbb{C} \mid \sigma_{\mathsf{min}}(A - \lambda I) < \varepsilon\}. \end{split}$$

ullet One plausible generalization to cubical hypermatrix $\mathcal{A} \in \mathbb{C}^{n \times \cdots \times n}$,

$$\sigma_{\varepsilon}^{\Sigma}(\mathcal{A}) = \{\lambda \in \mathbb{C} \mid \sigma_{\min}(\mathcal{A} - \lambda \mathcal{I}) < \varepsilon\}.$$

• Another plausible generalization,

$$\sigma_\varepsilon^\Delta(\mathcal{A}) = \{\lambda \in \mathbb{C} \mid \mathsf{inf}_{\mathsf{Det}_{n,\dots,n}(\mathcal{B}) = 0} \|\mathcal{A} - \lambda \mathcal{I} - \mathcal{B}\|_{\mathit{F}} < \varepsilon^{-1}\}.$$

• Fact: hyperdeterminant $\operatorname{Det}_{n,\ldots,n}(\mathcal{B})=0$ iff 0 is a singular value of \mathcal{B} .

Perron-Frobenius theorem for hypermatrices

• An order-k cubical hypermatrix $A \in T^k(\mathbb{R}^n)$ is **reducible** if there exist a permutation $\sigma \in \mathfrak{S}_n$ such that the permuted hypermatrix

$$\llbracket b_{i_1\cdots i_k}\rrbracket = \llbracket a_{\sigma(j_1)\cdots\sigma(j_k)}\rrbracket$$

has the property that for some $m \in \{1, \ldots, n-1\}$, $b_{i_1 \cdots i_k} = 0$ for all $i_1 \in \{1, \ldots, n-m\}$ and all $i_2, \ldots, i_k \in \{1, \ldots, m\}$.

• We say that \mathcal{A} is **irreducible** if it is not reducible. In particular, if $\mathcal{A} > 0$, then it is irreducible.

Theorem (L)

Let $0 \le \mathcal{A} = \llbracket a_{j_1 \cdots j_k} \rrbracket \in \mathsf{T}^k(\mathbb{R}^n)$ be irreducible. Then \mathcal{A} has

- **1** a positive real eigenvalue λ with an eigenvector \mathbf{x} ;
- 2 x may be chosen to have all entries non-negative;
- \bullet if μ is an eigenvalue of \mathcal{A} , then $|\mu| \leq \lambda$.

Hypergraphs

- G = (V, E) is 3-hypergraph.
 - V is the finite set of vertices.
 - *E* is the subset of **hyperedges**, ie. 3-element subsets of *V*.
- Write elements of E as [x, y, z] $(x, y, z \in V)$.
- *G* is **undirected**, so $[x, y, z] = [y, z, x] = \cdots = [z, y, x]$.
- Hyperedge is said to **degenerate** if of the form [x, x, y] or [x, x, x] (hyperloop at x). We do not exclude degenerate hyperedges.
- G is m-regular if every $v \in V$ is adjacent to exactly m hyperedges.
- *G* is *r*-**uniform** if every edge contains exactly *r* vertices.
- Good reference: D. Knuth, The art of computer programming, 4, pre-fascicle 0a, 2008.

Spectral hypergraph theory

ullet Define the order-3 **adjacency hypermatrix** $\mathcal{A} = \llbracket a_{ijk} \rrbracket$ by

$$a_{xyz} = egin{cases} 1 & ext{if } [x,y,z] \in E, \\ 0 & ext{otherwise}. \end{cases}$$

- $\mathcal{A} \in \mathbb{R}^{|V| \times |V| \times |V|}$ nonnegative symmetric hypermatrix.
- Consider cubic form

$$A(f,f,f) = \sum_{x,y,z} a_{xyz} f(x) f(y) f(z),$$

where $f \in \mathbb{R}^V$.

• Eigenvalues (resp. eigenvectors) of A are the critical values (resp. critical points) of $\mathcal{A}(f, f, f)$ constrained to the $f \in \ell^3(V)$, ie.

$$\sum\nolimits_{x\in V}f(x)^3=1.$$

Spectral hypergraph theory

We have the following.

Lemma (L)

Let G be an m-regular 3-hypergraph. A its adjacency hypermatrix. Then

- m is an eigenvalue of A;
- ② if λ is an eigenvalue of A, then $|\lambda| \leq m$;
- **3** λ has multiplicity 1 if and only if G is connected.

Related work: J. Friedman, A. Wigderson, "On the second eigenvalue of hypergraphs," *Combinatorica*, **15** (1995), no. 1.

Spectral hypergraph theory

• A hypergraph G=(V,E) is said to be k-partite or k-colorable if there exists a partition of the vertices $V=V_1\cup\cdots\cup V_k$ such that for any k vertices u,v,\ldots,z with $a_{uv\cdots z}\neq 0,\ u,v,\ldots,z$ must each lie in a distinct V_i $(i=1,\ldots,k)$.

Lemma (L)

Let G be a connected m-regular k-partite k-hypergraph on n vertices. Then

- If $k \equiv 1 \mod 4$, then every eigenvalue of G occurs with multiplicity a multiple of k.
- ② If $k \equiv 3 \mod 4$, then the spectrum of G is symmetric, ie. if λ is an eigenvalue, then so is $-\lambda$.
- **3** Furthermore, every eigenvalue of G occurs with multiplicity a multiple of k/2, ie. if λ is an eigenvalue of G, then λ and $-\lambda$ occurs with the same multiplicity.

To do

- Cases $k \equiv 0, 2 \mod 4$
- Cheeger type isoperimetric inequalities
- Expander hypergraphs
- Algorithms for eigenvalues/vectors of a hypermatrix

Advertisement

Geometry and representation theory of tensors for computer science, statistics, and other areas

- MSRI Summer Graduate Workshop
 - ▶ July 7 to July 18, 2008
 - Organized by J.M. Landsberg, L.-H. Lim, J. Morton
 - Mathematical Sciences Research Institute, Berkeley, CA
 - http://msri.org/calendar/sgw/WorkshopInfo/451/show_sgw
- AIM Workshop
 - July 21 to July 25, 2008
 - Organized by J.M. Landsberg, L.-H. Lim, J. Morton, J. Weyman
 - American Institute of Mathematics, Palo Alto, CA
 - http://aimath.org/ARCC/workshops/repnsoftensors.html