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The 2008 Workshop on Algorithms for Modern 
Massive Data Sets (MMDS 2008), sponsored by the 
NSF, DARPA, LinkedIn, and Yahoo!, was held last 
year at Stanford University, June 25–28, 2008. The 
goals of MMDS 2008 were (1) to explore novel 
techniques for modeling and analyzing massive, 
high-dimensional, and nonlinearly-structured scien-
tific and internet data sets; and (2) to bring together 
computer scientists, statisticians, mathematicians, 
and data analysis practitioners to promote cross-
fertilization of ideas. 

MMDS 2008 originally grew out of discussions 
about our vision for the next-generation of algo-
rithmic, mathematical, and statistical analysis meth-
ods for complex large-scale data sets. These discus-
sions occurred in the wake of MMDS 2006, which 
was originally motivated by the complementary per-
spectives brought by the numerical linear algebra 
and theoretical computer science communities to 
matrix algorithms in modern informatics applica-
tions [1].  

As with the original 2006 meeting, the MMDS 
2008 program generated intense interdisciplinary 
interest: with 43 talks and 18 poster presentations 
from a wide spectrum of researchers in modern 
large-scale data analysis, including both senior re-
searchers well-established as leaders in their respec-
tive fields as well as junior researchers promising to 
become leaders in this new interdisciplinary field, 
the program drew nearly 300 participants. 

Diverse Approaches to Modern Data Problems 

Graph and matrix problems were common topics 
for discussion, largely since they arise naturally in 
almost every aspect of data mining, machine learn-
ing, and pattern recognition. For example, a common 
way to model a large social or information network 
is with an interaction graph model, G = (V,E), in 
which nodes in the vertex set V represent “entities” 
and the edges (whether directed, undirected, 
weighted or unweighted) in the edge set E represent 
“interactions” between pairs of entities.  

Alternatively, these and other data sets can be 
modeled as matrices, since an m× n real-valued ma-
trix A provides a natural structure for encoding in-
formation about m objects, each of which is de-
scribed by n features. Due to their large size, their 
extreme sparsity, and their complex and often adver-
sarial noise properties, data graphs and data matrices 
arising in modern informatics applications present 
considerable challenges and opportunities for inter-
disciplinary research.  

These algorithmic, statistical, and mathematical 
challenges were the focus of MMDS 2008. It is 
worth emphasizing the very different perspectives 
that have historically been brought to such problems. 
For example, a common view of the data in a data-
base, in particular historically among computer sci-
entists interested in data mining and knowledge dis-
covery, has been that the data are an accounting or a 
record of everything that happened in a particular 
setting.  

For example, the database might consist of all the 
customer transactions over the course of a month, or 
it might consist of all the friendship links among 
members of a social networking site. From this per-
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spective, the goal is to tabulate and process the data 
at hand to find interesting patterns, rules, and asso-
ciations. An example of an association rule is the 
proverbial “People who buy beer between 5 p.m. and 
7 p.m. also buy diapers at the same time.”  

The performance or quality of such a rule is 
judged by the fraction of the database that satisfies 
the rule exactly, which then boils down to the prob-
lem of finding frequent item sets. This is a compu-
tationally hard problem, and much algorithmic work 
has been devoted to its exact or approximate solution 
under different models of data access. 

A very different view of the data, more common 
among statisticians, is one of a particular random 
instantiation of an underlying process describing un-
observed patterns in the world. In this case, the goal 
is to extract information about the world from the 
noisy or uncertain data that is observed. To achieve 
this, one might posit a model:  

data ∼ Fθ and mean(data) = g(θ),  

where Fθ is a distribution that describes the ran-
dom variability of the data around the deterministic 
model g(θ) of the data. Then, using this model, one 
would proceed to analyze the data to make infer-
ences about the underlying processes and predictions 
about future observations. From this perspective, 
modeling the noise component or variability well is 
as important as modeling the mean structure well, in 
large part since understanding the former is neces-
sary for understanding the quality of predictions 
made.  

With this approach, one can even make predic-
tions about events that have yet to be observed. For 
example, one can assign a probability to the event 
that a given user at a given web site will click on a 
given advertisement presented at a given time of the 
day, even if this particular event does not exist in the 
database. 

The two perspectives need not be incompatible. 
For example, statistical and probabilistic ideas are 
central to much of the recent work on developing 
improved approximation algorithms for matrix prob-
lems; otherwise intractable optimization problems on 

graphs and networks yield to approximation algo-
rithms when assumptions are made about the net-
work participants; much recent work in machine 
learning draws on ideas from both areas; and in 
boosting, a statistical technique that fits an additive 
model by minimizing an objective function with a 
method such as gradient descent, the computation 
parameter, i.e., the number of iterations, also serves 
as a regularization parameter. 

Given the diversity of possible perspectives, 
MMDS 2008 was organized loosely around six hour-
long tutorials that introduced participants to the ma-
jor themes of the workshop. 

Large-Scale Informatics: Problems, Methods, and 

Models 

On the first day of the workshop, participants 
heard tutorials by Christos Faloutsos of Carnegie 
Mellon University and Edward Chang of Google Re-
search, in which they presented an overview of tools 
and applications in modern large-scale data analysis. 

Faloutsos began his tutorial on “Graph mining: 
laws, generators and tools” by motivating the prob-
lem of data analysis on graphs. He described a wide 
range of applications in which graphs arise naturally, 
and he reminded the audience that large graphs that 
arise in modern informatics applications have struc-
tural properties that are very different from tradi-
tional Erdõs-Rényi random graphs. For example, due 
to subtle correlations, statistics such as degree distri-
butions and eigenvalue distributions exhibit heavy-
tailed behavior. 

Although these structural properties have been 
studied extensively in recent years and have been 
used to develop numerous well-publicized models, 
Faloutsos also described empirically-observed prop-
erties that are not well-reproduced by existing mod-
els. As an example, most models predict that over 
time the graph should become sparser and the diame-
ter should grow as O(logN) or perhaps O(log logN), 
where N is the number of nodes at the current time 
step, but empirically it is often observed that the 
networks densify over time and that their diameter 
shrinks.  
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To explain these phenomena, Faloutsos de-
scribed a model based on Kronecker products and 
also a model in which edges are added via an itera-
tive “forest fire” burning mechanism. With appropri-
ate choice of parameters, both models can be made 
to reproduce a much wider range of static and dy-
namic properties than can previous generative mod-
els. 

Building on this modeling foundation, Faloutsos 
spent much of his talk describing several graph min-
ing applications of recent and ongoing interest: 
methods to find nodes that are central to a group of 
individuals; applications of the Singular Value De-
composition and recently-developed tensor methods 
to identifying anomalous patterns in time-evolving 
graphs; modeling information cascades in the blo-
gosphere as virus propagation; and novel methods 
for fraud detection. Edward Chang described other 
developments in web-scale data analysis in his tuto-
rial on “Mining large-scale social networks: chal-
lenges and scalable solutions.”  

After reviewing emerging applications—such as 
social network analysis and personalized information 
retrieval—that have arisen as we make the transition 
from Web 1.0 (links between pages and documents) 
to Web 2.0 (links between documents, people, and 
social platforms), Chang covered four applications in 
detail: spectral clustering for network analysis, fre-
quent itemset mining, combinatorial collaborative 
filtering, and parallel Support Vector Machines 
(SVMs) for personalized search.  

In all these cases, he emphasized that the main 
performance requirements were “scalability, scal-
ability, scalability.” Modern informatics applications 
like web search afford easy parallelization—e.g., the 
overall index can be partitioned such that even a sin-
gle query can use multiple processors.  

Moreover, the peak performance of a machine is 
less important than the price-performance ratio. In 
this environment, scalability up to petabyte-sized 
data often means working in a software framework 
like MapReduce or Hadoop that supports data-inten-
sive distributed computations running on large clus-
ters of hundreds, thousands, or even hundreds of 
thousands of commodity computers. This differs 

substantially from the scalability issues that arise in 
traditional applications of interest in scientific com-
puting.  

A recurrent theme of Chang was that an algo-
rithm that is expensive in floating point cost but 
readily parallelizable is often a better choice than 
one that is less expensive but non-parallelizable. 

As an example, although SVMs are widely-used, 
largely due to their empirical success and attractive 
theoretical foundations, they suffer from well-known 
scalability problems in both memory use and com-
putational time. To address these problems, Chang 
described a Parallel SVM algorithm. This algorithm 
reduces memory requirements by performing a row-
based Incomplete Cholesky Factorization (ICF) and 
by loading only essential data to each of the parallel 
machines; and it reduces computation time by intel-
ligently reordering computational steps and by per-
forming them on parallel machines. Chang noted that 
the traditional column-based ICF is better for the 
single machine setting, but it cannot be parallelized 
as well across many machines. 

Algorithmic Approaches to Networked Data 

Milena Mihail of the Georgia Institute of Tech-
nology described algorithmic perspectives on devel-
oping better models for data in her tutorial “Models 
and algorithms for complex networks.” She noted 
that in recent years a rich theory of power law ran-
dom graphs, i.e., graphs that are random conditioned 
on a specified input power law degree distribution, 
has been developed. With the increasingly wide 
range of large-scale social and information networks 
that are available, however, generative models that 
are structurally or syntactically more flexible are in-
creasingly necessary. 

Mihail described two such extensions: one in 
which semantics on nodes is modeled by a feature 
vector and edges are added between nodes based on 
their semantic proximity; and one in which the phe-
nomenon of associativity/ disassociativity is modeled 
by fixing the probability that nodes of a given degree 
di tend to link to nodes of degree dj . 

By introducing a small extension in the parame-
ters of a generative model, of course, one can ob-
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serve a large increase in the observed properties of 
generated graphs. This observation raises interesting 
statistical questions about model overfitting, and it 
argues for more refined and systematic methods of 
model parameterization. This observation also leads 
to new algorithmic questions that were the topic of 
Mihail’s talk. 

An algorithmic question of interest in the basic 
power law random graph model is the following: 
given as input an N-vector specifying a degree se-
quence, determine whether there exists a graph with 
that degree sequence, and, if so, efficiently generate 
one (perhaps approximately uniformly randomly 
from the ensemble of such graphs).  

Such realizability problems have a long history 
in graph theory and theoretical computer science. 
Since their solutions are intimately related to the 
theory of graph matchings, many generalizations of 
the basic problem can be addressed in a strict theo-
retical framework.  

For example, motivated by associa-
tive/disassociative networks, Mihail described recent 
progress on the Joint-Degree Matrix Realization 
Problem: given a partition of the node set into 
classes of vertices of the same degree, a vector speci-
fying the degree of each class, and a matrix specify-
ing the number of edges between any two classes, 
determine whether there exists such a graph, and if 
so construct one.  

She also described extensions of this basic prob-
lem to connected graphs, to finding minimum cost 
realizations, and to finding a random graph satisfy-
ing those basic constraints. 

The Geometric Perspective: Qualitative Analysis 

of Data 

A very different perspective was provided by 
Gunnar Carlsson of Stanford University, who gave 
an overview of geometric and topological ap-
proaches to data analysis in his tutorial “Topology 
and data.” The motivation underlying these ap-
proaches is to provide insight into the data by im-
posing a geometry on it.  

Whereas in certain applications, such as in phys-
ics, the studied phenomena support clean ex-
planatory theories which define exactly the metric to 
use to measure the distance between pairs of data 
points, in most MMDS applications this is not the 
case. For instance, the Euclidean distance between 
DNA expression profiles in high-throughput mi-
croarray experiments may or may not capture a 
meaningful notion of distance between genes.  

Similarly, although a natural geodesic distance is 
associated with any graph, the sparsity and noise 
properties of social and information networks means 
that this is not a particularly robust notion of distance 
in practice. 

Part of the problem is thus to define useful met-
rics—in particular since applications such as clus-
tering, classification, and regression often depend 
sensitively on the choice of metric—and two design 
goals have recently emerged.  

First, don’t trust large distances—since distances 
are often constructed from a similarity measure, 
small distances reliably represent similarity but large 
distances make little sense.  

Second, trust small distances only a bit—after 
all, similarity measurements are still very noisy. 
These ideas have formed the basis for much of the 
work on Laplacian-based non-linear dimensionality 
reduction, i.e., manifold-based, methods that are cur-
rently popular in harmonic analysis and machine 
learning. More generally, they suggest the design of 
analysis tools that are robust to stretching and 
shrinking of the underlying metric, particularly in 
applications such as visualization in which qualita-
tive properties, such as how the data are organized 
on a large scale, are of interest. 

Much of Carlsson’s tutorial was occupied by de-
scribing these analysis tools and their application to 
natural image statistics and data visualization. Ho-
mology is the crudest measure of topological proper-
ties, capturing information such as the number of 
connected components, whether the data contain 
holes of various dimensions, etc. 

Importantly, although the computation of homol-
ogy is not feasible for general topological spaces, in 
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many cases the space can be modeled in terms of 
simplicial complexes, in which case the computation 
of homology boils down to the linear algebraic com-
putation of the Smith normal form of certain data-
dependent matrices. Carlsson also described persis-
tent homology, an extension of the basic idea in 
which parameters such as the number of nearest 
neighbors, error parameters, etc., can be varied.  

A “bar code signature” can then be associated 
with the data set. Long segments in the bar code in-
dicate the presence of a homology class which per-
sists over a long range of parameters values. This 
can often be interpreted as corresponding to large-
scale geometric features in the data, while shorter 
segments can be interpreted as noise. 

Statistical and Machine Learning Perspectives 

Statistical and machine learning perspectives on 
MMDS were the subject of a pair of tutorials by 
Jerome Friedman of Stanford University and Mi-
chael Jordan of the University of California at 
Berkeley.  

Given a set of measured values of attributes of an 
object, x = (x1, x2, …, xn), the basic predictive or 
machine learning problem is to predict or estimate 
the unknown value of another attribute y. The quan-
tity y is the “output” or “response” variable, and {x1, 
x2,  … , xn} are the “input” or “predictor” variables.  

In regression problems, y is a real number, while 
in classification problems, y is a member of a dis-
crete set of unorderable categorical values (such as 
class labels). In either case, this can be viewed as a 
function estimation problem—the prediction takes 
the form of a function  that maps a point x 
in the space of all joint values of the predictor vari-
ables to a point  in the space of response variables, 
and the goal is to produce an F(·) that minimizes a 
loss criterion. 

In his tutorial, “Fast sparse regression and classi-
fication,” Friedman began with the common assump-
tion of a linear model, in which F(x) =  is 
modeled as a linear combination of the n basis func-
tions. Unless the number of observations is much 
larger than n, however, empirical estimates of the 

loss function exhibit high variance. To make the es-
timates more regular, one typically considers a con-
strained or penalized optimization problem 

 

where  is the empirical loss and P (·) is a pen-
alty term. The choice of an appropriate value for the 
regularization parameter λ is a classic model selec-
tion problem, for which cross validation can be used. 
The choice for the penalty depends on what is known 
or assumed about the problem at hand. 

A common choice is  
This interpolates between the subset selection prob-
lem (γ=0) and ridge regression (γ=0) and includes 
the well-studied lasso (γ=0). For γ ≤ 1, sparse solu-
tions (which are of interest due to parsimony and in-
terpretability) are obtained, and for γ ≥ 1, the penalty 
is convex. 

Although one could choose an optimal (λ, γ) by 
cross validation, this can be prohibitively expensive, 
even when the loss and penalty are convex, due to 
the need to perform computations at a large number 
of discretized pairs. In this case, path seeking meth-
ods have been studied. 

Consider the path of optimal solutions 
which is a one-dimensional curve 

in the parameter space . If the loss function is 
quadratic and the penalty function is piecewise lin-
ear, e.g., with the lasso, then the path of optimal so-
lutions is piecewise linear, and homotopy methods 
can be used to generate the full path in time that is 
not much more than that needed to fit a single model 
at a single parameter value.  

Friedman described a generalized path seeking 
algorithm, which solves this problem for a much 
wider range of loss and penalty functions (including 
some non-convex functions) very efficiently. 

Jordan, in his tutorial “Kernel-based contrast 
functions for sufficient dimension reduction,” con-
sidered the dimensionality reduction problem in a 
supervised learning setting.  

Methods such as Principal Components Analysis, 
Johnson-Lindenstrauss techniques, and recently-
developed Laplacian-based non-linear methods are 
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often used, but their applicability is limited since, 
e.g., the axes of maximal discrimination between 
two the classes may not align well with the axes of 
maximum variance.  

Instead, one might hope that there exists a low-
dimensional subspace S of the input space X which 
can be found efficiently and which retains the statis-
tical relationship between X and the response space 
Y.  

Conventional approaches to this problem of Suf-
ficient Dimensionality Reduction (SDR) make strong 
modeling assumptions about the distribution of the 
covariate X and/ or the response Y. Jordan consid-
ered a semiparametric formulation, where the condi-
tional distribution p(Y | X) is treated nonparam-
etrically and the goal is estimate the parameter S.  

He showed that this problem could be formulated 
in terms of conditional independence and that it 
could be evaluated in terms of operators on Repro-
ducing Kernel Hilbert Spaces (RKHSs). Recall that 
claims about the independence between two random 
variables can be reduced to claims about correlations 
between them by considering transformations of the 
random variables: 

X1 and X2 are independent if and only if 

 

for a suitably rich function space Η. If Η is L2 
and thus contains the Fourier basis, this reduces to a 
well-known fact about characteristic functions. More 
interesting from a computational perspective - recall 
that by the “reproducing” property, function evalua-
tion in a RKHS reduces to an inner product - this 
also holds for suitably rich RKHSs. This use of 
RKHS ideas to solve this SDR problem cannot be 
viewed as a kernelization of an underlying linear al-
gorithm, as is typically the case when such ideas are 
used (e.g., with SVMs) to provide basis expansions 
for regression and classification.  

Instead, this is an example of how RKHS ideas 
provide algorithmically efficient machinery to opti-
mize a much wider range of statistical functionals of 
interest. 

Conclusions and Future Directions 

In addition to other talks on the theory of data al-
gorithms, machine learning and kernel methods, di-
mensionality reduction and graph partitioning meth-
ods, and co-clustering and other matrix factorization 
methods, participants heard about a wide variety of 
data applications, including movie and product rec-
ommendations; predictive indexing for fast web 
search; pathway analysis in biomolecular folding; 
functional MRI, high-resolution terrain analysis, and 
galaxy classification; and other applications in com-
putational geometry, computer graphics, computer 
vision, and manifold learning.  

(We even heard about using approximation algo-
rithms in a novel manner to probe the community 
structure of large social and information networks to 
test the claim that such data are even consistent with 
the manifold hypothesis - they clearly are not.)  

In all these cases, scalability was a central issue - 
motivating discussion of external memory algo-
rithms, novel computational paradigms like MapRe-
duce, and communication-efficient linear algebra 
algorithms. 

Interested readers are invited to visit the confer-
ence website, http://mmds.stanford.edu , where the 
presentations from all speakers can be found. 

The feedback we received made it clear that 
MMDS has struck a strong interdisciplinary chord. 
For example, nearly every statistician commented on 
the desire for more statisticians at the next MMDS; 
nearly every scientific computing researcher told us 
they wanted more data-intensive scientific compu-
tation at the next MMDS; nearly every practitioner 
from an application domain wanted more applica-
tions at the next MMDS; and nearly every theoretical 
computer scientist said they wanted more of the 
same.  

There is a lot of interest in MMDS as a develop-
ing interdisciplinary research area at the interface 
between computer science, statistics, applied 
mathematics, and scientific and internet data appli-
cations. Keep an eye out for future MMDSs! 
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Technology and 
Commerce Corner 
YouTube 

The widely known archive for movies contains a large 
number of videos on many topics related to statistics, 
computing, and graphics. These include: 

Peter Donnelly’s talk at the TED conference on “How 
juries are fooled by statistics”: 
http://www.youtube.com/watch?v=kLmzxmRcUTo  

Did you know? Predicting Future Statistics: 
http://www.youtube.com/watch?v=j7FP1kgtD8U  

Video Archive of the Statistical Computing and Statis-

tical Graphics Sections 

The ASA sections on Statistical Computing and Statisti-
cal Graphics maintain a web page with great videos about 
graphics and visualization: 

http://stat-graphics.org/movies/ 

Among many other great movies, you can watch J.B. 
Kruskals demonstration on multidimensional scaling from 
1962 and John W. Tukey showing Prim-9, an interactive 
data analysis system back in 1973 (!).  

Gallery of Data Visualization 

Michael Friendly maintains a web page that carries the 
subtitle “The Best and Worst of Statistical Graphics”. 

http://www.math.yorku.ca/SCS/Gallery/  

Professional Networking on LinkedIn 

LinkedIn is one of many professional networking sites, 
maybe similar to social networking sites like facebook. 
These networks offer easy ways of setting up discussion 
groups, and very likely you will find many of your friends 
and colleagues here already. 

Some of these groups on LinkedIn are on Visual Ana-
lytics, The R Project for Statistical Computing, Data Min-
ing, Statistics and Visualization, cloud computing, graph-
ics professionals, and more. 
http://www.linkedin.com/  

Andreas Krause 




