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Overview

• Rudiments of tensors and multilinear algebra

• Multilinear data-fitting models

• Tensorial rank and Eckart-Young problem

• Nonexistence of optimal low-rank approximation

• Fixing the ill-posedness of Eckart-Young problem
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Multilinearity

Consider multivariate vector-valued functions.

Linearity: f : Rn → Rm, f(x) = f(x1, . . . , xn),

f(αx + βy) = αf(x) + βf(y)

Multilinearity: f : Rd1 × · · · × Rdk → Rm,

f(x1; . . . ;xk) = f(x1
1, . . . , x1

d1
; . . . ;xk

1, . . . , xk
dk

),

f(x1; . . . ;αxi + βyi; . . . ;xk) =

αf(x1; . . . ;xi; . . . ;xk) + βf(x1; . . . ;yi; . . . ;xk)

for i = 1, . . . , k.

“Classification of mathematical problems as linear and nonlin-
ear is like classification of the Universe as bananas and non-
bananas.”

Nonlinear: too general. Multilinear: next natural step.
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Matrices

A ∈ Rm×n may be viewed as either:

Linear map A : Rn → Rm, x 7→ Ax

relevant decompositions are “one-sided”: A = LU , A = QR, etc

Bilinear functional A : Rm × Rn → R, (x;y) 7→ xtAy

relevant decompositions are “two-sided”: A = LDU , A = UΣV t

(Singular value), A = QRQt (real Schur, aka Murnaghan-Wintner),

A = SJS−1 (real Jordan), etc

We will be interested in generalizations of the latter view: ten-

sors are to multilinear functionals what matrices are to bilinear

functionals
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Matrices as order-2 tensor

Let x ∈ Rm,y ∈ Rn. Write x⊗ y = xyt ∈ Rm×n.

Rm ⊗ Rn := spanR{x⊗ y | x ∈ Rm,y ∈ Rn}.

Then Rm ⊗ Rn = Rm×n, ie. matrices are order-2 tensors.

Lemma. Let A ∈ Rm×n. Then rank(A) = r if and only if there

exists x1, . . . ,xr ∈ Rm, y1, . . . ,yr ∈ Rn such that

A = x1 ⊗ y1 + · · ·+ xr ⊗ yr

and r is minimal over all such decompositions (ie. A cannot be

written as
∑s

i=1 x′i ⊗ y′i for any s < r).
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Tensors

Tensor product of 3 or more vectors may be defined in the same

fashion as the outer product of two vectors.

Order 2: x ∈ Rm,y ∈ Rn; x⊗ y := [xiyj] ∈ Rm×n

Order 3: x ∈ Rl,y ∈ Rm, z ∈ Rn; x⊗ y ⊗ z := [[xiyjzk]] ∈ Rl×m×n

Order k: x1 ∈ Rd1, . . . ,xk ∈ Rdk; x1 ⊗ · · · ⊗ xk := [[x1
i1

. . . xk
ik
]] ∈

Rd1×···×dk

Define Rd1⊗· · ·⊗Rdk := spanR{x1⊗· · ·⊗xk | x1 ∈ Rd1, . . . ,xk ∈ Rdk}

Easy to see that Rd1 ⊗ · · · ⊗ Rdk = Rd1×···×dk

May think of order-k tensors as k-way arrays: order-0 tensors are

scalars, order-1 tensors are vectors, order-2 tensors are matrices,

order-3 tensors are “3-dimensional matrices”, and so on.
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⊗ distributes over +

For α, β ∈ R, x1 ∈ Rd1, . . . ,xi,yi ∈ Rdi, . . . ,xk ∈ Rdk

x1 ⊗ · · · ⊗ (αxi + βyi)⊗ · · · ⊗ xk =

αx1 ⊗ · · · ⊗ xi ⊗ · · · ⊗ xk + βx1 ⊗ · · · ⊗ yi ⊗ · · · ⊗ xk.

Observation: looks a lot like the definition of multilinear maps.

An alternative way of saying that ⊗ distributes over + is to say

the map

θ : Rd1 × · · · × Rdk → Rd1 ⊗ · · · ⊗ Rdk,

(x1; . . . ;xk) 7→ x1 ⊗ · · · ⊗ xk

extends linearly to a multilinear map.
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Algebraic structure of tensors

Vector space structure: the set of k-way arrays has a vector
space structure — for [[tj1,...,jk]], [[sj1,...,jk]] ∈ Rd1×···×dk,

λ[[tj1,...,jk]] + µ[[sj1,...,jk]] = [[λtj1,...,jk + µsj1,...,jk]] ∈ Rd1×···×dk.

Rd1×···×dk is a vector space of dimension d1d2 . . . dk.

However, Rd1×···×dk is more than just a vector space.

Tensor product structure: Rd1×···×dk = Rd1 ⊗ · · · ⊗ Rdk has an
associated multilinear map θ : Rd1 × · · · × Rdk → Rd1 ⊗ · · · ⊗ Rdk,
(x1; . . . ;xk) 7→ x1 ⊗ · · · ⊗ xk.

Tensor product structure lost when one ‘unfolds’ or ‘matricize’:

Rl ⊗ Rm ⊗ Rn unfold−−−−→ Rl ⊗ Rmn.

Moral: one should not ‘compress’ an order-3 tensor into a matrix
(this is just like compressing a matrix into a vector — the bilinear
pairing is lost in the process)
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Tensors and multilinear functionals

Let A ∈ Rm×n. Then there are vectors ai ∈ Rm, bj ∈ Rn so

that A = a1 ⊗ b1 + · · · + ar ⊗ br. Thus the bilinear functional

A : Rm × Rn → R, (x;y) 7→ xtAy may be written as

xtAy = 〈a1,x〉〈b1,y〉+ · · ·+ 〈ar,x〉〈br,y〉.

Likewise, T ∈ Rd1×···×dk may be expressed in the form

T =
r∑

i=1

a1
i ⊗ · · · ⊗ ak

i

for some aj
i ∈ Rdj. It defines a multilinear functional T : Rd1 ×

· · · × Rdk → R, (x1, . . . ,xk) 7→ T (x1; . . . ;xk) in the same manner,

T (x1; . . . ;xk) :=
r∑

i=1

〈a1
i ,x1〉 · · · 〈ak

i ,xk〉.

The multilinearity of T is embodied in the multilinear map θ :

Rd1 × · · · × Rdk → Rd1 ⊗ · · · ⊗ Rdk, (a1
i ; . . . ; ak

i ) 7→ a1
i ⊗ · · · ⊗ ak

i

mentioned earlier.
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Where do you find tensors?

Economics, Optimal Control: Taylor expansion of Cr-function
f : Rn → R about a = (a1, . . . , an),

f(x) = f(a) +
∑

i

fi(a)(xi − ai) +
1

2

∑
i,j

fij(a)(xi − ai)(xj − aj)

+
1

3!

∑
i,j,k

fijk(a)(xi − ai)(xj − aj)(xk − ak) + · · ·

where fi(a) = ∂f
∂xi

(a), fij(a) = ∂2f
∂xi∂xj

(a), fijk(a) = ∂3f
∂xi∂xj∂xk

(a), and so on.

• Gradient [f1(a), . . . , fn(a)] is an order-1 tensor (vector);

• Hessian [fij(a)]n×n is an order-2 tensor (matrix);

• [[fijk(a)]]n×n×n is an order-3 tensor (3-way array).

Geometry:

• metric tensor gij (order 2);

• torsion tensor T i
jk (order 3);

• Riemann curvature tensor Ri
jkl (order 4);

• Ricci tensor Rik = gjmRimkj (order 2)
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Physics:
• electromagnetic field tensor in Maxwell’s equations, dF =
0, d ∗ F = µ ∗ j where

F =

 0 −E1 −E2 −E3
E1 0 B3 −B2
E2 −B3 0 B1
E3 B2 −B1 0

 ;

• Einstein tensor and energy-momentum tensor in gravitational
field equation, G = 8πT ,

Gij = Rij −
1

2
Rgij.

Engineering:
• moment of inertia tensor (order 2 symmetric);
• stress tensor (order 2 symmetric);
• piezoelectric tensor (order 3);
• elasticity (order 4)

Note: All these are tensor fields — the entries in the array are
variables. However, they are often referred to as tensors — a
source of confusion to newcomers.



Computational statistics and data analysis

Examples of k-way (or k-mode) datas:

• Psychometrics: individual × variable × time (3-way); indi-

vidual × variable × group (3-way); individual × variable × group

× time (4-way);

• Sensory analysis: sample × attribute × judge

• Batch data: batch × time × variable

• Time-series analysis: time × variable × lag

• Analytical chemistry: sample × elution time × wavelength

• Spectral data: sample × emission × excitation × decay

• Facial image: people × view × illumination × expression ×
pixels

• Atmospheric science: location × variable × time × observa-

tion

Model these datas as higher-order tensors
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Two-way datas and bilinear models

sample × variable: ith row ←→ ith sample, jth column ←→ jth
variable. Get data matrix A = [aij] ∈ Rm×n, m = number of
samples, n = number of variables.

Example (Bro). aij = fluorescence emission intensity at a spe-
cific wavelength λem of ith sample excited with light at wave-
length λex

j .

Bilinear model:

A = x1 ⊗ y1 + · · ·+ xr ⊗ yr + E = XY t + E

where E is the error/residual and r is known in advance. This is
equivalent to the problem

argmin
rank(B)≤r

‖A−B‖F .

Note: argminrank(B)=r‖A− B‖F may not have a solution as the
set {B ∈ Rm×n | rank(B) = r} is not closed.
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Multiway datas and multilinear models

Same example as previous slide but with emission intensity mea-

sured at several wavelengths instead of just one specific wave-

length.

Example (Bro). aijk = fluorescence emission intensity at wave-

length λem
j of ith sample excited with light at wavelength λex

k .

Get 3-way data A = [[aijk]] ∈ Rl×m×n.

Trilinear model:

A = x1 ⊗ y1 ⊗ z1 + · · ·+ xr ⊗ yr ⊗ zr + E

where E is the error/residual and r is known in advance.

Likewise for multiway datas and multilinear models.
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Eckart-Young theorem

Theorem. Let A = UΣV t =
∑rank(A)

i=1 σiuiv
t
i be the singular value

decomposition of A ∈ Rm×n. For r ≤ rank(A), let

Ar :=
r∑

i=1

σiuiv
t
i.

Then

‖A−Ar‖F = min
rank(B)≤r

‖A−B‖F .

May use xi = σiui,yj = vj.

Even though SVD is (essentially) unique, bilinear models are not

unique. E.g. take Q ∈ O(r), then

XY t = XQQtY t = (XQ)(Y Q)t.

Need additional information (impose additional contraints) to fix

X and Y .
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Rank of tensors

Tensorial rank may be defined by generalizing the earlier lemma:

Lemma. Let A ∈ Rm×n. Then rank(A) = r if and only if there
exists x1, . . . ,xr ∈ Rn, y1, . . . ,yr ∈ Rm such that

A = x1 ⊗ y1 + · · ·+ xr ⊗ yr

and r is minimal over all such decompositions (ie. A cannot be
written as

∑s
i=1 x′i ⊗ y′i for any s < r).

Definition. If T 6= 0, the rank of T ∈ Rd1⊗· · ·⊗Rdk = Rd1×···×dk,
denoted rank(T ), is defined as the minimum r ∈ N such that T
may be expressed as a sum of r rank-one tensors:

T =
r∑

i=1

x1
i ⊗ · · · ⊗ xk

i (Candecomp/Parafac)

with xj
i ∈ Rdj, j = 1, . . . , k. We set rank(0) = 0.

Well-defined: ie. there exists a unique r = rank(T ) for every
T ∈ Rd1×···×dk.
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Eckart-Young problem

Frobenius norm of [[tj1,...,jk]] ∈ Rd1×···×dk is defined by

‖[[tj1,...,jk]]‖
2
F :=

d1∑
j1=1

· · ·
dk∑

jk=1

t2j1,...,jk
.

Definition. An optimal rank-r approximation to a tensor T ∈
Rd1×···×dk is a tensor Smin with

‖Smin − T‖F = inf
rank(S)≤r

‖S − T‖F .

Eckart-Young problem: find an optimal rank-r approximation

for tensors of order k.

Solving the Eckart-Young problem would allow us, at least in

theory, to solve the problem of fitting k-way data with rank-r

multilinear model (in practice, one still needs a workable algo-

rithm).
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Solvability of Eckart-Young problem

It has always been assumed that the Eckart-Young problem is

solvable for tensors of any order and there has been continual

interests in finding a satisfactory ‘Eckart-Young theorem’-like re-

sult for tensors of higher order. The view expressed in the con-

clusion of the following paper is representative of such efforts:

“An Eckart-Young type of optimal rank-k approximation theorem

for tensors continues to elude our investigations but can perhaps

eventually be attained by using a different norm or yet other

definitions of orthogonality and rank.”

Source: T.G. Kolda, “Orthogonal tensor decompositions,” SIAM

J. Matrix Anal. Appl., 23 (1), 2001 , pp. 243–255.
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Surprising fact

The Eckart-Young problem has no solution in general!

A simple fact that’s often overlooked: in a norm space, the

minimum distance of a point T to a non-closed set S may not

be attained by any point in S.

For tensors of order k ≥ 3, r ≥ 2, the set

S(k, r) := {T ∈ Rd1×···×dk | rank(T ) ≤ r}

is not closed.
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An explicit example

x,y two linearly independent vectors in R2. Consider the order-3
tensor in R2×2×2,

T := x⊗ x⊗ x + x⊗ y ⊗ y + y ⊗ x⊗ y.

T has rank 3: straight forward.

T has no optimal rank-2 approximation: consider sequence {Sn}∞n=1
in R2×2×2,

Sn := x⊗ x⊗ (x− ny) +
(
x +

1

n
y

)
⊗

(
x +

1

n
y

)
⊗ ny,

Clear that rank(Sn) ≤ 2 for all n. By multilinearity of ⊗,

Sn = x⊗ x⊗ x− nx⊗ x⊗ y + nx⊗ x⊗ y

+ x⊗ y ⊗ y + y ⊗ x⊗ y +
1

n
y ⊗ y ⊗ y = T +

1

n
y ⊗ y ⊗ y.

For any choice of norm on R2×2×2,

‖Sn − T‖ =
1

n
‖y ⊗ y ⊗ y‖ → 0 as n→∞.
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Eckart-Young problem is ill-posed

An ill-posed problem is usually taken to mean one that doesn’t

have a unique solution.

The Eckart-Young problem is even worse in that for tensors of

order 3 or higher, even the existence of a solution is in question.

In other words, the ill-posedness of Eckart-Young problem cannot

be fixed by regularization (ie. imposing additional constraints to

ensure uniqueness) alone.
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Another example

Let x,y, z,w∈ R4. Define in R4×4×4,

T := x⊗x⊗x+x⊗y⊗z+y⊗z⊗x+y⊗w⊗z+z⊗x⊗y+y⊗z⊗w

and the sequence

Sn :=
(
y +

1

n
x

)
⊗

(
y +

1

n
w

)
⊗ nz +

(
y +

1

n
x

)
⊗ nx⊗

(
x +

1

n
y

)
− ny ⊗ y ⊗

(
x + z +

1

n
w

)
− nz⊗

(
x + y +

1

n
z
)
⊗ x

+ n(y + z)⊗
(
y +

1

n
z
)
⊗

(
x +

1

n
w

)
May check that: rank(Sn) ≤ 5, rank(T ) = 6 and ‖Sn − T‖ → 0.

T is a rank-6 tensor that has no optimal rank-5 approximations.

21



Norm independence

The choice of norm in the above examples is inconsequential

because of the following basic result.

Fact. All norms on finite-dimensional spaces are equivalent and

thus induce the same topology (the Euclidean topology).

Since questions of convergence and whether a set is closed de-

pend only on the topology of the space, the results here would

all be independent of the choice of norm on Rd1×···×dk, which is

finite-dimensional.
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Exceptional cases: order-2 tensors and rank-1 tensors

Set of tensors of rank not more than r,

S(k, r) = {T ∈ Rd1×···×dk | rank(T ) ≤ r}.

When k = 2 (matrices) and when r = 1 (decomposable tensors),

S(k, r) is closed — Eckart-Young problem solvable in these cases.

Proposition. For any r ∈ N, the set S(2, r) = {A ∈ Rm×n |
rank(s) ≤ r} is closed in Rm×n under any norm-induced topology.

Proposition. The set of decomposable tensors, S(k,1) = {S ∈
Rd1×···×dk | rank(S) ≤ 1}, is closed in Rd1×···×dk under any norm-

induced topology.
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A classification theorem

Theorem (de Silva and L., 2004). Let d1, d2, d3 ≥ 2. Let

T ∈ Rd1×d2×d3 with rank(T ) = 3. T is the limit of a sequence

Sn ∈ Rd1×d2×d3 with rank(Sn) ≤ 2 if and only if

T = x1 ⊗ x2 ⊗ x3 + x1 ⊗ y2 ⊗ y3 + y1 ⊗ x2 ⊗ y3

for some xi,yi linearly independent vectors in Rdi, i = 1,2,3.

Note that a rank-3 tensor of this form is defined by 6 linearly

independent vectors. On the other hand, we would expect a

rank-3 tensor chosen at random to be defined by 9 linearly in-

dependent vectors. T is an example of a tensor that has rank 3

but closed-rank 2 (to be defined).

Instead of fitting a 3-way data array with a rank-2 model, we fit

a 3-way data array with a closed-rank-2 model.
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Density of rank-r matrices

Set of tensors of rank exactly r,

R(k, r) := {T ∈ Rd1×···×dk | rank(T ) = r}.

R(k, r) not closed even in the case where k = 2 — higher-rank

matrices converging to lower-rank ones easily constructed:[
1 1 + 1

n
1 1

]
→

[
1 1
1 1

]
,

[
1
n 0

0 1
n

]
→

[
0 0
0 0

]
.

This is often a source of numerical instability: the problem

of defining matrix rank in a finite-precision context [Golub-Van

Loan 1996], the inherent difficulty of computing a Jordan canon-

ical form [Golub-Wilkinson 1976], may all be viewed as conse-

quences of the fact that R(2, r) is not closed.

However, closure of R(2, r) may be easily described (next slide).
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Density of rank-r tensors

Proposition. With R(2, r) = {A ∈ Rm×n | rank(A) = r} and
S(2, r) = {A ∈ Rm×n | rank(A) ≤ r}, we have

R(2, r) = S(2, r).

Here R denotes the topological closure of a non-empty set R.

Immediate Corollary. S(2, r) is closed.

Since S(k, r) is in general not closed for k > 2 and r > 1, the
Proposition is not true for tensors of higher order, ie. R(k, r) 6=
S(k, r). Characterizing the closure of S(k, r) will be important
for fixing the ill-posedness of the Eckart-Young problem.

Example. {T ∈ R2×2×2 | rank(T ) = 3} 6= R2×2×2. In fact, both
{T ∈ R2×2×2 | rank(T ) = 3} and {T ∈ R2×2×2 | rank(T ) = 2}
have positive volumes in R2×2×2; thus neither of them can be
dense. (Contrast with matrices — {A ∈ Rm×n | rank(A) <

min(m, n)} always have measure 0).
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Fixing the ill-posedness of Eckart-Young problem

Definition. An order-k tensor S ∈ Rd1×···×dk has closed-rank r

if S ∈ S(k, r) and S 6∈ S(k − 1, r).

Note that S(k, r) = {S ∈ Rd1×···×dk | closedrank(S) ≤ r}.

The problem

argmin
rank(S)≤r

‖S − T‖

may not have solutions when r > 1.

Suppose we solve the problem

Smin = argmin
closedrank(S)≤r

‖S − T‖,

which always have a solution, will we have fixed the ill-posedness
Eckart-Young problem?

Question. How do we know that Smin is meaningful?
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Optimal rank-2 approximations

Order 3 tensor T ∈ Rd1×d2×d3, di ≥ 2.

Optimal rank-1 approximation:

min
xi∈Rdi

‖T − x1 ⊗ x2 ⊗ x3‖

Optimal solutions exist. Can always find x∗i ∈ Rdi with

‖T − x∗1 ⊗ x∗2 ⊗ x∗3‖ = min
xi∈Rdi

‖T − x1 ⊗ x2 ⊗ x3‖.

Many ways to determine x∗1,x∗2,x∗3 explicitly.

Optimal rank-2 approximation:

min
xi,yi∈Rdi

‖T − x1 ⊗ x2 ⊗ x3 − y1 ⊗ y2 ⊗ y3‖

Optimal solutions often don’t exist, ie. no x∗i ,y
∗
i ∈ Rdi with

‖T−x∗1⊗x∗2⊗x∗3−y∗1⊗y∗2⊗y∗3‖ = min
xi,yi∈Rdi

‖T−x1⊗x2⊗x3−y1⊗y2⊗y3‖.
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Quick but flawed fix

Current way to force a solution for the Eckart-Young problem:
perturb the problem by small ε > 0 and find approximate solution
x∗i (ε),y

∗
i (ε) ∈ Rdi (i = 1,2,3) with

‖T − x∗1(ε)⊗ x∗2(ε)⊗ x∗3(ε)− y∗1(ε)⊗ y∗2(ε)⊗ y∗3(ε)‖
= ε + min

xi,yi∈Rdi
‖T − x1 ⊗ x2 ⊗ x3 − y1 ⊗ y2 ⊗ y3‖.

Serious numerical problems due to ill-conditioning (a phenomenon
often referred to as degeneracy or swamp in Chemometrics and
Psychometrics).

Reason? Rule of thumb in Computational Math:

A well-posed problem near to an ill-posed one is ill-conditioned.

So, even if we may perturb an ill-posed problem slightly to get a
well-posed one, the perturbed problem will more often than not
be ill-conditioned.
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Optimal closed-rank-2 approximations

For T ∈ Rd1×d2×d3, we define the smooth functions

fT (x1, . . . ,y3) := ‖T − x1 ⊗ x2 ⊗ x3 − y1 ⊗ y2 ⊗ y3‖2F ,

gT (x1, . . . ,y3) := ‖T − x1 ⊗ x2 ⊗ x3 − x1 ⊗ y2 ⊗ y3 − y1 ⊗ x2 ⊗ y3‖2F .

By the Theorem mentioned earlier, we have

Corollary. Let d1, d2, d3 ≥ 2. The closure of the set {T ∈
Rd1×d2×d3 | rank(T ) ≤ 2} is given by

{x1 ⊗ x2 ⊗ x3 + y1 ⊗ y2 ⊗ y3 | xi,yi ∈ Rdi}
∪ {x1 ⊗ x2 ⊗ x3 + x1 ⊗ y2 ⊗ y3 + y1 ⊗ x2 ⊗ y3 | xi,yi ∈ Rdi}.

It then follows that

min
closedrank(S)≤r

‖S−T‖2F = min
xi,yi∈Rdi

min{fT (x1, . . . ,y3), gT (x1, . . . ,y3)}.
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Note that this always have a solution. So there exists

S∗T = argmin
xi,yi∈Rdi

min{fT (x1, . . . ,y3), gT (x1, . . . ,y3)}

for any T ∈ Rd1×d2×d3.

Computation. Finding S∗T requires no more than a constant
multiple of the computational cost in finding approximate so-
lution: two functional evaluations (fT and gT ) per iteration in-
stead of one functional evaluation (fT only) per iteration. We
do not need to be concerned about the nondifferentiability of
min{fT , gT}.

Interpretation. How do we know that S∗T is meaningful? Note
that S∗T will take one of the following forms

x∗1⊗x∗2⊗x∗3+y∗1⊗y∗2⊗y∗3 or x∗1⊗x∗2⊗x∗3+x∗1⊗y∗2⊗y∗3+y∗1⊗x∗2⊗y∗3.

Both of them require exactly six vectors to define. So the ‘in-
formation content’ of S∗T is the same whichever one of the two
forms it takes.



Summary: cause of ill-posedness

Original problem: Given an order-3 tensor T ∈ Rd1×d2×d3, find

the optimal rank-2 approximation, ie. find six vectors x∗i ,y
∗
i ∈ Rdi

(i = 1,2,3) so that ‖T − x∗1 ⊗ x∗2 ⊗ x∗3 − y∗1 ⊗ y∗2 ⊗ y∗3‖ is minimal.

Claim: This is the wrong problem to solve (because there is no

solution in general). We should not insist on fitting T with a

model of the form x1 ⊗ x2 ⊗ x3 + y1 ⊗ y2 ⊗ y3.

Question: What are we really looking for?

Answer: Six vectors x∗i ,y
∗
i ∈ Rdi (i = 1,2,3) to fit the data

T . There’s no reason to require that these six vectors must be

combined in the form x1 ⊗ x2 ⊗ x3 + y1 ⊗ y2 ⊗ y3.
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Summary: proposed fix

Observation: If the minimum of ‖T −x1⊗x2⊗x3−y1⊗y2⊗y3‖
cannot be attained by any xi,yi ∈ Rdi, then there will instead be

x∗i ,y
∗
i ∈ Rdi that attain the minimum of ‖T − x1 ⊗ x2 ⊗ x3 − x1 ⊗

y2 ⊗ y3 − y1 ⊗ x2 ⊗ y3‖. Moreover,

‖T − x∗1 ⊗ x∗2 ⊗ x∗3 − x∗1 ⊗ y∗2 ⊗ y∗3 − y∗1 ⊗ x∗2 ⊗ y∗3‖
= min

xi,yi∈Rdi
‖T − x1 ⊗ x2 ⊗ x3 − y1 ⊗ y2 ⊗ y3‖.

That is: T can always be optimally approximated by a six-vector

model provided that we are willing to include the ‘boundary

points’ x1 ⊗ x2 ⊗ x3 + x1 ⊗ y2 ⊗ y3 + y1 ⊗ x2 ⊗ y3 on top of

the usual x1 ⊗ x2 ⊗ x3 + y1 ⊗ y2 ⊗ y3.

Natural fix: Minimize over a six-vector model that include both

forms.
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