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Multilinearityl

Consider multivariate vector-valued functions.

Linearity: f:R" — R™, f(x) = f(x1,...,2zn),
flax+ By) = af(x) + Bf(y)
Multilinearity: f:R9 x ... x R% — R™,
f(Xl;...;Xk)=f(a:%,...,:vgil;...;:vlf,...,a:];lk),
f(Xl;...;Oin—Fﬁyi;...;Xk)=

ozf(xl;...;xi;...;xk)—|—6f(x1;...;y75;...;xk)
for.=1,..., k.

“Classification of mathematical problems as linear and nonlin-

ear Is like classification of the Universe as bananas and non-
bananas.”

Nonlinear: too general. Multilinear: next natural step.



Matricesl

A € R™MX" may be viewed as either:

Linear map A : R"*" - R™ x+— Ax

relevant decompositions are “one-sided’: A= LU, A = QR, etc
Bilinear functional A : R™ x R® — R, (x;y) — xtAy

relevant decompositions are “two-sided”: A = LDU, A =UXV?
(Singular value), A = QRQ? (real Schur, aka Murnaghan-Wintner),
A = 8JS~1 (real Jordan), etc

We will be interested in generalizations of the latter view: ten-

sors are to multilinear functionals what matrices are to bilinear
functionals



Matrices as order-2 tensorl

Let x € R,y € R?. Write x®y = xy! € RM™X",
R™@R" :=spang{x®y |x € Ry € R"}.

Then R™M @ R = R™*" je. matrices are order-2 tensors.

Lemma. Let A € R™*", Then rank(A) = r if and only if there
exists xq1,...,Xr € R™, y1,...,y, € R" such that
A=x1Qy1+ - +xX Qyr

and r is minimal over all such decompositions (ie. A cannot be
written as >7_; x! ® y; for any s < r).



Tensors I

Tensor product of 3 or more vectors may be defined in the same
fashion as the outer product of two vectors.

Order 2: x € Rm,y c R™: XKy = [a:zyj] e RMmxn

Order 3: x e Ry e R,z € R"; x®y ® z := [[r;y2;,] € RXmxn
Order k: x! e Rd1, ... xF ¢ R%; xl@. . -@xF .= [[xgl,,,mfk]] =
Rd1 X Xdj

Define Rdl(g). . .®de — SpanR{Xl(g). : -®Xk | x1 c Rd1, o ,Xk c de}
Easy to see that R ® - .. ®@ R% = RI1XXd

May think of order-k tensors as k-way arrays: order-0 tensors are
scalars, order-1 tensors are vectors, order-2 tensors are matrices,
order-3 tensors are “3-dimensional matrices”’, and so on.



® distributes over —I—I

For a, 3 € R, x1 G]Rdl,...,xi,yi c R, ... xk e Rk

axl®...®xz®...®xk’+ﬂxl®...®y7f®...®xk.

Observation: looks a lot like the definition of multilinear maps.

An alternative way of saying that Q distributes over + is to say
the map

G:Rdlx--.dek_)]Rdl(g)...@de’
(Xl;“';Xk)'_)Xl@"-@Xk

extends linearly to a multilinear map.



Algebraic structure of tensorsl

Vector space structure: the set of k-way arrays has a vector
space structure — for [[tjl,,_,,jk]], [[Sjl,...,jk]] S Rdlx'--xdk,

— dqX---xd
Ajy ..l + wellsjy g ] = DNy gy + B8, D € REEZT59R
Ré1%Xdy; js 3 vector space of dimension dyds...d;.

However, R91%XXdr is more than just a vector space.

Tensor product structure: R XXdy — Rd1 i ... R% has an
associated multilinear map 6 : R% x ... x R% — R @ ... @ R%,
(Xl;---;Xk) = X1 Q- & X

Tensor product structure lost when one ‘unfolds’ or ‘matricize’:
Rl @ R™ @ R? YN0, i o gmn.
Moral: one should not ‘compress’ an order-3 tensor into a matrix

(this is just like compressing a matrix into a vector — the bilinear
pairing is lost in the process)



Tensors and multilinear functionalsl

Let A €¢ R™*™. Then there are vectors a; ¢ R™, b; € R" so
that A = a; ® by 4+ --- 4+ ar ® b. Thus the bilinear functional
A:R™ xR" - R, (x;y) — xtAy may be written as

x'Ay = (a1, x)(b1,y) + - + (ar,x)(br,y).

Likewise, T € R91XXdx may be expressed in the form
T = Za}@---@aﬁf

for some a‘g c R% . It defines a multilinear functional T : R% x
cox R%E R (x1 ..., xF) — T(x1;...:xF) in the same manner,

Tr

T(x'; ... xF) = > (a},x1) ... (af,xk>.

i=1
The multilinearity of T' is embodied in the multilinear map 0 :
R4 x ... x R% — RU ® ... R R%, (a,il;...;af) — az-l R - ®a§

mentioned earlier.
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Where do you find tensors?l

Economics, Optimal Control: Taylor expansion of C"-function
f:R" — R about a= (ay,...,an),

FOO) = f(@) + 3 @@ - a) + 5 fi@) (e~ a)(; — a;)

+ %Z figp(@)(zi — ai)(zj; — a;) (g —ax) + - -

i,k
where fi(a) = §L(a), fij(a) = 354-(a), fijr(a) = 5-55-(a), and so on.
e Gradient [f1(a),..., fn(a)] is an order-1 tensor (vector);

e Hessian [f;j(a)lnxn is an order-2 tensor (matrix);
o [fijr(@)llnxnxn is an order-3 tensor (3-way array).

Geometry:
e metric tensor g;; (order 2);
e torsion tensor T]?k (order 3);

e Riemann curvature tensor R;"kl (order 4);
e Ricci tensor R, = ¢?™R;y,; (order 2)
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Physics:
e electromagnetic field tensor in Maxwell's equations, dF =
O,d*x FF = ux*j where

Ei 0 Bs —B5
E> —Bs 0 By
Ez B, —B; O

e FEinstein tensor and energy-momentum tensor in gravitational
field equation, G = 8«T,

0 —Fy —F» —F3
P ] |

1
Gij = R;j — §Rgij-

Engineering:

moment of inertia tensor (order 2 symmetric);
stress tensor (order 2 symmetric);
piezoelectric tensor (order 3);

elasticity (order 4)

Note: All these are tensor fields — the entries in the array are
variables. However, they are often referred to as tensors — a
source of confusion to newcomers.



Computational statistics and data analysisl

Examples of k-way (or k-mode) datas:

Psychometrics: individual x variable x time (3-way); indi-

vidual x variable x group (3-way); individual x variable x group
x time (4-way);

Sensory analysis: sample x attribute x judge

e Batch data: batch x time x variable

e [ime-series analysis: time x variable x lag

e Analytical chemistry: sample x elution time x wavelength
e Spectral data: sample x emission X excitation x decay

e F[acial image: people x view x illumination x expression X
pixels

e Atmospheric science: location x variable x time x observa-
tion

Model these datas as higher-order tensors
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Two-way datas and bilinear modelsl

sample x variable: ith row «—— ith sample, jth column «—— jth
variable. Get data matrix A = [a;;] € R™*", m = number of
samples, n = number of variables.

Example (Bro). a;; = fluorescence emission intensity at a spe-
cific wavelength \®M of ith sample excited with light at wave-
length A?X.

Bilinear model:

A=x1®y1+ - +x 0y + E=XY'+FE

where E is the error/residual and r is known in advance. This is
equivalent to the problem

argmin ||A — B||p.
rank(B)<r

Note: argmin ynk(B)=rIlA — Bl|[p may not have a solution as the
set {B € R™*" | rank(B) = r} is not closed.
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Multiway datas and multilinear modelsl

Same example as previous slide but with emission intensity mea-
sured at several wavelengths instead of just one specific wave-
length.

Example (Bro). a; ;. = fluorescence emission intensity at wave-
length of ith sample excited with light at wavelength A7*.

Get 3-way data A = [a;;;] € RXm*n,

Trilinear model:

A:X1®y1®zl+"'+XT®YT®ZT+E

where E is the error/residual and r is known in advance.

Likewise for multiway datas and multilinear models.
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Eckart-Young theorem I

Theorem. Let A=UXV! = Zga:nlk(A) az-uivg be the singular value

decomposition of A € R™*", For r < rank(A), let

,
Ar,« e Z O'Z'UZ'V%;.
i=1
T hen
A— A = min A — Bllp.
[A=Arllp = min _|IA~ Bl

May use x; = ou;,y; = Vj.

Even though SVD is (essentially) unique, bilinear models are not
unique. E.g. take Q € O(r), then

XY!'=XQQY'=(XQ)(YQ)".

Need additional information (impose additional contraints) to fix

X and Y.
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Rank of tensorsl

Tensorial rank may be defined by generalizing the earlier lemma:

Lemma. Let A € R™*" Then rank(A) = r if and only if there
exists xq1,...,Xr € R", y1,...,yr € R™ such that

A=x1Qy1+ - +X Qyr

and r is minimal over all such decompositions (ie. A cannot be
written as Y9_; x; @ y. for any s <r).

Definition. If T'# 0, the rank of T € RU1 Q... @ R% = Rd1 % Xdy
denoted rank(T), is defined as the minimum r € N such that T
may be expressed as a sum of r rank-one tensors:

.
T=)> X1 @ ® x5 (Candecomp/Parafac)

()
1=1

with x/ e R%, j =1,...,k. We set rank(0) = 0.

Well-defined: ie. there exists a unique r
T € Rdlx---xdk_

rank(T') for every
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Eckart-Young problem I

Frobenius norm of [t ;1 € RAX*dk is defined by

10ty 5, 0l = Z Ztﬂ,

J1=1 jp=1

Definition. An optimal rank-r approximation to a tensor T €
Ré1%Xdg js 3 tensor Sy With

Smin — Tl = inf S —T| r.

|| min ||F rank(S)ng ||F
Eckart-Young problem: find an optimal rank-r approximation
for tensors of order k.

Solving the Eckart-Young problem would allow us, at least in
theory, to solve the problem of fitting k-way data with rank-r
multilinear model (in practice, one still needs a workable algo-

rithm).
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Solvability of Eckart-Young probleml

It has always been assumed that the Eckart-Young problem is
solvable for tensors of any order and there has been continual
interests in finding a satisfactory ‘Eckart-Young theorem’-like re-
sult for tensors of higher order. The view expressed in the con-
clusion of the following paper is representative of such efforts:

“An Eckart-Young type of optimal rank-k approximation theorem
for tensors continues to elude our investigations but can perhaps
eventually be attained by using a different norm or yet other
definitions of orthogonality and rank.”

Source: T.G. Kolda, “Orthogonal tensor decompositions,” SIAM
J. Matrix Anal. Appl., 23 (1), 2001 , pp. 243—255.
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Surprising factl

The Eckart-Young problem has no solution in general!

A simple fact that's often overlooked: in a norm space, the

Mminimum distance of a point 7" to a non-closed set § may not
be attained by any point in S.

For tensors of order £ > 3, r > 2, the set

S(k,r) 1= {T € R1>X Xk | rank(T) < r}

is not closed.
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An explicit examplel

x,y two linearly independent vectors in R2. Consider the order-3
tensor in R2x2X2

T =XQQXQQX+XQYVYRYyF+YRIXRY.
T has rank 3: straight forward.

T has no optimal rank-2 approximation: consider sequence {Sn}>2 4
in RQXQXQ

Sn i =m=xXxQ (x—ny) + (X—I—%y>®<x—l—%y)®ny,
Clear that rank(Sy) < 2 for all n. By multilinearity of ®,
S =XRQXRXIX—NMXQRXQYF+NXRQXRY
+X®y®y+y®x®y+%y®y®y=T+%y®y®y.
For any choice of norm on R2X2x2
ISa~Tl = "ly®y®y| -0  asn— oo
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Eckart-Young problem is iII—posedl

An ill-posed problem is usually taken to mean one that doesn’t
have a unique solution.

The Eckart-Young problem is even worse in that for tensors of
order 3 or higher, even the existence of a solution is in question.

In other words, the ill-posedness of Eckart-Young problem cannot
be fixed by regularization (ie. imposing additional constraints to
ensure unigueness) alone.
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Another example l

Let x,y,z, we R*. Define in R¥x4x4,

T''=XRXQX+XQYR2+yRZIX+TYRIWRZFTZRXQY +YRZQOW

and the sequence
1 1 1 1
Sp 1= <y+—X) ® <y+—W) ® nz + <y+—X) ® nNX (X—I-—y)
mn mn mn n
1 1
—nNy Ry & <X+Z—|—;W) —nz X (X—I—y—l—;z) R X
1 1
tuly+a@ v+ 2)o (x+ W)
May check that: rank(Sp) <5, rank(T) =6 and ||S, — T|| — O.

T is a rank-6 tensor that has no optimal rank-5 approximations.
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Norm independencel

The choice of norm in the above examples is inconsequential
because of the following basic result.

Fact. All norms on finite-dimensional spaces are equivalent and
thus induce the same topology (the Euclidean topology).

Since questions of convergence and whether a set is closed de-
pend only on the topology of the space, the results here would
all be independent of the choice of norm on R41XXdk \which is
finite-dimensional.
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EXxceptional cases: order-2 tensors and rank-1 tensorsl

Set of tensors of rank not more than r,

S(k,r) = {T € R4*"Xdk | rank(T) < r}.

When k = 2 (matrices) and when » = 1 (decomposable tensors),
S(k,r) is closed — Eckart-Young problem solvable in these cases.

Proposition. For any r € N, the set §(2,7r) = {A € R™*" |
rank(s) < r} is closed in R™*™ under any norm-induced topology.

Proposition. The set of decomposable tensors, S(k,1) = {S €
RA1XXdg | rank(S) < 1}, is closed in R91**dk ynder any norm-
induced topology.
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A classification theoreml

Theorem (de Silva and L., 2004). Let di,d>,d3 > 2. Let
T € R1xd2xd3 \with rank(7T) = 3. T is the limit of a sequence
Sy, € Rd1xdaxds with rank(Sy,) < 2 if and only if

T=X18X2Q®X3+X1QYy2Q0y3+y1®Xo®Yy3

for some x;,y; linearly independent vectors in R%, i = 1,2, 3.

Note that a rank-3 tensor of this form is defined by 6 linearly
independent vectors. On the other hand, we would expect a
rank-3 tensor chosen at random to be defined by 9 linearly in-
dependent vectors. T is an example of a tensor that has rank 3
but closed-rank 2 (to be defined).

Instead of fitting a 3-way data array with a rank-2 model, we fit
a 3-way data array with a closed-rank-2 model.
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Density of rank-r matricesl

Set of tensors of rank exactly r,
R(k,r) ;= {T € R4*"Xdk | rank(T) = r}.

R(k,r) not closed even in the case where £k = 2 — higher-rank
matrices converging to lower-rank ones easily constructed:

1 141 11 0 0 0

[1 1”]%11]’ !0%_)00'
This is often a source of numerical instability: the problem
of defining matrix rank in a finite-precision context [Golub-Van
Loan 1996], the inherent difficulty of computing a Jordan canon-

ical form [Golub-Wilkinson 1976], may all be viewed as conse-
quences of the fact that R(2,r) is not closed.

However, closure of R(2,r) may be easily described (next slide).
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Density of rank-r tensorsl

Proposition. With R(2,r) = {A € R™*" | rank(A) = r} and
S(2,r) ={A € R™*" | rank(A) <r}, we have

R(2,7) = S(2,7).

Here R denotes the topological closure of a non-empty set R.
Immediate Corollary. S(2,r) is closed.

Since S(k,r) is in general not closed for £k > 2 and r > 1, the
Proposition is not true for tensors of higher order, ie. R(k,r) #=
S(k,r). Characterizing the closure of S(k,r) will be important
for fixing the ill-posedness of the Eckart-Young problem.

Example. {T € R2x2X2 | rank(T) = 3} # R2%2X2_ In fact, both
{T € R2%2X2 | rank(T) = 3} and {T € R2%X2X2 | rank(T) = 2}
have positive volumes in R2X2X2- thus neither of them can be
dense. (Contrast with matrices — {A € R™*"™ | rank(A) <

min(m,n)} always have measure 0).
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Fixing the ill-posedness of Eckart-Young probleml

Definition. An order-k tensor S € R91XXdr has closed-rank r
if SecS(k,r)and S &S0k —1,r).

Note that S(k,r) = {S € R91*Xd; | closedrank(S) < r}.

The problem

argmin ||.S — T
rank(S)<r

may not have solutions when r > 1.

Suppose we solve the problem
Smin = argmin 1S =T,
closedrank(S)<r

which always have a solution, will we have fixed the ill-posedness
Eckart-Young problem?

Question. How do we know that Smin IS meaningful?
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Optimal rank-2 approximationsl

Order 3 tensor T € R91xd2Xd3 g. > 2

Optimal rank-1 approximation:

min ||T — X1 XXX X3||
XZ'ERCZ’@

Optimal solutions exist. Can always find x} € R with

IT—xi @x3 @ x| = min |IT—x1 &% x|
X3 2

Many ways to determine x*,x%, x% explicitly.
1) %2> &3

Optimal rank-2 approximation:

min ||T —x1 ®X2 ®x3 —y1 ® y2 @ y3|
X,y € R

Optimal solutions often don't exist, ie. no x¥,y* € R% with

[T —x1®x58%x3—y1Qy5Qy3| = mi?Rd.||T_X1®X2®X3_Y1®YQ®Y3”-
X,y €N
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Quick but flawed fixl

Current way to force a solution for the Eckart-Young problem:
perturb the problem by small e > 0 and find approximate solution
x¥(e),y¥(e) € R% (i =1,2,3) with

1T = x1(e) ® x5(e) ®x3(e) — y1(e) ®y2(e) ®y3(e)|

—=e+ min [T -Xx1®Xx20Xx3—-Yy1®Yy2RYy3|.
x;,y;ER%

Serious numerical problems due to ill-conditioning (a phenomenon
often referred to as degeneracy or swamp in Chemometrics and
Psychometrics).

Reason? Rule of thumb in Computational Math:
A well-posed problem near to an ill-posed one is ill-conditioned.

So, even if we may perturb an ill-posed problem slightly to get a
well-posed one, the perturbed problem will more often than not

be ill-conditioned.
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Optimal closed-rank-2 approximationsl

For T € R41%xd2Xd3 \we define the smooth functions

fr(x1,...,¥3) = |IT —x1 ® X2 ® X3 — y1 ® y2 @ y3| %,
gr(x1,...,¥3) =T —X1 @ X @X3 — X1 QY2 ® Y3 — ¥1 @ X0 @ y3||%.

By the Theorem mentioned earlier, we have

Corollary. Let dq,dp,d3 > 2. The closure of the set {T €
Rd1xd2xd3 | rank(T) < 2} is given by

x1®x2®x3+y1 ®y2®y3 | X;,y; € R4}
U{x1 ®Xx2®x3+ X1 ®y2®Yy3+y1 ®x2®Yy3 | x;,y; € R4}

It then follows that

min S—TI2 = min min{fr(x.... o |
Closedrank(S)ng ||F Xi,yiERdi {fT( 1, 7Y3)79T( 1 7Y3)}
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Note that this always have a solution. So there exists

S’}: — argmin min{fT(X17 SR 7Y3)79T(X17 .« 7y3)}
x;,y; ER%

for any T € Rd1xd2xd3

Computation. Finding S} requires no more than a constant
multiple of the computational cost in finding approximate so-
lution: two functional evaluations (fr and gp) per iteration in-
stead of one functional evaluation (fr only) per iteration. We
do not need to be concerned about the nondifferentiability of

min{fTagT}'

Interpretation. How do we know that S; IS meaningful? Note
that ST will take one of the following forms

X]@X5Qx3+YyIQysQy3 or X]Rx50x3+x]QysQy3+yix5Qy3.
Both of them require exactly six vectors to define. So the ‘in-

formation content’ of S;"F is the same whichever one of the two
forms it takes.



Summary: cause of iII—posednessI

Original problem: Given an order-3 tensor T € Rd41Xd2Xd3  find
the optimal rank-2 approximation, ie. find six vectors x¥,y* € R%
(1 =1,2,3) so that ||T —x] x5 ®x3 —y] ®y5®y3| is minimal.

Claim: This is the wrong problem to solve (because there is no
solution in general). We should not insist on fitting T° with a

model of the form x1 ¥ xo0 X x3+y1 VY2 R ys3.

Question: What are we really looking for?
Answer: Six vectors x¥,yf € R% (i = 1,2,3) to fit the data

T. There's no reason to require that these six vectors must be
combined in the form x{ ¥ xo ¥ x3+y1 Vy2 R ys3.
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Summary: proposed fixI

Observation: If the minimum of ||T —x1 ®Xo®X3—y1 QY2 Qy3]
cannot be attained by any x;,y; € Rdi, then there will instead be
x¥,y: € R% that attain the minimum of ||T — x1 ® X3 ® X3 — X1 ®
Y2 ®y3 —y1 ® X2 ®y3||. Moreover,

1T —X] ®X5Q@X3 —X] QYysQy3 —y1 X5 Qy3|

= min ||T-x1®X®X3—y1Qy2®y3|.
x;,y;ERY

That is: T can always be optimally approximated by a six-vector
model provided that we are willing to include the ‘boundary
points’ X1 ®xo ¥ X3 + X1 RYy>2 QY3 +¥y1 ® Xxo ® yz on top of
the usual x;1 x> VX3 +y1 VY2 VYy3.

Natural fix: Minimize over a six-vector model that include both
forms.
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