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Long Term Goal I

Numerical Multilinear Algebra: T heory, Algorithms and Appli-
cations of Tensor Computations

e Develop a collection of standard computational methods for
higher order tensors that parallel the methods that have been
developed for order-2 tensors, ie. matrices.

e Develop the mathematical foundations to facilitate this goal.

e Applications (defer till three slides later).



Novelty I

e Different from Computer Algebra

— Interested in a numerical approach where inexpensive float-
ing point operations, rather than expensive symbolic op-
erations, play the central role.

— Like other areas in numerical analysis, Numerical Multilin-
ear Algebra will entail approximate solution of approximate

multilinear problems with approximate data but under con-
trollable error bounds.

e Different from Numerical Polynomial Algebra

— Interested in systems of multilinear equations instead of
polynomial equations.

— Just as matrices are the main objects of interest in Nu-

merical Linear Algebra, high order tensors will be the main
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objects of interest in Numerical Multilinear Algebra. Mul-
tilinear systems of equations associated with tensors will
play an auxiliary role, unlike Numerical Polynomial Alge-
bra where systems of polynomial equations are the main
objects of study.

e Different from Multilinear Algebra

— Study of multilinear algebra in mathematics is concerned
with algebraic properties of tensor products of modules or
vector spaces. There is no interest in the mathematical
properties of tensors per se — ie. notions such as ranks,
decompositions, hyperdeterminants of a tensor — only
the algebraic structure of the set of tensors as a vector
space or module.

— Will be interested in computations.



Why Multilinear? I

“Classification of mathematical problems as linear and nonlin-

ear is like classification of the Universe as bananas and non-
bananas.”

Nonlinear — too general

Multilinear — next natural step



wWhy Now? I

e Unavoidable in analyzing complex data arising from techno-
logical advancement in instruments and methodologies:

— measurements from spectrophotometric fluorescence de-
tector in high-performance chromatography — 3-way data

— absorption spectra measurements at different wavelengths
in a Kinetic experiment — 4-way data

— facial image database of human faces photographed under
varying conditions of illumination, camera angle and facial
expression — 5-way data

e Recent developments provide the right tools:

— Algorithms: Semi-definite Programming (SDP)
— Computing Technologies: better, cheaper
— Theory: Algebraic Geometry, Invariant Theory



Motivation |

Past 50 years, Numerical Linear Algebra played crucial role in:

e the statistical analysis of two-way data,

e the numerical solution of partial differential equations arising
from vector fields,

e the numerical solution of second-order optimization methods.
Next step — develop Numerical Multilinear Algebra for:

e the statistical analysis of multi-way data,

e the numerical solution of partial differential equations arising
from tensor fields,

e the numerical solution of higher-order optimization methods.
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Tensors I

Tensor of order k and size (dq,...,d;) is a k-way array of real
numbers A = [[a;,. ;] € R4**d with two properties:

1. Vector Space Structure: A = [aj,..;1, B =[bj,.. ;1 € Rd1X+xXdy
a, B € R,
aA+ BB := [aaj,. j, + Bbj,. ] € R

ie. Ré1xxdi js 3 vector space of dimension dj ---d; over R.
2. Multilinear Structure: A = [[aj, ;] € R4* %% and matrices

Ly = [¢} ;] € R"t*, Ly = [0} ] € R,

Then (Lq,...,L.)A = [[Cil---ik]] e R"1xXTk where

Ciy.. Z Z Gy B3

J1=1 J=1



Property 2 distinguishes R91XXdx from being simply a vector
space of dimension djp ---dg. It is the reason why, for instance,
RiIxXmXn (grder-3 tensors) is different from R™X" (matrices) or
Rimn (vectors).

Example. For A € R™*" (Lq1,L>)A is equivalent to multiplying
every column vector of A by L1 and then every row vector of the
result by Lo (or vice versa):

(L1,Lp)A = L1ALS = L (ALY) = (L1A) LS.

Caution: What physicists and geometers call tensors are really
tensor fields (ie. tensor-valued functions on manifolds). E.qg.
stress tensor, moment-of-intertia tensor, Einstein tensor, metric
tensor, curvature tensor, Ricci tensor, etc.



Properties of Multilinear Matrix Multiplicationl

o Let A, B ¢ RlxXdy gnd X\, p € R. Let Ly € R"1Xd1 | [, €
R7&Xdk, Then

(L1, L) (M +puB) = XL, ..., L) A+ p(Ly, ..., L;)B.
o Let A € RlaxXdy et L1 € Ri1*d1 . [, € R%>*%, and
My e RS1x7T1 M, € R%*"k. Then
(My,...,M)(L1,...,Lp)A = (M1Lq,...,MiLy)A

where M;L; € RSi%Xdi js simply the matrix-matrix product of
Mi and Li-

o Let A e RUX"Xdk and \,p € R. Let Ly e R"*41 . L, M; €
R7%% ... L, € Rx*%  Then

(L]_,...,)\Lj—|—/LMj,...,Lk)A:
)\(Ll,...,Lj,...,Lk)A—I-,u(L]_,...,Mj,...,Lk)A.
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Outer Productl

The outer product of k vectors, x! = (z1, ... ,x}il)t e R ... xF=
(=f, ... ,a;’glk)t € RY%, is defined by

@ @xh = o] ok ] € RIxd

The outer product of k vector spaces, R, ... R%, is simply

RN @ ... @ R% := spanp{x! @ --- @ x" | x! e RN, ... xF e R%}.

By definition, R @ ... @ R% is a subspace of the vector space
RA1%Xdx  Counting dimensions, we see immediately that

R ... @ R%* = RI1XXdg
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Property 2’': Outer Product Structurel

The fact that R4 @ ... @ R%& = RI1XXdr tells us that every
AcR1®... 9 R% may be written as

r
a=1
for some X‘&ERdﬁ (a=1,....,r; 7=1,...,k).

This is exactly what gives a tensor its multilinear structure. Given
L1 eRmxdi [, € Rrexdg,

iy
(Ly,...,L)A= Y Lixt® - @ L;xE.

a=1

So the multilinear structure (Property 2) and outer product
structure (Property 2') are one and the same thing. We could
have instead defined a tensor as one that satisfies Properties 1
and 2' — a k-array that can be decomposed into a sum of outer

products of k vectors.
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Multiway DataI

Psychometrics: individual x variable x time
Sensory analysis: sample x attribute x judge
Batch data: batch x time x variable
Time-series analysis: time x variable x lag

Facial image: people x view X illumination x expression X
pixels

Analytical chemistry: sample x elution time x wavelength
Spectral data: sample x emission x excitation x decay
Atmospheric science: location x variable x time x observa-

tion
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New Mathematics for Data Analysisl

e Gunnar Carlsson, Persi Diaconis, Joshua Tenenbaum: Topo-
logical Methods in Data Analysis

e Ronald Coifman: Harmonic Analysis on Data Sets

e David Donoho: High-Dimensional Data Analysis: the curses
and blessings of dimensionality

e Peter Jones: The Traveling Salesman Meets Large Data Sets

e Tomasso Poggio, Steve Smale: The Mathematics of Learn-
ing: dealing with data

Treat data as points (vectors) in either subsets of R™ or C"
possibly with additional structures (e.g. Riemannian manifolds,
symmetric spaces, rectifiable sets).

Problem: The intrinsic multilinear structure in many types of

data is simply discarded.
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Application: Analytical Chemistryl

Fluorescence spectra measurements performed by Rasmus Bro.

a;j. = fluorescence emission intensity at wavelength A5™ of ith
sample excited with light at wavelength Agx. Get 3-way data
A = [[aijk]] c Rixmxn.

Decomposing A into a sum of outer products (a unique decom-
position under mild assumptions),

A=x1Q0y1®21 + - +X Qyr ® zr.

The vectors xo,Va,2%Za, a = 1,...,r, vield the true chemical fac-
tors responsible for the data:

e there are r pure substances in the mixtures,

o Xoo = (x14,---,x],) holds the relative concentrations of the

ath substance in samples 1,...,1,
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e Vo = (Y14, ---,Yma) holds the excitation spectrum of the ath
substance,

e zo = (214,-.--,2na) holds the emission spectrum of the ath
substance.

Recovering such information will not be possible if we ‘forget’
the trilinear structure, ie. vectorize A into a vector a € Rimn
and work only with a with no information on its original 3-way
structure.



Matrix Rankl

A € R™*"  rank(A) may be defined in either one of the three
(among other) ways:

e outer-product rank: rank(A) = r iff there exists xq,...,x, €
R™, y1,...,yr € R™ such that

A=x1Q0y1+ - +xQyr
and r is minimal over all such decompositions.

e row rank: rank(A) = r iff
dim(spangp{Aie,---,Ame}) =7
where A;, € R™ denotes the ith row vector of A.
e column rank: rank(A) = r iff

dim(spang{Ae1,...,Aen}t) =7

where A,; € R™ denotes the jth column vector of A.
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Tensor Rankl

A € RA1xxdi - Different notions of tensor ranks:

e outer product rank: rankg(A) = r iff there exists x{ e R%,
7 =1,...,k, such that

,
A= ZX,}@---@X?
i=1
and r is minimal over all such decompositions.
e p-slab rank (p=1,...,k): ranky(A) = ryp iff
dim(spanp{Ae..e10...0;s- - - A..,,.dp.,,,,}) =Ty

where A,...eie...e € RI1XXdpX-Xdp denotes the ith p-slab of A,
an order-(k — 1) tensor.

e Mmultilinear rank of A is defined as

rankm(A) = (rank1(A),...,rankg(A))
16



Note: when we wish to emphasize the dependence of multilinear
rank on the order k£, we will use the term k-linear rank instead.
For example, when k£ = 2, then 1-slab = row, 2-slab = column.
Bilinear rank of a matrix A € R™*X" is simply

rankm(A) = (rowrank(A), colrank(A)) = (rank(A),rank(A)).

When k > 3, rankp(A) # rankqs(A) # rankg(A) in general (for
pFq).

Useful notation: a hat over an index like cfp means that the
index is to be omitted, eg. Ixm xn=10xn, (i,j,k,1) = (,34,0).



Examplel

For an order-3 tensor A € RIX™MXn \we have

e outer product rank: rankg(A) = r iff there exists x1,...,Xr €
R! yei,...,yr € R™, yq1....,yr € R" such that

A:X1®Y1®Z1‘|‘"'+XT®YT®ZT

and r is minimal over all such decompositions.
e 1-slab rank: ranky(A) = rq iff

dim(spanR{Al.., .. 7Aloo}) =17
where A,q.e € R™*" denotes the ith 1-slab of A.

e 2-slab rank: ranks(A) = ro iff

dim(SpanR{Aolta <. 7A.m.}) — T2

where A,j, € R'X™ denotes the jth 2-slab of A.
17



e 3-slab rank: rankz(A) = r3 iff

dim(spanR{A..l, e ,Aoon}> — T3
where Ag,; € RIX™ denotes the kth 3-slab of A.

e trilinear rank: rankg(A) = (r1,7r2,73).



Outer Product Decompositionl

Let A € RIX™X" and rankg(A) = r. The outer product or Can-
decomp/Parafac decomposition of A is

r
A= Z Xa ®YVa X Zq.

a=1
In other words,
.
Ajjk — Z LiaYjafko
a=1
for some xo = (Z10,---,%10)" € R ya = (W1, - -5 yma)? € R™,
Zo = (210, -+, 2na)! ER™, a=1,...,r.

The vectors Xq,ya, Za are sometimes regarded as column vectors
of matrices X = [x1,...,x/] € RX" YV = [yq1,...,yr] € RMXT,
Z = z1,...,2zr] € R"XT,

18



Multilinear Decompositionl

Let A € RIX™X" gnd rankgm(A) = (r1,70,r3). Multilinear or
Tucker decomposition of A is

A= (X,Y,Z)C.

In other words,

Aiik — Y y‘ y: Lia¥jB8%kyCaBy

a=1p=1~y=1
for some full-rank matrices X = [z;,] € RI*", Y = ly;8] € R™~*72,
Z = [zx,] € R™"3, and core tensor C = [lcyp,] € RM*M2%"3,

Again, X,Y,Z may be chosen to have orthonormal columns.

Observe that for matrices, this reduces to the LlDL’f2 or QlRQ’f2
decompositions.
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Norms and Inner Productsl

In order to discuss approximations, we need to define a norm on
Rd1 X Xdp

The most convenient one to use is the Frobenius norm, || - ||z,
defined by

dq dg,
2 2
Ilaj,.; 07 = > - > a5,

1=1 =1

for [a;, ;] € Rd1x-xdi,

J1---Jk

It is the norm associated with the trace inner product, (-, ),
defined by

(Lajy..5.0 | 064,51 Z Z ajy .5, 51k

Jj1=1 gp=1

for [aj,.. ;. 1, [bj,.. ] € RI X4k Thus [|A||% = (A | A)y
20



Outer Product Approximationl

A Candecomp/Parafac or outer product model has the following
form

.
Aiik — Z LiaYjarka + Cijk
a=1

where E = [e;;x] € RP*™X™ denotes the (unknown) error.
To minimize the error, we want an outer product approximation

.
argminf|A — ) Xa ® ya ® zallp

a=1
where the minimum is taken over all matrices X = [x1,...,Xy] €
RXT Y = [yq,...,yr] € RMXT Z = [zq,...,2,] € RPXT.

In short, we want an optimal solution

Bg = argmin ||A— Blp.
rankg(B)<r
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Multilinear Approximationl

A Tucker or multilinear model has the following form

rL 2 73

Aiik — S: S: S: Lia¥jB8%kyCaBy + Cijk
a—=1f=1~=1

where E = [e;;x] € RIX™X" denotes the (unknown) error.

To minimize the error, we want a multilinear approximation

argmin||A — (X, Y, 2)C|| g

where minimum is taken over all full-rank matrices X & Rlxrl,
Y e RMXr2 7 € R"*"3 and tensor C &€ R"1X72X73,
In short, we want an optimal solution

B = argmin |A — Bl g.
rankg(B)<(r1,rp,r3)
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Outer Product Decomposition: Analytical Chemistryl

Fluorescence spectra measurements by Burdick et. al. on one
sample. The sample is a mixture of two pure components:
benzo[b]fluoranthene and benzo[k]fluoranthene.

a;;.. = fluorescence emission intensity at wavelength A?m excited
with light at wavelength A" and modulation frequency v;. Get
3-way data array A = [a;;] € R>Xmxn,

As before, we decompose A into a sum of outer products,

A=Xx1Qy1®z1 +X2RQy2 ® z.

The vectors x4,¥a,%Za, « = 1,...,r, yield the true chemical fac-
tors responsible for the data:

e there are 2 chemical components in the sample,
23



e Xo = (14,---,x,) holds the fluorescence lifetimes of the two
components, a =1, 2,

e Voo = (W1as---,Yma) holds the excitation spectrum of the ath
component, a=1,2,

e Zzo = (214,---,2na) holds the emission spectrum of the ath
component, a =1, 2.



Multilinear Decomposition: Computer Visionl

Application to facial recognition (TensorFaces) by Vasilescu and
Terzopoulos. Facial image database of p male subjects pho-
tographed in g poses, r illuminations, s expressions, and stored
as a grayscale image with t pixels.

a;jil, = drayscale level of of the image of ¢th person
photographed in jth pose, with [th expression, under kth illumi-
nation level. Get 5-way data array A = [[a;;pm,]l € RPXIXTXsXL,

Let multilinear decomposition of A be

A — (V7 W7 X? Y? Z)C7

matrices V. W, X, Y, Z chosen to have orthonormal columns.

The column vectors of VW, X.,Y,Z are the ‘principal compo-
nents’ or ‘parameterizing factors’ of the spaces of male subjects,
poses, illuminations, expressions, and images respectively. The

tensor C' governs the interactions between these factors.
24



Other Models for 3-way DataI

e Decomposition into Directional Components (Dedicom):

m
A; = Ajee € R"* ™ data. Optimize over R; € R™7" and Q €
R” %™ with orthonormal columns.

e Simultaneous Components Analysis (SCA):

m
S L llA; — A;BP||7
A; = Ajee € R™i X" (m,; > n) data. Optimize over B € R*X"
full-rank and P, € R™*" patterned matrix.

e Individual Difference Scaling (Indscal):
m
S AtA; — BD,HD!B'|%

A; = Asee € R™*™ data. Optimize over B € R"*", D, € R"*"
diagonal, and H € R™T" positive definite (actually Indscal
refers to the special case H = 1).

25



Properties of Matrix RankI

. Rank of A € R™*X" easy to determine (Gaussian Elimination)

. Optimal rank-r approximation to A € R™X™ always exist
(Eckart-Young Theorem)

. Optimal rank-r approximation to A € R™*" easy to find (Sin-
gular Value Decomposition)

. Pick A € R™X"™ at random, then A has full rank with proba-
bility 1, ie. rank(A) = min{m,n}

. rank(A) from a non-orthogonal rank-revealing decomposition
(e.g. A = LlDLtz) and rank(A) from an orthogonal rank-
revealing decomposition (e.g. A = QlRQtQ) are equal

. Let A be a matrix with real entries. Then rank(A) is the
same whether we regard A as an element of R™*"™ or as an
element of C™Mxn

26



Outer Product Rank vs Multilinear Rankl

Every statement on the preceding slide is false for the outer
product rank of order-k tensors, k > 3.

Every statement on the preceding slide is true for the multilinear
rank of order-k tensors, k£ > 3.

In the next two slides we will spell these out explicitly for order-3
tensors. The restriction to order-3 tensors is strictly for nota-
tional simplicity. All statements generalize to order-k tensors for

any k£ > 3.
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Properties of Outer Product Rankl

. Computing rankg(A) for A € RIX™MXn js NP-hard

. For some A € RP>™*" argmin o py<ll4 — B|F does not
have a solution

. When argmin ,n. ()< 4 — Bl|p does have a solution, com-
puting the solution is an NP-complete problem in general

. For some I, m,n, if we sample A € RIXmMXn gt random, there
is no r such that rankg(A) = r with probability 1

. An outer product decomposition of A € RIXMXn \ith orthog-
onality constraints on X,Y,Z will in general require a sum
with more than rankg(A) number of terms

. Let A be a 3-array with real entries. Then rankg(A) can take
different values depending on whether we regard A € REXmXxn
or A ¢ Clxmxn
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Properties of Multilinear RankI

. Computing rankg(A) for A € REXmXn js easy
. Solution to argmin,ni . (BY<(ry,r.rs)lA — BllF always exist

. Solution to argmin,ni. (BY<(rq,re,r3) A — BllF €asy to find

. Pick A € RIXmXn gt random, then A has
rankm(A) = (min(l,mn), min(m,In), min(n,Im))
with probability 1
CIf A € RIXMX1 has rankgm(A) = (r1,70,73). Then there exist
full-rank matrices X € RIX"1, Y € RmX"2 Z ¢ R"*"3 and core

tensor C € R"*X"2X"3 sych that A = (X,Y,2)C. X,Y,Z may
be chosen to have orthonormal columns

. Let A be a matrix with real entries. Then rankg(A) is the
same whether we regard A as an element of R{X™MX7 or a5 an
element of Clxmxn
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Generalization to Higher Orderl

e It is straight forward to generalize all statements on the last

two slides to order-k tensors for any k > 3; we give two
examples:

e Statement 2 for outer product rank:

. d1x---%Xd .
For some A € R***%, argmin ,ni. (B)<rllA — Bllp does
not have a solution

e Statement 4 for multilinear rank:

— Pick A € R91XxXdi gt random, then A has

rankg(A) = (min(dy,dz - -dg), ..., min(dg,d1 - -dg_1))
with probability 1. The p-th slab rank above is just
min(dp,dl---c?p---dk)
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What About ‘Row Rank = Column Rank’l

At first glance, this is one property of matrix rank that doesn’t
seem to generalize to multilinear rank. Actually, it does in a
more subtle way. We use the order-3 case as illustration.

Let A € RIXmMX"  Recall that we have defined the p-slab ranks:
ranki1(A) = dim(spanp{Ajee | i = 1,...,1}),
ranko(A) = dim(spang{Adeje | =1,...,m}
rankz(A) = dim(spanp{Aeer | k =1,...,n}).

We may also define the (p,g)-slab ranks:

ranks 3(A) = dim(spang{Aex | =1,...,mk=1,...,n}),
ranky 3(A) = dim(spanp{Aer |1 =1,...,[;k=1,...,n}),
ranky o(A) = dim(spang{4;je |t =1,...,1;j =1,...,m}).

It is easy to see that

ranky(A) = rankp 3(A4),
ranko(A) = rankq 3(A4),
rankz(A) = ranky 2(A).
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Higher Level Trilinear Rankl

T he 1st level trilinear rank for an order-3 tensor is what we simply
called trilinear rank earlier:

rankéa(A) = (ranky(A),ranks(A),rankz(A))
The 2nd level trilinear rank for an order-3 tensor is:
rank%(A) = (rankp 3(A),ranky 3(A),ranky 2(A)).

Hence the result at the end of the previous slide may be restated
for A € RIXmXn 35 simply

rankéﬂ(A) = ranké(A).

Note that for A € RMXn = R1XmXn this reduces to

(1,rowrank(A),colrank(A)) = (1, colrank(A), rowrank(A)),
and thus rowrank(A) = colrank(A).

32



Higher Level Multilinear Rankl

Let A € RAX*dk For any {p1,...,p;} C{1,...,k}, p1 <--- < pp,
we may define (p1,...,p;)-slab rank accordingly.

The (’l‘ﬁ)—tuple of (p1,...,p;)-slab ranks gives the ith level multi-
linear rank, fori=1,...,k— 1.

Theorem (de Silva and L., 2005). The [th level multilinear
rank is equal to the (k—1)th level multilinear rank, I =1,...,k—1.
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Morall

The multilinear rank is the generalization of matrix rank that
preserves most of the common properties of matrix rank.

We should stop expecting the outer product rank to resemble
matrix rank in any way.

However, the outer product rank is the generalization that is
more important in applications.

Furthermore, the mathematical and computational challenges
from studies of outer product rank shows that it is a more inter-
esting object than multilinear rank.

The remainder of this talk will be about our efforts in overcoming
several of these problems in order to get a satisfactory statistical

model based on outer product approximation.
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Ultimate Objective I

Statistical theory for multiway data analysis

Obstacles:

e lll-posedness of argmin ank. (By<lA — BllF

e Lack of a generic rank, ie. no Candecomp/Parafac model
that gives a perfect fit almost everywhere

e EXisting algorithm not convergent to globally minima
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Ill-posedness of Optimal Low-Rank Approximationl

The problem argmin ani. (B)<rllA— Bl|p may not have an optimal
solution when r > 2, k> 3. In fact

Theorem (L. and Golub, 2004). For tensors of any order
k > 3 and with respect to any choice of norm on R%1XXdg
there exists an instance A € R41XXdk sych that A fails to have
an optimal rank-r approximation for some r > 2. On the other
hand, an optimal solution always exist for k =2 and r = 1.

In the next slide, we give an explicit example.
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Examplel

x,y two linearly independent vectors in R2. Consider the order-3
tensor in R2x2X2

A=xXxRXRIX+XQYRYVF+YRIXRY.
A has rank 3: straight forward.

A has no optimal rank-2 approximation: consider sequence {Bn}>2 4
in RQXQXQ

Bnp i =x®x® (x—ny) + <X—I—%y> ®<X—I—%y) ® ny,
Clear that rankg(Byr) < 2 for all n. By multilinearity of ®,
B =XxQ@xXxQX—nNXRIXQYy +nxXQxQYy
+x®y®y+y®><®y+%y®y®y=A+%y®y®y-
For any choice of norm on R2X2x2
|4~ Bul = ly®y®yl—0  asn— oo
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Surprising FindI

It has always been assumed that an optimal rank-r approximation
exist for high-order tensors and there has been continual inter-
ests in finding an ‘Eckart-Young theorem’-like result for tensors
of higher order. The view expressed in the conclusion of the
following paper is representative of such efforts:

“An Eckart-Young type of optimal rank-k approximation theorem
for tensors continues to elude our investigations but can perhaps
eventually be attained by using a different norm or yet other
definitions of orthogonality and rank.”

Source: T.G. Kolda, “Orthogonal tensor decompositions,” SIAM
J. Matrix Anal. Appl., 23 (1), 2001 , pp. 243—255.

A simple fact that's often overlooked: in a norm space, the
minimum distance of a point A to a non-closed set S may not

be attained by any point in S.
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For tensors of order £ > 3, r > 2, the set

{A € RAX Xk | rankg(A) < r}

may not be closed. This is norm independent since all norms are
equivalent on finite dimensional spaces.

However we still need to ‘solve’ the problem

argminrank®(3)§r||A — Bl|p

in order to analyze multiway data.

How can we overcome the ill-posedness?



Quick but Flawed Fixl

Current way to force a solution: perturb the problem by small
e > 0 and find approximate solution x}(e),y (e) € R% (i = 1,2, 3)
with

A = x1(e) ®y1(e) ®21(e) — x5(e) ®y3(e) ® z32(e) ]

=e+ inf [[A-Xx1Qy1®21 —X0QYy2® zo||.
x;,y; ER%

Serious numerical problems due to ill-conditioning (a phenomenon
often referred to as degeneracy or swamp in Chemometrics and
Psychometrics).

Reason? Rule of thumb in Computational Math:
A well-posed problem near to an ill-posed one is ill-conditioned.

So, even if we may perturb an ill-posed problem slightly to get a
well-posed one, the perturbed problem will more often than not

be ill-conditioned.
39



Discriminants |

Definition. f(xq1,...,x;) polynomial, deg(f) < d, the discrim-
nant A(f) is a polynomial function in the coefficients of f so
that A(f) whenever f has a multiple root (ie. common root of
f and V).

Quadratic 1-variable: f(z) = a 4+ bz + cz?, A(f) = b2 — 4ac

Cubic 1-variable: f(z) = a+bx+cx?+dz3, A(f) = b2c? —4b3d —
Adac3 — 27a2d? + 18abcd

General 1-variable: f(z) = [1599) (2= X)), Af) = [ic; (i —A))2
Resultant: Res(f,g) = A(f(x) + yg(x))

Determinant: A € R"*", det(A) = A(f4) where fu(x,y) =

A —
X'Ay = > aijTiY;
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Hyperdeterminant l

The hyperdeterminant of a tensor A = [[a; ;%] € R2*2*? is defined
as

A(A) := (agooat11 + a§o1a110 + @d100701 + 25112700)
— 2(ap00a00141109111 + @00020102101@111 + @000901121004111
+ a001201021012110 + @0012011¢1109100 + @010201121014100)
+ 4(a000a011@1012110 + @001201041000111)-
This formula first appeared in a paper by Cayley published in

1845 but remained obscure until a study by Gelfand, Kapranov,
Zelevinsky in 1992.

A result that parallels the matrix case is the following: the system
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of bilinear equations

ap00x0oYo + ap10%0yY1 + a100%1Y0 + a11021y1 = O,
ap0120Yo + ap11Zoy1 + a10171Y0 + a11121y1 = O,
apoox020 + apo1%0?1 + a100%120 + a1012121 = O,
ap10%020 + ap11%021 + a110%120 + a1117121 = O,
ap00¥Y020 + a001Y0%z1 + ap10Y120 + ap11y121 = O,
a100Y020 + @101Y0%1 + a110Y1%0 + a111y121 = O.

has a non-trivial solution iff A(A) = 0.

Theorem (Gelfand, Kapranov, Zelevinsky, 1992).
R(d1+1)x-x(dx+1) nas a non-trivial hyperdeterminant if and only

it
dj <> d;
1]
forall y=1,... k.
For R™*X" the condition becomes m < n and n < m — that's

why matrix determinants is only defined for square matrices.



Weak solutions to PARAFAC'

Theorem (de Silva and L., 2004). Let I,m,n > 2. Let A ¢
RIXmXn \with rankg(A) = 3. A is the limit of a sequence By €
RIXmXn \with rankg(Br) < 2 if and only if

A=Xx1Ry1®21 +X2QYy1 ®zZ2 + X2 Qy2 ® 21

where {x1,x2}, {y1,y¥2}, {z1,2zo} are linearly independent sets in
R! R™, and R™ respectively.

With this, we can overcome the ill-posedness of argmin yni. (B)<rllA—
B||g by replacing rankg with closedrankg, defined by

{A | closedrankg(A) <r} ={A | rankg(A) <r}.

For order-3 tensor, it follows from the theorem that

{A € RX™x" | closedrankg(A) < 2} =
(X1Qy1 021 + X Qy1 @2+ %X ®y:®21 | x; € Ry, € R™ z; € R"}
U{x1®y1 021 +x®y>2®2 | x; € Rl y; € R™, z; € R"}
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Sketch of Proofl

Restrict to the special casel = m = n = 2. There is a technical
lemma that allows us to generalize to arbitrary I, m,n.

1. Regard A € R2X2X2 35 two slabs of 2 x 2 matrices:

apoo a0l
A= Ao A]= [ ap10 aoiil

@100 @101 €R2X2X2
aiio aii1l

2. One can check that

det(Avo + )\1A1) = )\g det(AO)

det(A A1) —det(Ag— A
© AoAs (Ao + A1) (Ao 1)

5 + A2 det(A4y).

3. Define A to be the discriminant of this quadratic polynomial:

det(Ao + A1) — det(Ap — A1)]°
2

Easy to check that A(A) is exactly the hyperdeterminant of
A defined earlier.

A(A) = — 4 det(Ao) det(Al).
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4. For L = (Lq,L>,L3) € GL>(R) x GL>(R) x GL>(R), we can
show that

A(LA) = det(Lq)? det(Ly)? det(L3)2A(A).

Thus the sign of A(A) is invariant under multiplication by
non-singular matrices on three sides. In particular, Gaussian
elimination applied to the three sides of A does not change
the sign of A.

5. Can show that rankg(A) > 3 = A(A) < 0 and rankg(A) <
2= A(A) >0.

6. If A is a limit point of rank-2 tensors, then A(A) = 0 and by
Gaussian elimination, A can be transformed into
[ 10 ‘ 0 1

0O 0|1 O]:el®el®el+el®82®92+92®e1®ez.



Generic Rankl

Zariski topology on Cd1Xxdy = Cd je. topology generated by
closed sets of the form V(f) = {z € C¢| f(z) = 0}.

A property P is said to be generic in C9 if the set of elements
for which P doesn’'t hold is contained in a union of closed sets,
each of dimension not more than n — 1. In particular, the set of
elements where P doesn't hold has zero volume in C% and the
set of elements where P holds has the same volume as C¢.

It follows that if a generic rank 7 exists for Cd1xxd = Cd (J =
dq---dg), then the set of elements A € Cdrx-xdk satisfying the
property rankg(A) = 7 must have the same volume as C% and
thus is dense

Caution: The term generic rank is used in a different way in the

Computational Complexity literature (its existence is trivial).
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Rank Depends on Base Fieldl

Let x,y € R™ where n > 2. Write z=x+4 iy € C". Then
XQXRX—XQYyQYy+yRXQYy +yQy XX
1
=§(Z®Z®Z—|—Z®z®z).
lhs has rank 3 in R"*"X" while rhs has rank 2 in C*xXnxn,
Recall in R2X2X2  A(A) > 0 = rankg(4) = 2, A(A) < 0 =
rankg(A) = 3. It follows that both the set of rank-2 tensors and

the set of rank-3 tensors have positive volumes in R2X2x2  gg
there is no ‘generic’ rank.

On the other hand, we may show that the generic rank in C2X2x2
is 2.
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Generic Rank for Complex Tensorsl

A locally closed sets is one that can be written as an intersection
of an open set and a closed set. A constructible set is one that
can be written as a finite union of locally closed set.

Theorem (L., de Silva, Comon, 2005). For every r € N, the
set of tensors of rank r is a constructible set.

Corollary 1. There exist p1,...,pny € C[X1,...,Xy] such that for
any r € {0, ..., rmax},

{A e C % | rankg(A) = r} = V(I;1) U+ U Y Trm,)
where for I = {iq,...,is} C{1,...,N} and I¢° = {j1,...,jN_s} =
{1,...,N}\ I, we write

y(l) = V(pzl o p’LS> M V(pjla K 7ij_S>C
=V(pip)N---NV(p; ) NV(p; )°N---NV(pj,_ )"

Corollary 2. A generic outer-product rank exist for Cd1Xxdg_
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Sketch of Proofl

Work over complex projective space P for simplicity.

1. 51 :={A € P? | rankg(A) = 1} is exactly image of the Segre
map

P x ... x P% — P9 (X1, ,X) = X1 @ -+ ® Xp
where d = (d; +1)---(d;, +1) — 1.

2. For r > 2, Sy :={A € P? | rankg(A) < r} is the union of the
secant r-planes to 51, ie.

Sfr:{BEA]_”’AT|A1,...,ATES]_}.

Note that this is not a Zariski-closed set.
3. Sy can be parameterized in the following way:

051 Xs -+ XS] Xs PT — P4
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where there are r copies of §71 and xs denotes Segre product.
The image of ¢ is S;.

. @ is a morphism of finite-type and the Chevalley's Con-
structibility Theorem, which in its full generality says that
the image of a morphism of finite-type between two Noethe-
rian schemes is constructible, shows that S, is constructible.

. Let Xy :={A e P¢ | rankg(A) = r}. Then X, = S\ S,_1 is
also a constructible set.

. Alternatively, may show directly without invoking Chevalley’'s
Constructibility Theorem that S, is a quasi-projective variety
(locally closed set) and thus X, is constructible.

. Since P? is a disjoint union X1 U--- L Xy, €xactly one X,

g € {2,...,rmax}, must contain an open set. Thus g is the
required generic rank.



Alternating Least Squaresl

Even when an optimal solution Ag to argmin,n.. g)<,Il4— BllF
exists, Agg) IS not easy to compute since the objective function
IS hon-convex. Since 1979, multiway data analysis rely primarily

on the following nonlinear Gauss-Seidel algorithm:

Algorithm: ALS for optimal rank-r approximation

initialize X ¢ Rixr y(0) ¢ Rmxr 7(0) ¢ Rnxr:

initialize s(9,e > 0,k = 0;

while pt+1) /pE) > ¢
XE+HD  argmin g g
Y E+HD  argming cgo
ZF+1) — argminzgo.

T Za 133&]@‘{‘1) ® _(k+1) ® Zo

—1Ta

k<—k—|—1

T _ Za 1—(/€+1) Ry (k) ®Z(k)”2

T k+1 k: 1 k 1 §
(k:+1) - ”Z 1[$ak+1) R yék+1) Q ((Ik-l-l) (k) R y(k) Q Z(k)]H%;

Problem: Not globally convergent even when there is an opti-
mal solution. When it converges, there's no guarantee that the

solution will be a global minima.
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SDP-Based Algorithm I

Observation 1:

F(211,- -5 2nr) = |A = X7 _1Xa @ Ya ® za|%

[,mmn 2
— Zi,j,k:]_ (aijk: - Zgzlwiayjazka)

is a polynomial of total degree 6 (resp. 2k for order k-tensors)
in variables x11,..., znr.

Recent breakthroughs in multivariate polynomial optimization
[Lasserre 2001], [Parrilo 2003] [Parrilo-Sturmfels 2003] show
that the non-convex problem

argmin F(x11,..., 2nr)

may be relaxed to a convex problem (thus global optima is gu-
ranteed) which can in turn be solved using SDP.
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How It Works |

Observation 2: If FF'— X can be expressed as a sum of squares of
polynomials

mn
F(xlla'”azn’l") — A= Z Pi(fU]_]_,...,an)Q,
i=1
then X\ is a global lower bound for F, ie.

F(CU]_]_,...,ZTLT) Z)\

Simple strategy: Find the largest A\* such that FF — A* is a sum

of squares. Then \* is often min F(xz11,...,2nr).
Write v = (1,211, .-+, 2nrs - - s T[1Ym12nls - - - » 20,)t, the N-tuple of
monomials of total degree < 6, where
N — r(l+m-+4+n)+3
o ( 3 )
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Write F(z11,...,2nr) = alv where aa = (aq,...,ay) € RY are the
coefficients of the respective monomials.

Since deg(F') is even, F' may also be written as

F(CC]_]_, .. .,an) — VtMV

for some M ¢ RVXN g

F(z11,---,2nr) = A=V (M — XE11)v

where F11 = eletl e RNVXN,

Observation 3: The rhs is a sum of squares iff M — AFEq1 is
positive semi-definite (since M — AE11 = B'B).

Hence we have

minimize —\
subjected to v!(S + \Ej1)v = F,
S > 0.



This is an SDP problem

minimize 0o S — A\
subjected to SoBi1+ A= aq,
SoBkzak, k:2,...,N
S >0, A eR.

This problem can be solved in polynomial time. Like all SDP-
based algorithms, the SPD duality produces a certificate that
tells us whether we have arrived at a globally optimal solution.

The Candecomp/Parafac model is used as an example but the
algorithm, like ALS, applies to other models (Tucker, Dedicom,
SCA, Indscal) as well.



Global Convergence Issuesl

Hilbert 17th Problem (Artin 1927). Any multivariate polyno-
mial function F : RN — R that has F(x) > 0 for every x € RV is
a sum of squares of rational functions.

Cannot replace rational functions by polynomial functions in gen-
eral (eg. w* + z2y? + y222 + 2222 — 4zyzw).

However, if those of the form

[Lm,n r 2

p+ Z (az’jk - Z xiayjazka>
i.5,k=1 a=1

can always be written as a sum of polynomials (we don’t know),

then the SDP algorithm for optimal low-rank tensor approxima-

tion will always converge globally.

Numerical experiments performed by Parrilo on more general

polynomials vield \* = min F in all cases.
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Catch: For rank-r approximations to order-k tensors A € Ré1 X xdg,

T(d1‘|‘°”+dk)+k)
k
is large even for moderate d;, » and k.

¥ =

Sparsity to the rescue? The polynomials that we are interested
in are always sparse (eg. for k = 3, only terms of the form zyz
or uwvwxyz appear).



