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Long Term Goal

Numerical Multilinear Algebra: Theory, Algorithms and Appli-

cations of Tensor Computations

• Develop a collection of standard computational methods for

higher order tensors that parallel the methods that have been

developed for order-2 tensors, ie. matrices.

• Develop the mathematical foundations to facilitate this goal.

• Applications (defer till three slides later).
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Novelty

• Different from Computer Algebra

– Interested in a numerical approach where inexpensive float-

ing point operations, rather than expensive symbolic op-

erations, play the central role.

– Like other areas in numerical analysis, Numerical Multilin-

ear Algebra will entail approximate solution of approximate

multilinear problems with approximate data but under con-

trollable error bounds.

• Different from Numerical Polynomial Algebra

– Interested in systems of multilinear equations instead of

polynomial equations.

– Just as matrices are the main objects of interest in Nu-

merical Linear Algebra, high order tensors will be the main
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objects of interest in Numerical Multilinear Algebra. Mul-

tilinear systems of equations associated with tensors will

play an auxiliary role, unlike Numerical Polynomial Alge-

bra where systems of polynomial equations are the main

objects of study.

• Different from Multilinear Algebra

– Study of multilinear algebra in mathematics is concerned

with algebraic properties of tensor products of modules or

vector spaces. There is no interest in the mathematical

properties of tensors per se — ie. notions such as ranks,

decompositions, hyperdeterminants of a tensor — only

the algebraic structure of the set of tensors as a vector

space or module.

– Will be interested in computations.



Why Multilinear?

“Classification of mathematical problems as linear and nonlin-

ear is like classification of the Universe as bananas and non-

bananas.”

Nonlinear — too general

Multilinear — next natural step
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Why Now?

• Unavoidable in analyzing complex data arising from techno-
logical advancement in instruments and methodologies:

– measurements from spectrophotometric fluorescence de-
tector in high-performance chromatography — 3-way data

– absorption spectra measurements at different wavelengths
in a kinetic experiment — 4-way data

– facial image database of human faces photographed under
varying conditions of illumination, camera angle and facial
expression — 5-way data

• Recent developments provide the right tools:

– Algorithms: Semi-definite Programming (SDP)

– Computing Technologies: better, cheaper

– Theory: Algebraic Geometry, Invariant Theory
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Motivation

Past 50 years, Numerical Linear Algebra played crucial role in:

• the statistical analysis of two-way data,

• the numerical solution of partial differential equations arising
from vector fields,

• the numerical solution of second-order optimization methods.

Next step — develop Numerical Multilinear Algebra for:

• the statistical analysis of multi-way data,

• the numerical solution of partial differential equations arising
from tensor fields,

• the numerical solution of higher-order optimization methods.
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Tensors

Tensor of order k and size (d1, . . . , dk) is a k-way array of real

numbers A = [[aj1...jk
]] ∈ Rd1×···×dk with two properties:

1. Vector Space Structure: A = [[aj1...jk
]], B = [[bj1...jk

]] ∈ Rd1×···×dk,

α, β ∈ R,

αA + βB := [[αaj1...jk
+ βbj1...jk

]] ∈ Rd1×···×dk.

ie. Rd1×···×dk is a vector space of dimension d1 · · · dk over R.

2. Multilinear Structure: A = [[aj1...jk
]] ∈ Rd1×···×dk and matrices

L1 = [`1i1j1
] ∈ Rr1×d1, . . . , Lk = [`k

ikjk
] ∈ Rrk×dk.

Then (L1, . . . , Lk)A = [[ci1...ik]] ∈ Rr1×···×rk where

ci1...ik =
d1∑

j1=1

· · ·
dk∑

jk=1

`1i1j1
· · · `k

ikjk
aj1...jk

.
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Property 2 distinguishes Rd1×···×dk from being simply a vector

space of dimension d1 · · · dk. It is the reason why, for instance,

Rl×m×n (order-3 tensors) is different from Rlm×n (matrices) or

Rlmn (vectors).

Example. For A ∈ Rm×n, (L1, L2)A is equivalent to multiplying

every column vector of A by L1 and then every row vector of the

result by L2 (or vice versa):

(L1, L2)A = L1ALt
2 = L1(ALt

2) = (L1A)Lt
2.

Caution: What physicists and geometers call tensors are really

tensor fields (ie. tensor-valued functions on manifolds). E.g.

stress tensor, moment-of-intertia tensor, Einstein tensor, metric

tensor, curvature tensor, Ricci tensor, etc.



Properties of Multilinear Matrix Multiplication

• Let A, B ∈ Rd1×···×dk and λ, µ ∈ R. Let L1 ∈ Rr1×d1, . . . , Lk ∈
Rrk×dk. Then

(L1, . . . , Lk)(λA + µB) = λ(L1, . . . , Lk)A + µ(L1, . . . , Lk)B.

• Let A ∈ Rd1×···×dk. Let L1 ∈ Rr1×d1, . . . , Lk ∈ Rrk×dk, and

M1 ∈ Rs1×r1, . . . , Mk ∈ Rsk×rk. Then

(M1, . . . , Mk)(L1, . . . , Lk)A = (M1L1, . . . , MkLk)A

where MiLi ∈ Rsi×di is simply the matrix-matrix product of

Mi and Li.

• Let A ∈ Rd1×···×dk and λ, µ ∈ R. Let L1 ∈ Rr1×d1, . . . , Lj, Mj ∈
Rrj×dj , . . . , Lk ∈ Rrk×dk. Then

(L1, . . . , λLj + µMj, . . . , Lk)A =

λ(L1, . . . , Lj, . . . , Lk)A + µ(L1, . . . , Mj, . . . , Lk)A.
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Outer Product

The outer product of k vectors, x1 = (x1
1, . . . , x1

d1
)t ∈ Rd1, . . . ,xk =

(xk
1, . . . , xk

dk
)t ∈ Rdk, is defined by

x1 ⊗ · · · ⊗ xk := [[x1
i1

. . . xk
ik
]] ∈ Rd1×···×dk.

The outer product of k vector spaces, Rd1, . . . , Rdk, is simply

Rd1 ⊗ · · · ⊗ Rdk := spanR{x1 ⊗ · · · ⊗ xk | x1 ∈ Rd1, . . . ,xk ∈ Rdk}.

By definition, Rd1 ⊗ · · · ⊗ Rdk is a subspace of the vector space

Rd1×···×dk. Counting dimensions, we see immediately that

Rd1 ⊗ · · · ⊗ Rdk = Rd1×···×dk.
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Property 2’: Outer Product Structure

The fact that Rd1 ⊗ · · · ⊗ Rdk = Rd1×···×dk tells us that every
A ∈ Rd1 ⊗ · · · ⊗ Rdk may be written as

A =
r∑

α=1

x1
α ⊗ · · · ⊗ xk

α

for some xj
α ∈ Rdj (α = 1, . . . , r; j = 1, . . . , k).

This is exactly what gives a tensor its multilinear structure. Given
L1 ∈ Rr1×d1, . . . , Lk ∈ Rrk×dk,

(L1, . . . , Lk)A =
r∑

α=1

L1x
1
α ⊗ · · · ⊗ Lkx

k
α.

So the multilinear structure (Property 2) and outer product
structure (Property 2’) are one and the same thing. We could
have instead defined a tensor as one that satisfies Properties 1
and 2’ — a k-array that can be decomposed into a sum of outer
products of k vectors.
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Multiway Data

• Psychometrics: individual × variable × time

• Sensory analysis: sample × attribute × judge

• Batch data: batch × time × variable

• Time-series analysis: time × variable × lag

• Facial image: people × view × illumination × expression ×
pixels

• Analytical chemistry: sample × elution time × wavelength

• Spectral data: sample × emission × excitation × decay

• Atmospheric science: location × variable × time × observa-

tion
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New Mathematics for Data Analysis

• Gunnar Carlsson, Persi Diaconis, Joshua Tenenbaum: Topo-
logical Methods in Data Analysis

• Ronald Coifman: Harmonic Analysis on Data Sets

• David Donoho: High-Dimensional Data Analysis: the curses
and blessings of dimensionality

• Peter Jones: The Traveling Salesman Meets Large Data Sets

• Tomasso Poggio, Steve Smale: The Mathematics of Learn-
ing: dealing with data

Treat data as points (vectors) in either subsets of Rn or Cn

possibly with additional structures (e.g. Riemannian manifolds,
symmetric spaces, rectifiable sets).

Problem: The intrinsic multilinear structure in many types of
data is simply discarded.
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Application: Analytical Chemistry

Fluorescence spectra measurements performed by Rasmus Bro.

aijk = fluorescence emission intensity at wavelength λem
j of ith

sample excited with light at wavelength λex
k . Get 3-way data

A = [[aijk]] ∈ Rl×m×n.

Decomposing A into a sum of outer products (a unique decom-

position under mild assumptions),

A = x1 ⊗ y1 ⊗ z1 + · · ·+ xr ⊗ yr ⊗ zr.

The vectors xα,yα, zα, α = 1, . . . , r, yield the true chemical fac-

tors responsible for the data:

• there are r pure substances in the mixtures,

• xα = (x1α, . . . , xlα) holds the relative concentrations of the

αth substance in samples 1, . . . , l,
14



• yα = (y1α, . . . , ymα) holds the excitation spectrum of the αth

substance,

• zα = (z1α, . . . , znα) holds the emission spectrum of the αth

substance.

Recovering such information will not be possible if we ‘forget’

the trilinear structure, ie. vectorize A into a vector a ∈ Rlmn,

and work only with a with no information on its original 3-way

structure.



Matrix Rank

A ∈ Rm×n. rank(A) may be defined in either one of the three
(among other) ways:

• outer-product rank: rank(A) = r iff there exists x1, . . . ,xr ∈
Rm, y1, . . . ,yr ∈ Rn such that

A = x1 ⊗ y1 + · · ·+ xr ⊗ yr

and r is minimal over all such decompositions.

• row rank: rank(A) = r iff

dim(spanR{A1•, . . . , Am•}) = r

where Ai• ∈ Rn denotes the ith row vector of A.

• column rank: rank(A) = r iff

dim(spanR{A•1, . . . , A•n}) = r

where A•j ∈ Rm denotes the jth column vector of A.
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Tensor Rank

A ∈ Rd1×···×dk. Different notions of tensor ranks:

• outer product rank: rank⊗(A) = r iff there exists xj
i ∈ Rdj,

j = 1, . . . , k, such that

A =
r∑

i=1

x1
i ⊗ · · · ⊗ xk

i

and r is minimal over all such decompositions.

• p-slab rank (p = 1, . . . , k): rankp(A) = rp iff

dim(spanR{A•···•1•···•, . . . , A•···•dp•···•}) = rp

where A•···•i•···• ∈ Rd1×···×d̂p×···×dk denotes the ith p-slab of A,

an order-(k − 1) tensor.

• multilinear rank of A is defined as

rank�(A) = (rank1(A), . . . , rankk(A))
16



Note: when we wish to emphasize the dependence of multilinear

rank on the order k, we will use the term k-linear rank instead.

For example, when k = 2, then 1-slab = row, 2-slab = column.

Bilinear rank of a matrix A ∈ Rm×n is simply

rank�(A) = (rowrank(A), colrank(A)) = (rank(A), rank(A)).

When k ≥ 3, rankp(A) 6= rankq(A) 6= rank⊗(A) in general (for

p 6= q).

Useful notation: a hat over an index like d̂p means that the

index is to be omitted, eg. l × m̂× n = l × n, (i, j, k̂, l) = (i, j, l).



Example

For an order-3 tensor A ∈ Rl×m×n, we have

• outer product rank: rank⊗(A) = r iff there exists x1, . . . ,xr ∈
Rl, y1, . . . ,yr ∈ Rm, y1, . . . ,yr ∈ Rn such that

A = x1 ⊗ y1 ⊗ z1 + · · ·+ xr ⊗ yr ⊗ zr

and r is minimal over all such decompositions.

• 1-slab rank: rank1(A) = r1 iff

dim(spanR{A1••, . . . , Al••}) = r1

where Ai•• ∈ Rm×n denotes the ith 1-slab of A.

• 2-slab rank: rank2(A) = r2 iff

dim(spanR{A•1•, . . . , A•m•}) = r2

where A•j• ∈ Rl×n denotes the jth 2-slab of A.
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• 3-slab rank: rank3(A) = r3 iff

dim(spanR{A••1, . . . , A••n}) = r3

where A••k ∈ Rl×m denotes the kth 3-slab of A.

• trilinear rank: rank�(A) = (r1, r2, r3).



Outer Product Decomposition

Let A ∈ Rl×m×n and rank⊗(A) = r. The outer product or Can-

decomp/Parafac decomposition of A is

A =
r∑

α=1

xα ⊗ yα ⊗ zα.

In other words,

aijk =
r∑

α=1

xiαyjαzkα

for some xα = (x1α, . . . , xlα)t ∈ Rl, yα = (y1α, . . . , ymα)t ∈ Rm,

zα = (z1α, . . . , znα)t ∈ Rn, α = 1, . . . , r.

The vectors xα,yα, zα are sometimes regarded as column vectors

of matrices X = [x1, . . . ,xr] ∈ Rl×r, Y = [y1, . . . ,yr] ∈ Rm×r,

Z = [z1, . . . , zr] ∈ Rn×r.
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Multilinear Decomposition

Let A ∈ Rl×m×n and rank�(A) = (r1, r2, r3). Multilinear or

Tucker decomposition of A is

A = (X, Y, Z)C.

In other words,

aijk =
r1∑

α=1

r2∑
β=1

r3∑
γ=1

xiαyjβzkγcαβγ

for some full-rank matrices X = [xiα] ∈ Rl×r1, Y = [yjβ] ∈ Rm×r2,

Z = [zkγ] ∈ Rn×r3, and core tensor C = [[cαβγ]] ∈ Rr1×r2×r3.

Again, X, Y, Z may be chosen to have orthonormal columns.

Observe that for matrices, this reduces to the L1DLt
2 or Q1RQt

2
decompositions.
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Norms and Inner Products

In order to discuss approximations, we need to define a norm on

Rd1×···×dk.

The most convenient one to use is the Frobenius norm, ‖ · ‖F ,

defined by

‖[[aj1...jk
]]‖2F =

d1∑
j1=1

· · ·
dk∑

jk=1

a2
j1...jk

.

for [[aj1...jk
]] ∈ Rd1×···×dk.

It is the norm associated with the trace inner product, 〈·, ·〉tr,
defined by

〈[[aj1...jk
]] | [[bj1...jk

]]〉tr :=
d1∑

j1=1

· · ·
dk∑

jk=1

aj1...jk
bj1...jk

for [[aj1...jk
]], [[bj1...jk

]] ∈ Rd1×···×dk. Thus ‖A‖2F = 〈A | A〉tr.
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Outer Product Approximation

A Candecomp/Parafac or outer product model has the following

form

aijk =
r∑

α=1

xiαyjαzkα + eijk

where E = [[eijk]] ∈ Rl×m×n denotes the (unknown) error.

To minimize the error, we want an outer product approximation

argmin‖A−
r∑

α=1

xα ⊗ yα ⊗ zα‖F

where the minimum is taken over all matrices X = [x1, . . . ,xr] ∈
Rl×r, Y = [y1, . . . ,yr] ∈ Rm×r, Z = [z1, . . . , zr] ∈ Rn×r.

In short, we want an optimal solution

B∗⊗ = argmin
rank⊗(B)≤r

‖A−B‖F .
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Multilinear Approximation

A Tucker or multilinear model has the following form

aijk =
r1∑

α=1

r2∑
β=1

r3∑
γ=1

xiαyjβzkγcαβγ + eijk

where E = [[eijk]] ∈ Rl×m×n denotes the (unknown) error.

To minimize the error, we want a multilinear approximation

argmin‖A− (X, Y, Z)C‖F
where minimum is taken over all full-rank matrices X ∈ Rl×r1,

Y ∈ Rm×r2, Z ∈ Rn×r3 and tensor C ∈ Rr1×r2×r3.

In short, we want an optimal solution

B∗� = argmin
rank�(B)≤(r1,r2,r3)

‖A−B‖F .

22



Outer Product Decomposition: Analytical Chemistry

Fluorescence spectra measurements by Burdick et. al. on one

sample. The sample is a mixture of two pure components:

benzo[b]fluoranthene and benzo[k]fluoranthene.

aijk = fluorescence emission intensity at wavelength λem
j excited

with light at wavelength λex
k and modulation frequency νi. Get

3-way data array A = [[aijk]] ∈ Rl×m×n.

As before, we decompose A into a sum of outer products,

A = x1 ⊗ y1 ⊗ z1 + x2 ⊗ y2 ⊗ z2.

The vectors xα,yα, zα, α = 1, . . . , r, yield the true chemical fac-

tors responsible for the data:

• there are 2 chemical components in the sample,
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• xα = (x1α, . . . , xlα) holds the fluorescence lifetimes of the two

components, α = 1,2,

• yα = (y1α, . . . , ymα) holds the excitation spectrum of the αth

component, α = 1,2,

• zα = (z1α, . . . , znα) holds the emission spectrum of the αth

component, α = 1,2.



Multilinear Decomposition: Computer Vision

Application to facial recognition (TensorFaces) by Vasilescu and
Terzopoulos. Facial image database of p male subjects pho-
tographed in q poses, r illuminations, s expressions, and stored
as a grayscale image with t pixels.

aijklm = grayscale level of mth pixel of the image of ith person
photographed in jth pose, with lth expression, under kth illumi-
nation level. Get 5-way data array A = [[aijklm]] ∈ Rp×q×r×s×t.

Let multilinear decomposition of A be

A = (V, W, X, Y, Z)C,

matrices V, W, X, Y, Z chosen to have orthonormal columns.

The column vectors of V, W, X, Y, Z are the ‘principal compo-
nents’ or ‘parameterizing factors’ of the spaces of male subjects,
poses, illuminations, expressions, and images respectively. The
tensor C governs the interactions between these factors.
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Other Models for 3-way Data

• Decomposition into Directional Components (Dedicom):∑m

i=1
‖Ai −QtRiQ‖2F

Ai = Ai•• ∈ Rn×n data. Optimize over Ri ∈ Rr×r and Q ∈
Rr×n with orthonormal columns.

• Simultaneous Components Analysis (SCA):∑m

i=1
‖Ai −AiBPi‖2F

Ai = Ai•• ∈ Rmi×n (mi ≥ n) data. Optimize over B ∈ Rn×r

full-rank and Pi ∈ Rr×n patterned matrix.

• Individual Difference Scaling (Indscal):∑m

i=1
‖At

iAi −BDiHDt
iB

t‖2F
Ai = Ai•• ∈ Rm×n data. Optimize over B ∈ Rn×r, Di ∈ Rr×r

diagonal, and H ∈ Rr×r positive definite (actually Indscal
refers to the special case H = I).
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Properties of Matrix Rank

1. Rank of A ∈ Rm×n easy to determine (Gaussian Elimination)

2. Optimal rank-r approximation to A ∈ Rm×n always exist

(Eckart-Young Theorem)

3. Optimal rank-r approximation to A ∈ Rm×n easy to find (Sin-

gular Value Decomposition)

4. Pick A ∈ Rm×n at random, then A has full rank with proba-

bility 1, ie. rank(A) = min{m, n}

5. rank(A) from a non-orthogonal rank-revealing decomposition

(e.g. A = L1DLt
2) and rank(A) from an orthogonal rank-

revealing decomposition (e.g. A = Q1RQt
2) are equal

6. Let A be a matrix with real entries. Then rank(A) is the

same whether we regard A as an element of Rm×n or as an

element of Cm×n
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Outer Product Rank vs Multilinear Rank

Every statement on the preceding slide is false for the outer

product rank of order-k tensors, k ≥ 3.

Every statement on the preceding slide is true for the multilinear

rank of order-k tensors, k ≥ 3.

In the next two slides we will spell these out explicitly for order-3

tensors. The restriction to order-3 tensors is strictly for nota-

tional simplicity. All statements generalize to order-k tensors for

any k ≥ 3.
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Properties of Outer Product Rank

1. Computing rank⊗(A) for A ∈ Rl×m×n is NP-hard

2. For some A ∈ Rl×m×n, argminrank⊗(B)≤r‖A − B‖F does not

have a solution

3. When argminrank⊗(B)≤r‖A−B‖F does have a solution, com-

puting the solution is an NP-complete problem in general

4. For some l, m, n, if we sample A ∈ Rl×m×n at random, there

is no r such that rank⊗(A) = r with probability 1

5. An outer product decomposition of A ∈ Rl×m×n with orthog-

onality constraints on X, Y, Z will in general require a sum

with more than rank⊗(A) number of terms

6. Let A be a 3-array with real entries. Then rank⊗(A) can take

different values depending on whether we regard A ∈ Rl×m×n

or A ∈ Cl×m×n
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Properties of Multilinear Rank

1. Computing rank�(A) for A ∈ Rl×m×n is easy

2. Solution to argminrank�(B)≤(r1,r2,r3)
‖A−B‖F always exist

3. Solution to argminrank�(B)≤(r1,r2,r3)
‖A−B‖F easy to find

4. Pick A ∈ Rl×m×n at random, then A has

rank�(A) = (min(l, mn),min(m, ln),min(n, lm))

with probability 1

5. If A ∈ Rl×m×n has rank�(A) = (r1, r2, r3). Then there exist
full-rank matrices X ∈ Rl×r1, Y ∈ Rm×r2, Z ∈ Rn×r3 and core
tensor C ∈ Rr1×r2×r3 such that A = (X, Y, Z)C. X, Y, Z may
be chosen to have orthonormal columns

6. Let A be a matrix with real entries. Then rank�(A) is the
same whether we regard A as an element of Rl×m×n or as an
element of Cl×m×n

29



Generalization to Higher Order

• It is straight forward to generalize all statements on the last

two slides to order-k tensors for any k ≥ 3; we give two

examples:

• Statement 2 for outer product rank:

– For some A ∈ Rd1×···×dk, argminrank⊗(B)≤r‖A − B‖F does

not have a solution

• Statement 4 for multilinear rank:

– Pick A ∈ Rd1×···×dk at random, then A has

rank�(A) = (min(d1, d2 · · · dk), . . . ,min(dk, d1 · · · dk−1))

with probability 1. The p-th slab rank above is just

min(dp, d1 · · · d̂p · · · dk)
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What About ‘Row Rank = Column Rank’

At first glance, this is one property of matrix rank that doesn’t
seem to generalize to multilinear rank. Actually, it does in a
more subtle way. We use the order-3 case as illustration.

Let A ∈ Rl×m×n. Recall that we have defined the p-slab ranks:

rank1(A) = dim(spanR{Ai•• | i = 1, . . . , l}),
rank2(A) = dim(spanR{A•j• | j = 1, . . . , m})
rank3(A) = dim(spanR{A••k | k = 1, . . . , n}).

We may also define the (p, q)-slab ranks:

rank2,3(A) = dim(spanR{A•jk | j = 1, . . . , m; k = 1, . . . , n}),
rank1,3(A) = dim(spanR{Ai•k | i = 1, . . . , l; k = 1, . . . , n}),
rank1,2(A) = dim(spanR{Aij• | i = 1, . . . , l; j = 1, . . . , m}).

It is easy to see that

rank1(A) = rank2,3(A),

rank2(A) = rank1,3(A),

rank3(A) = rank1,2(A).
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Higher Level Trilinear Rank

The 1st level trilinear rank for an order-3 tensor is what we simply

called trilinear rank earlier:

rank1
�(A) = (rank1(A), rank2(A), rank3(A))

The 2nd level trilinear rank for an order-3 tensor is:

rank2
�(A) = (rank2,3(A), rank1,3(A), rank1,2(A)).

Hence the result at the end of the previous slide may be restated

for A ∈ Rl×m×n as simply

rank1
�(A) = rank2

�(A).

Note that for A ∈ Rm×n = R1×m×n, this reduces to

(1, rowrank(A), colrank(A)) = (1, colrank(A), rowrank(A)),

and thus rowrank(A) = colrank(A).
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Higher Level Multilinear Rank

Let A ∈ Rd1×···×dk. For any {p1, . . . , pl} ⊂ {1, . . . , k}, p1 < · · · < pk,

we may define (p1, . . . , pl)-slab rank accordingly.

The
(
k
l

)
-tuple of (p1, . . . , pl)-slab ranks gives the lth level multi-

linear rank, for l = 1, . . . , k − 1.

Theorem (de Silva and L., 2005). The lth level multilinear

rank is equal to the (k−l)th level multilinear rank, l = 1, . . . , k−1.
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Moral

The multilinear rank is the generalization of matrix rank that

preserves most of the common properties of matrix rank.

We should stop expecting the outer product rank to resemble

matrix rank in any way.

However, the outer product rank is the generalization that is

more important in applications.

Furthermore, the mathematical and computational challenges

from studies of outer product rank shows that it is a more inter-

esting object than multilinear rank.

The remainder of this talk will be about our efforts in overcoming

several of these problems in order to get a satisfactory statistical

model based on outer product approximation.
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Ultimate Objective

Statistical theory for multiway data analysis

Obstacles:

• Ill-posedness of argminrank⊗(B)≤r‖A−B‖F

• Lack of a generic rank, ie. no Candecomp/Parafac model

that gives a perfect fit almost everywhere

• Existing algorithm not convergent to globally minima
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Ill-posedness of Optimal Low-Rank Approximation

The problem argminrank⊗(B)≤r‖A−B‖F may not have an optimal

solution when r ≥ 2, k ≥ 3. In fact

Theorem (L. and Golub, 2004). For tensors of any order

k ≥ 3 and with respect to any choice of norm on Rd1×···×dk,

there exists an instance A ∈ Rd1×···×dk such that A fails to have

an optimal rank-r approximation for some r ≥ 2. On the other

hand, an optimal solution always exist for k = 2 and r = 1.

In the next slide, we give an explicit example.
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Example

x,y two linearly independent vectors in R2. Consider the order-3
tensor in R2×2×2,

A := x⊗ x⊗ x + x⊗ y ⊗ y + y ⊗ x⊗ y.

A has rank 3: straight forward.

A has no optimal rank-2 approximation: consider sequence {Bn}∞n=1
in R2×2×2,

Bn := x⊗ x⊗ (x− ny) +
(
x +

1

n
y

)
⊗

(
x +

1

n
y

)
⊗ ny,

Clear that rank⊗(Bn) ≤ 2 for all n. By multilinearity of ⊗,

Bn = x⊗ x⊗ x− nx⊗ x⊗ y + nx⊗ x⊗ y

+ x⊗ y ⊗ y + y ⊗ x⊗ y +
1

n
y ⊗ y ⊗ y = A +

1

n
y ⊗ y ⊗ y.

For any choice of norm on R2×2×2,

‖A−Bn‖ =
1

n
‖y ⊗ y ⊗ y‖ → 0 as n→∞.

37



Surprising Find

It has always been assumed that an optimal rank-r approximation

exist for high-order tensors and there has been continual inter-

ests in finding an ‘Eckart-Young theorem’-like result for tensors

of higher order. The view expressed in the conclusion of the

following paper is representative of such efforts:

“An Eckart-Young type of optimal rank-k approximation theorem

for tensors continues to elude our investigations but can perhaps

eventually be attained by using a different norm or yet other

definitions of orthogonality and rank.”

Source: T.G. Kolda, “Orthogonal tensor decompositions,” SIAM

J. Matrix Anal. Appl., 23 (1), 2001 , pp. 243–255.

A simple fact that’s often overlooked: in a norm space, the

minimum distance of a point A to a non-closed set S may not

be attained by any point in S.
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For tensors of order k ≥ 3, r ≥ 2, the set

{A ∈ Rd1×···×dk | rank⊗(A) ≤ r}

may not be closed. This is norm independent since all norms are

equivalent on finite dimensional spaces.

However we still need to ‘solve’ the problem

argminrank⊗(B)≤r‖A−B‖F
in order to analyze multiway data.

How can we overcome the ill-posedness?



Quick but Flawed Fix

Current way to force a solution: perturb the problem by small
ε > 0 and find approximate solution x∗i (ε),y

∗
i (ε) ∈ Rdi (i = 1,2,3)

with

‖A− x∗1(ε)⊗ y∗1(ε)⊗ z∗1(ε)− x∗2(ε)⊗ y∗2(ε)⊗ z∗2(ε)‖
= ε + inf

xi,yi∈Rdi
‖A− x1 ⊗ y1 ⊗ z1 − x2 ⊗ y2 ⊗ z2‖.

Serious numerical problems due to ill-conditioning (a phenomenon
often referred to as degeneracy or swamp in Chemometrics and
Psychometrics).

Reason? Rule of thumb in Computational Math:

A well-posed problem near to an ill-posed one is ill-conditioned.

So, even if we may perturb an ill-posed problem slightly to get a
well-posed one, the perturbed problem will more often than not
be ill-conditioned.
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Discriminants

Definition. f(x1, . . . , xk) polynomial, deg(f) ≤ d, the discrim-

nant ∆(f) is a polynomial function in the coefficients of f so

that ∆(f) whenever f has a multiple root (ie. common root of

f and ∇f).

Quadratic 1-variable: f(x) = a + bx + cx2, ∆(f) = b2 − 4ac

Cubic 1-variable: f(x) = a+ bx+ cx2+dx3, ∆(f) = b2c2−4b3d−
4ac3 − 27a2d2 + 18abcd

General 1-variable: f(x) =
∏deg(f)

i=1 (x−λi), ∆(f) =
∏

i<j(λi−λj)
2

Resultant: Res(f, g) = ∆(f(x) + yg(x))

Determinant: A ∈ Rn×n, det(A) = ∆(fA) where fA(x,y) =

xtAy =
∑

i,j aijxiyj
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Hyperdeterminant

The hyperdeterminant of a tensor A = [[aijk]] ∈ R2×2×2 is defined

as

∆(A) := (a2
000a2

111 + a2
001a2

110 + a2
010a2

101 + a2
011a2

100)

− 2(a000a001a110a111 + a000a010a101a111 + a000a011a100a111

+ a001a010a101a110 + a001a011a110a100 + a010a011a101a100)

+ 4(a000a011a101a110 + a001a010a100a111).

This formula first appeared in a paper by Cayley published in

1845 but remained obscure until a study by Gelfand, Kapranov,

Zelevinsky in 1992.

A result that parallels the matrix case is the following: the system
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of bilinear equations

a000x0y0 + a010x0y1 + a100x1y0 + a110x1y1 = 0,

a001x0y0 + a011x0y1 + a101x1y0 + a111x1y1 = 0,

a000x0z0 + a001x0z1 + a100x1z0 + a101x1z1 = 0,

a010x0z0 + a011x0z1 + a110x1z0 + a111x1z1 = 0,

a000y0z0 + a001y0z1 + a010y1z0 + a011y1z1 = 0,

a100y0z0 + a101y0z1 + a110y1z0 + a111y1z1 = 0.

has a non-trivial solution iff ∆(A) = 0.

Theorem (Gelfand, Kapranov, Zelevinsky, 1992).
R(d1+1)×···×(dk+1) has a non-trivial hyperdeterminant if and only
if

dj ≤
∑
i6=j

di

for all j = 1, . . . , k.

For Rm×n, the condition becomes m ≤ n and n ≤ m — that’s
why matrix determinants is only defined for square matrices.



Weak solutions to PARAFAC

Theorem (de Silva and L., 2004). Let l, m, n ≥ 2. Let A ∈
Rl×m×n with rank⊗(A) = 3. A is the limit of a sequence Bn ∈
Rl×m×n with rank⊗(Bn) ≤ 2 if and only if

A = x1 ⊗ y1 ⊗ z1 + x2 ⊗ y1 ⊗ z2 + x2 ⊗ y2 ⊗ z1

where {x1,x2}, {y1,y2}, {z1, z2} are linearly independent sets in

Rl, Rm, and Rn respectively.

With this, we can overcome the ill-posedness of argminrank⊗(B)≤r‖A−
B‖F by replacing rank⊗ with closedrank⊗, defined by

{A | closedrank⊗(A) ≤ r} = {A | rank⊗(A) ≤ r}.

For order-3 tensor, it follows from the theorem that

{A ∈ Rl×m×n | closedrank⊗(A) ≤ 2} =

{x1 ⊗ y1 ⊗ z1 + x2 ⊗ y1 ⊗ z2 + x2 ⊗ y2 ⊗ z1 | xi ∈ Rl,yi ∈ Rm, zi ∈ Rn}
∪ {x1 ⊗ y1 ⊗ z1 + x2 ⊗ y2 ⊗ z2 | xi ∈ Rl,yi ∈ Rm, zi ∈ Rn}
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Sketch of Proof

Restrict to the special case l = m = n = 2. There is a technical

lemma that allows us to generalize to arbitrary l, m, n.

1. Regard A ∈ R2×2×2 as two slabs of 2× 2 matrices:

A = [A0 | A1] =

[
a000 a001

a010 a011

∣∣∣∣ a100 a101

a110 a111

]
∈ R2×2×2.

2. One can check that

det(λ0A0 + λ1A1) = λ2
0 det(A0)

+ λ0λ1
det(A0 + A1)− det(A0 −A1)

2
+ λ2

1 det(A1).

3. Define ∆ to be the discriminant of this quadratic polynomial:

∆(A) =

[
det(A0 + A1)− det(A0 −A1)

2

]2

− 4det(A0) det(A1).

Easy to check that ∆(A) is exactly the hyperdeterminant of

A defined earlier.
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4. For L = (L1, L2, L3) ∈ GL2(R) × GL2(R) × GL2(R), we can

show that

∆(LA) = det(L1)
2 det(L2)

2 det(L3)
2∆(A).

Thus the sign of ∆(A) is invariant under multiplication by

non-singular matrices on three sides. In particular, Gaussian

elimination applied to the three sides of A does not change

the sign of ∆.

5. Can show that rank⊗(A) ≥ 3 ⇒ ∆(A) ≤ 0 and rank⊗(A) ≤
2⇒∆(A) ≥ 0.

6. If A is a limit point of rank-2 tensors, then ∆(A) = 0 and by

Gaussian elimination, A can be transformed into[
1 0
0 0

∣∣∣∣∣ 0 1
1 0

]
= e1 ⊗ e1 ⊗ e1 + e1 ⊗ e2 ⊗ e2 + e2 ⊗ e1 ⊗ e2.



Generic Rank

Zariski topology on Cd1×···×dk = Cd, ie. topology generated by

closed sets of the form V(f) = {z ∈ Cd | f(z) = 0}.

A property P is said to be generic in Cd if the set of elements

for which P doesn’t hold is contained in a union of closed sets,

each of dimension not more than n− 1. In particular, the set of

elements where P doesn’t hold has zero volume in Cd and the

set of elements where P holds has the same volume as Cd.

It follows that if a generic rank r̄ exists for Cd1×···×dk ∼= Cd (d =

d1 · · · dk), then the set of elements A ∈ Cd1×···×dk satisfying the

property rank⊗(A) = r̄ must have the same volume as Cd and

thus is dense

Caution: The term generic rank is used in a different way in the

Computational Complexity literature (its existence is trivial).
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Rank Depends on Base Field

Let x,y ∈ Rn where n ≥ 2. Write z = x + iy ∈ Cn. Then

x⊗ x⊗ x− x⊗ y ⊗ y + y ⊗ x⊗ y + y ⊗ y ⊗ x

=
1

2
(z⊗ z̄⊗ z̄ + z̄⊗ z⊗ z).

lhs has rank 3 in Rn×n×n while rhs has rank 2 in Cn×n×n.

Recall in R2×2×2, ∆(A) > 0 ⇒ rank⊗(A) = 2, ∆(A) < 0 ⇒
rank⊗(A) = 3. It follows that both the set of rank-2 tensors and

the set of rank-3 tensors have positive volumes in R2×2×2. So

there is no ‘generic’ rank.

On the other hand, we may show that the generic rank in C2×2×2

is 2.
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Generic Rank for Complex Tensors

A locally closed sets is one that can be written as an intersection
of an open set and a closed set. A constructible set is one that
can be written as a finite union of locally closed set.

Theorem (L., de Silva, Comon, 2005). For every r ∈ N, the
set of tensors of rank r is a constructible set.

Corollary 1. There exist p1, . . . , pN ∈ C[X1, . . . , Xd] such that for
any r ∈ {0, . . . , rmax},

{A ∈ Cd1×···×dk | rank⊗(A) = r} = Y(Ir,1) ∪ · · · ∪ Y(Ir,mr)

where for I = {i1, . . . , is} ⊆ {1, . . . , N} and Ic = {j1, . . . , jN−s} =
{1, . . . , N} \ I, we write

Y(I) := V(pi1 · · · pis) ∩ V(pj1, . . . , pjN−s
)c

= V(pi1) ∩ · · · ∩ V(pis) ∩ V(pj1)
c ∩ · · · ∩ V(pjN−s

)c.

Corollary 2. A generic outer-product rank exist for Cd1×···×dk.
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Sketch of Proof

Work over complex projective space Pn for simplicity.

1. S1 := {A ∈ Pd | rank⊗(A) = 1} is exactly image of the Segre

map

Pd1 × · · · × Pdk → Pd, (x1, . . . ,xk) 7→ x1 ⊗ · · · ⊗ xk

where d = (d1 + 1)̇ · · · (dk + 1)− 1.

2. For r ≥ 2, Sr := {A ∈ Pd | rank⊗(A) ≤ r} is the union of the

secant r-planes to S1, ie.

Sr = {B ∈ A1 · · ·Ar | A1, . . . , Ar ∈ S1}.

Note that this is not a Zariski-closed set.

3. Sr can be parameterized in the following way:

ϕ : S1 ×s · · · ×s S1 ×s Pr → Pd

47



where there are r copies of S1 and ×s denotes Segre product.

The image of ϕ is Sr.

4. ϕ is a morphism of finite-type and the Chevalley’s Con-

structibility Theorem, which in its full generality says that

the image of a morphism of finite-type between two Noethe-

rian schemes is constructible, shows that Sr is constructible.

5. Let Xr := {A ∈ Pd | rank⊗(A) = r}. Then Xr = Sr \ Sr−1 is

also a constructible set.

6. Alternatively, may show directly without invoking Chevalley’s

Constructibility Theorem that Sr is a quasi-projective variety

(locally closed set) and thus Xr is constructible.

7. Since Pd is a disjoint union X1 t · · · tXrmax, exactly one Xg,

g ∈ {2, . . . , rmax}, must contain an open set. Thus g is the

required generic rank.



Alternating Least Squares

Even when an optimal solution A∗⊗ to argminrank⊗(B)≤r‖A−B‖F
exists, A∗⊗ is not easy to compute since the objective function

is non-convex. Since 1979, multiway data analysis rely primarily

on the following nonlinear Gauss-Seidel algorithm:

Algorithm: ALS for optimal rank-r approximation

initialize X(0) ∈ Rl×r, Y (0) ∈ Rm×r, Z(0) ∈ Rn×r;
initialize s(0), ε > 0, k = 0;
while ρ(k+1)/ρ(k) > ε;

X(k+1) ← argminX̄∈Rl×r‖T −
∑r

α=1x̄
(k+1)
α ⊗ y(k)

α ⊗ z(k)
α ‖2F ;

Y (k+1) ← argminȲ ∈Rm×r‖T −
∑r

α=1x
(k+1)
α ⊗ ȳ(k+1)

α ⊗ z(k)
α ‖2F ;

Z(k+1) ← argminZ̄∈Rn×r‖T −
∑r

α=1x
(k+1)
α ⊗ y(k+1)

α ⊗ z̄(k+1)
α ‖2F ;

ρ(k+1) ← ‖
∑r

α=1[x
(k+1)
a ⊗ y(k+1)

α ⊗ z(k+1)
α − x(k)

α ⊗ y(k)
α ⊗ z(k)

α ]‖2F ;
k ← k + 1;

Problem: Not globally convergent even when there is an opti-

mal solution. When it converges, there’s no guarantee that the

solution will be a global minima.
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SDP-Based Algorithm

Observation 1:

F (x11, . . . , znr) = ‖A−
∑r

α=1xα ⊗ yα ⊗ zα‖2F
=

∑l,m,n
i,j,k=1

(
aijk −

∑r
α=1xiαyjαzkα

)2

is a polynomial of total degree 6 (resp. 2k for order k-tensors)

in variables x11, . . . , znr.

Recent breakthroughs in multivariate polynomial optimization

[Lasserre 2001], [Parrilo 2003] [Parrilo-Sturmfels 2003] show

that the non-convex problem

argminF (x11, . . . , znr)

may be relaxed to a convex problem (thus global optima is gu-

ranteed) which can in turn be solved using SDP.
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How It Works

Observation 2: If F − λ can be expressed as a sum of squares of

polynomials

F (x11, . . . , znr)− λ =
n∑

i=1

Pi(x11, . . . , znr)
2,

then λ is a global lower bound for F , ie.

F (x11, . . . , znr) ≥ λ

for all x11, . . . , znr ∈ R.

Simple strategy: Find the largest λ∗ such that F − λ∗ is a sum

of squares. Then λ∗ is often minF (x11, . . . , znr).

Write v = (1, x11, . . . , znr, . . . , xl1ym1zn1, . . . , z6
nr)

t, the N-tuple of

monomials of total degree ≤ 6, where

N =
(r(l + m + n) + 3

3

)
.
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Write F (x11, . . . , znr) = αtv where α = (α1, . . . , αN) ∈ RN are the

coefficients of the respective monomials.

Since deg(F ) is even, F may also be written as

F (x11, . . . , znr) = vtMv

for some M ∈ RN×N . So

F (x11, . . . , znr)− λ = vt(M − λE11)v

where E11 = e1e
t
1 ∈ RN×N .

Observation 3: The rhs is a sum of squares iff M − λE11 is

positive semi-definite (since M − λE11 = BtB).

Hence we have

minimize −λ
subjected to vt(S + λE11)v = F,

S � 0.



This is an SDP problem

minimize 0 ◦ S − λ
subjected to S ◦B1 + λ = α1,

S ◦Bk = αk, k = 2, . . . , N
S � 0, λ ∈ R.

This problem can be solved in polynomial time. Like all SDP-

based algorithms, the SPD duality produces a certificate that

tells us whether we have arrived at a globally optimal solution.

The Candecomp/Parafac model is used as an example but the

algorithm, like ALS, applies to other models (Tucker, Dedicom,

SCA, Indscal) as well.



Global Convergence Issues

Hilbert 17th Problem (Artin 1927). Any multivariate polyno-
mial function F : RN → R that has F (x) ≥ 0 for every x ∈ RN is
a sum of squares of rational functions.

Cannot replace rational functions by polynomial functions in gen-
eral (eg. w4 + x2y2 + y2z2 + z2x2 − 4xyzw).

However, if those of the form

µ +
l,m,n∑

i,j,k=1

aijk −
r∑

α=1

xiαyjαzkα

2

can always be written as a sum of polynomials (we don’t know),
then the SDP algorithm for optimal low-rank tensor approxima-
tion will always converge globally.

Numerical experiments performed by Parrilo on more general
polynomials yield λ∗ = minF in all cases.
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Catch: For rank-r approximations to order-k tensors A ∈ Rd1×···×dk,

N =
(r(d1 + · · ·+ dk) + k

k

)
is large even for moderate di, r and k.

Sparsity to the rescue? The polynomials that we are interested

in are always sparse (eg. for k = 3, only terms of the form xyz

or uvwxyz appear).


