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Problem 1

Problem (Minimal Rank-1 Matrix Subspace)

Let A, ..., A, € R™" Find smallest r such that there exist rank-1
matrices ulvlT, e u,vrT with

T T
Ai,..., A €span{uivy ,...,u.v, }.
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Problem (Minimal Rank-1 Matrix Subspace)

Let A, ..., A, € R™" Find smallest r such that there exist rank-1

matrices ulvlT, e u,v,T with

T T
Ai,..., A €span{uivy ,...,u.v, }.

o Expected to be difficult: NP-complete over F;, NP-hard over Q.

o Convex relaxation along the lines of compressive sensing/sparse
decoding?

|- lla =1 o, | - |l« =~ rank.
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Let A, ..., A, € R™" Find smallest r such that there exist rank-1

matrices ulvlT, e u,v,T with

T T
Ai,..., A €span{uivy ,...,u.v, }.

o Expected to be difficult: NP-complete over F;, NP-hard over Q.
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|- lla =1 o, | - |l« =~ rank.

e Ky Fan/nuclear/Schatten/trace norm,

rank(A)
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Problem 1

Problem (Minimal Rank-1 Matrix Subspace)

Let A, ..., A, € R™" Find smallest r such that there exist rank-1

matrices ulvlT, RN u,v,T with

T T
Ai,..., A €span{uivy ,...,u.v, }.

o Expected to be difficult: NP-complete over F;, NP-hard over Q.

o Convex relaxation along the lines of compressive sensing/sparse
decoding?

|- lla =1 o, | - |l« =~ rank.
e Ky Fan/nuclear/Schatten/trace norm,
rank(A)
Al = 3" ).

e [Fazel, Hindi, Boyd; 01], [Recht, Fazel, Parrilo; 09], [Candes, Recht;
09], [Ma, Goldfarb, Chen; 09].
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Tensors as hypermatrices

Up to choice of bases on U, V, W, atensor Ac U® V ® W may be
represented as a hypermatrix

_ I,m,n Ixmxn
A= [[aijk]]i,j,kzl eR

where dim(U) = I,dim(V) = m,dim(W) = n if
@ we give it coordinates;

@ we ignore covariance and contravariance.

Henceforth, tensor = hypermatrix.
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Multilinear matrix multiplication

@ Matrices can be multiplied on left and right: A € R™*" X € RP*™,
Y € R9*",

C=(X,Y) A= XAYT € RP*9,
Cap = Zi,j’:l xa,-yﬁja,-j.

@ 3-tensors can be multiplied on three sides: A € R*™xn X ¢ RP*/
Y e RI*™M Z € R™*",

C=(X,Y,Z) - AecRPXI*r
I,m,n
Caﬁ»y = Zi,j,kzl xa,-ygjzvka,-jk.

@ Correspond to change-of-bases transformations for tensors.

@ Define ‘right’ (covariant) multiplication by
(X,Y,2) - A=A-(XT, YT, Z").
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Tensor rank = Problem 1

: I
o Segre outer product is u®v @ w = [uvwi]; L.

@ A decomposable tensor is one that can be expressed as u ® v ® w.

Definition (Hitchcock, 1927)

Let A € R/*M*" Tensor rank is defined as

rankg(A) := min{r ‘ A= 2:21 oiu; QV; ® w,-}.

o NP-complete over F,, NP-hard over Q [Hastad; 90].
e U V®W ~Hom(U,V & W,).
o Write A = [A1,...,A]] where Aj,...,A; € R™*". Then

rankg (A) = min{r | A,... A € span{uyvy ..., u,v,T}}
e [Biirgisser, Clausen, Shokrollahi; 97]
December 22, 2008 5 /31



Symmetric tensors

@ Cubical tensor [aji] € R"™"™*" is symmetric if

djjk = dikj = djik = Ajki = Akij = dkji-

For order p, invariant under all permutations o € &, on indices.

SP(R"™) denotes set of all order-p symmetric tensors.

Symmetric multilinear matrix multiplication C = (X, X, X) - A where

I,m,n
C = g XoiXBiX~ k Ak -
afy Pjk=1" BjXvkdijk

[aj,-j,] = [3] € SP(R") can be associated with a unique
homogeneous polynomial F € R[xi, ..., x|, via

F(x1,...,xn) = Zj an{h(j) Ceoxn0),

For j = (J1,..-.,Jp), qj(j) counts number of times j appears in j.
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Symmetric tensor rank
Definition
Let A € S3(R"). Symmetric tensor rank is defined as

ranks(A) := min{r ‘ A= Z;l Aivi ® Vi @ v;}.

@ Similar for arbitrary order. May be viewed as eigenvalue
decomposition for symmetric tensors.

Equivalently, given F(xi,...,xn) € R[xi,...,Xp]p, want smallest r
such that F is linear combination of r powers of linear forms,

.
F(x1,...,xn) = ijl N(ojixs + -+ ajrxe )P

e Difficult even to determine generic value of r given (n, p) — Waring's
Problem for homogeneous polynomials.
@ Over C, result is Alexander-Hirschowitz theorem. Over R, very

little is known. See [Comon, Golub, L, Mourrain; 08] for a survey.
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Friends of Problem 1

Problem 1(a): Effective Alexander-Hirshchowitz. Given F, determine
the r = ranks(F) linear forms explicity.

Problem 1(b): Principal directions of m-ellipse. F = polynomial
defining m-ellipse [Nie, Sturmfels; 09].
Problem 1(c): Nonnegative tensor decomposition. Problem 1 over R, .

As well as suitably relaxed versions of these.
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Tensor ranks

o ForueR veR™ weR",

I,m,n L€ Rlxmxn.

uevew:= [uywdifil

o Outer product rank. A € R/*m*n,

rankg(A) = min{r | A= Zle oiu; QV; QW;, o€ ]R}.

e Symmetric outer product rank. A € SP(R"),
. r
ranks(A) = min{r | A= Zi:l Aivi®vi®@vi, A € R}

o Nonnegative outer product rank. A € Rf’"x”,

ranky(A) = min{r | A = Z::l Sixi ®yi ®zj, 6 € Ry}
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SVD, EVD, NMF of a matrix

e Singular value decomposition of A € R™*",

A=UzVT =Y cuiov

where rank(A) = r, U € O(m) left singular vectors, V € O(n) right
singular vectors, ¥ singular values.

e Symmetric eigenvalue decomposition of A € S?(R"),

A=VAVT =%

i AiVi @ v,
where rank(A) = r, V € O(n) eigenvectors, A eigenvalues.

o Nonnegative matrix factorization of A € R*”,
A=XayT ="

1=

) 0iX; ®Yi

where rank; (A) = r, X, Y € RT*" unit column vectors (in the
1-norm), A positive values.
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SVD, EVD, NMF of a tensor

o Outer product decomposition of A € R/*m*",
r
A= Zizlaiui ® Vi @ Wi

where rankg(A) = r, u; € R/ v; € R™ w; € R” unit vectors, o; € R.
e Symmetric outer product decomposition of A € S3(R"),

,
A= Zi:l AiVi @ V; R V;

where ranks(A) = r, v; unit vector, \; € R.

e Nonnegative outer product decomposition for tensor A € Rf"’x”
is

r
A= Zi:l 0ix; ® yi ®z;

where rank; (A) = r, x; € R/ |y; € RT,z; € R unit vectors,
0 € Ry.
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Best low rank approximation of a matrix

o Given A ¢ R™*" Want

argminrank(B)SrHA - BH :

@ More precisely, find o;,u;,v;, i =1,...,r, that minimizes

A —o1u; @ vy —ooup @ vy — -+ - — ou, @ V.

Theorem (Eckart—Young)

Let A= USVT = S rank)

i=1
r < rank(A), let

Then

[A—AllF = minan <A — BllF.

r
Ar = E ) 1O‘,'u,'V,T.
1=

oiuiv] be singular value decomposition. For

@ No such thing for tensors of order 3 or higher.
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Plausible candidates for Problem 2

@ Polynomial optimization problems if || - || = sum of squares:
» Given A € R’™*™*" find o, u;,v;,w;, i = 1,...,r, that minimizes
[A—o1u1 @ Vi QW1 — 02U @ V2 @Wp — -+ — 0,u, @V, @ W,|.

» Given A € S(R"), find A;,v;, i =1,...,r, that minimizes

A= Avi @Vi®VI —XVa @Va @ Vo — -+ = AV, @V, @V, ||

» Given A € R*™" find nonnegative &;,%;,y;,2;, i = 1,...,r, that
minimizes

A—01x1 QY1 ®21 — 02X @Y2®22 — -+ — 6, X DY, @ Z .

@ Surprise: Only the last problem has a solution in general.

e Explanation: Set of tensors (resp. symmetric tensors) of rank (resp.
symmetric rank) < r is not closed.
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Tensor approximation is ill-behaved
o Forx;,y; e R%, =123,

A=x1 %X QY3 +X1 QY @X3+ Y1 ® X2 ® X3.

e Forne N,

1 1 1
Ap:i=n X1+ Y1) @ (X2 + _y2 | @ X3+ y3 | — X1 @ X2 © 3.

Lemma

rankg(A) = 3 iff x;,y; linearly independent, i = 1,2,3. Furthermore, it is
clear that rankg(A,) < 2 and

limp_oo An = A.

@ Original example, in a slightly different form, may be found in [Bini,
Lotti, Romani; 80]. But see [de Silva, L; 08] for a proof.
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Problem is worse than you may think

@ Such phenomenon can and will happen for all orders > 2, all norms,
and many ranks:

Theorem (de Silva-L)
Let k >3 and di,...,dx > 2. For any s such that

2 <s<min{di,...,dk},

there exists A € RAX > with rankg(A) = s such that A has no best
rank-r approximation for some r < s. The result is independent of the
choice of norms.

e For matrices, the quantity min{di, d>} will be the maximal possible
rank in R%*% |n general, a tensor in R9**dk can have rank
exceeding min{di, ..., dk}.
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Problem is even worse than you may think

@ Tensor rank can jump over an arbitrarily large gap:

Theorem (de Silva-L)

Let k > 3. Given any s € N, there exists a sequence of order-k
hypermatrix A, such that rankg(A,) < r and lim,_ A, = A with
rankg(A) =r +s.

@ Tensors that fail to have best low-rank approximations are not rare.
May occur with non-zero probability; sometimes with certainty.

Theorem (de Silva-L)

Let . be a measure that is positive or infinite on Euclidean open sets in
R/>*mxn " There exists some r € N such that

w({A | A does not have a best rank-r approximation}) > 0.

R2><2><2

In , all rank-3 tensors fail to have best rank-2 approximation.

v
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Happens to symmetric tensors . ..

@ Approximation of a homogeneous polynomial by a sum of powers of
linear forms (e.g. Independent Components Analysis).

o Let x,y € R™ be linearly independent. Define for n € N,
p
A,:=n [x + y] — nx®P
n
@ Define
A=xQy® Qy+y@x@ - Qy+: - +yQy®- - Qx

@ Then ranks(A,) < 2, ranks(A) > p, and

lim A, = A.

n—oo

@ See [Comon, Golub, L, Mourrain; 08] for details.
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...and to operators ...

@ Approximation of an operator by a sum of Kronecker product of
lower-dimensional operators (e.g. Numerical Operator Calculus).

@ For linearly independent operators P;, Q; : V; — W;, i =1,2,3, let
D:-VioVor V;— W ® W) ® Ws be

D=PQdQB+QUQP;+Q® @ P;.

o If finite-dimensional, then ‘®" may be taken to be Kronecker product
of matrices.

@ Forne N,
1 1 1
sznFﬁnﬂ4®Pﬁ+#¥P4%+nQ4—Mﬁ@%@%.

@ Then
lim D, =1D.

n—oo
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...and functions too

@ Approximation of a multivariate function by a sum of separable
functions (e.g. Approximation Theory).

@ For linearly independent ¢1,91 : X = R, w2,%2 : Y — R,
w3, P3: Z =R, let f: X xY xZ— R be

f(x,y,2) == p1(x)P2(y)P3(2) +1(x)P2(y)3(2) +¥1(x)P2(y)3(2)-

@ For ne N,

fa(x,y,z) =
o100 + 3100 [e2) + 20| [ ) + St
— np1(x)p2(y)p3(2).
@ Then
nango f,=".
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Message

@ That the best rank-r approximation problem for tensor has no
solution poses serious difficulties.

@ It is incorrect to think that if we just want an ‘approximate solution’,
then this doesn't matter.

@ If there is no solution in the first place, then what is it that are we
trying to approximate? i.e. what is the ‘approximate solution’ an
approximate of?
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Nonnegativity helps

Approximation of joint probability distributions by conditional probability
distributions under the Naive Bayes Hypothesis:

xy,z)—z Pr(h)Pr(x | h)Pr(y | h)Pr(z | h)

O/E\.
X Y Z

Theorem (L-Comon)
The set {A € RI*™" | ranky(A) < r} is closed.

@ Extends to arbitrary order.
@ Independent of norms and even Brégman divergences.

@ Holds more generally over C; @ --- ® C, where Cy, ..., C, are
line-free cones.
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Problem 2

Problem (Nonnegative Tensor Approximations)

Let A= [aj,..;] € ]Rilx'"x‘j". Determine
argmin{HA — Z,;l UiV, Q-+ ® z,-|| } i ujy...,2; > 0}.

Here || - || is the sum of squares norm and u;, ..., z; are assumed to have
unit 2-norms.

More generally, want:

Problem (Polynomially Constrained Tensor Approximations)
Let A= [aj,...;,] € R@X*d  Determine if

argmin{||.A — Z,;l Siui@v; @ @2z | P(61,...,6p,u1,...,2,) >0}

has a solution and if so find it.

v
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Examples of symmetric tensors

@ Higher order derivatives of real-valued multivariate functions.
@ Moments of a vector-valued random variable x = (x1, ..., x,):

SP(X) = [[E(XHXJZ o .)gp):l]jnl,...,jpzl

— [[/.../thjz...ijdu(@lyndu(x,-p)]]n

J1sadp=1

e Cumulants of a vector-valued random variable x = (x1,. .., Xxp):

fcp(x):ﬁ > e (s ) Hx)]]

. . JEA jEA
ArU--UAg={j1,--jp} e & J1s--dp=1
R
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Cumulants

@ In terms of log characteristic and cumulant generating functions,
0 log E
Kj.j(X) = =————=— 10 exp((t,x
J1 _Ip( ) atj . ajp g ( p(< >) 0
(~1)P - log E(exp(it. x))
=(—1) ——— log E(exp(/(t,x
atjl T 8tjp t=0
@ In terms of Edgeworth expansion,
. N o t~ = t>
log E(exp(i(t,x)) = > /! 'Ha(x)a, log E(exp((t,x)) = > Ka(x)a,
a=0 a=0
a=(ai,...,ap) is a multi-index, t&* = t[" -+ t3", al = aq! - -l

For each x, Kp(x) = [Kj,...j,(x)] € SP(R") is a symmetric tensor.
[Fisher, Wishart; 1932]
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Properties of cumulants

Multilinearity: If x is a R"-valued random variable and A € R™*"
Ko(Ax) = (A, ..., A) - Kp(x).
Additivity: If x1, ..., X, are mutually independent of yi, ..., yk, then
Kp(x1+y1,- Xk +yi) = Kp(xa, . xk) +Kp(yr, - -+, Yk)-

Independence: If | and J partition {ji,...,jp} so that x; and x, are
independent, then

/@J-I...J-p(x) =0.

Support: There are no distributions where

#0 3<p<n,
Kp(x){:() p>n
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Examples of cumulants

Univariate: Kp(x) for p=1,2,3,4 are mean, variance, skewness,
kurtosis (unnormalized)
Discrete: x ~ POISSON(A), ICp(x) = A for all p.
Continuous: x ~ UNIFORM([0, 1]), Kp(x) = Bp/p where B, = pth
Bernoulli number.
Nonexistent: x ~ STUDENT(3), KCp(x) does not exist for all p > 3.
Multivariate: KC1(x) = E(x) and K2(x) = Cov(x).
Discrete: x ~ MULTINOMIAL(n, q),
Kjyjp(X) = N2 log(qre™ + - - 4 ge')

Ity -0ty te =0

Continuous: x ~ NORMAL(u, X), KCp(x) = 0 for all p > 3.
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Problem 3
Problem (K-moment problem)

Given an infinite sequence (Ap)5; in [[;2; SP(R"), can we find a positive
Borel meausre . supported on a compact set K C R" such that

Sp(x) = A, forall pe N?

@ Resolved in [Lasserre, Laurent, Rostalski; 08].

o Immediate observation: False for cumulants without further
restrictions on the sequence. E.g. there are no distributions where

,Cp(x){#o 3<p<n,

=0 p>n

Problem (K-cumulant problem)

How could we pose an equivalent of the K-moment problem for
cumulants?
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Variational approach to eigenvalues/vectors

o A e R™*" symmetric.
e Eigenvalues and eigenvectors are critical values and critical points of
T 2

x ' Ax/[|x[|3.

o Equivalently, critical values/points of x" Ax constrained to unit
sphere.
o Lagrangian:
L(x, A) = x Ax — A(Ix]3 — 1).

e Vanishing of VL at critical (xc, A\c) € R" x R yields familiar

AXe = AeXe.
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Eigenvalues/vectors of a tensor

o Extends to hypermatrices.

o For x = [x1,...,x,) " €R" write xP := [x0, ..., x}]".

o Define the ‘¢P-norm’ ||x||, = (X + - - - + xF)Y/P.

o Define eigenvalues/vectors of A € SP(R") as critical values/points of

the multilinear Rayleigh quotient

A(x, .., x) /x5

Lagrangian
L(X, )‘) = A(X, s ,X) - A(HXH;,; - 1)

At a critical point
Al %, ... x) = AxP7L,
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Some observations

If A is symmetric,

Al %, %, .o, X) = A(X, Iny X, .o X) = oo = A(X, X, ..., X, Ip).

Defined in [Qi; '05] and [L; '05] independently.

For unsymmetric hypermatrices — get different eigenpairs for different
modes (unsymmetric matrices have different left/right eigenvectors).

Falls outside Classical Invariant Theory — not invariant under
Q € O(n), ie. [|Qx]l2 = [[x]]2.

Small stabilizer — Q € GL(n) with ||@x||, = ||x]|, for all x is
monomial, i.e. product of a permutation matrix and a diagonal
scaling.
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Problem 4

o Amit Singer's triplewise affinity tensor A = [a;;] € S*(R") where

X exp [—1 sin? <9U i 91; + 9“)} .
€

di + di + d;
1)

djjk = exp

@ From cryo-EM and NMR applications.

@ May assume, for simplicity, ajjx = wjjwj w; for some nonnegative
matrix W = [w;] € S3(R").

Problem (Singer's problem)
Find the 10 largest real eigenvalues and real eigenvectors of A. J

e Equivalent to x"(A; — AE;)x =0 for i =1,...,n, and ||x||3 = 1.

o Fact: Solving a system of n quadratic equations in n unknowns over
any field is NP-hard.

@ Can the special structure of the Singer affinity tensor be exploited?
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