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Abstract. Multivariate Gaussian data is completely characterized by its mean and covariance,
yet modern non-Gaussian data makes higher-order statistics such as cumulants inevitable. For
univariate data, the third and fourth scalar-valued cumulants are relatively well-studied as skewness
and kurtosis. For multivariate data, these cumulants are tensor-valued, higher-order analogs of the
covariance matrix capturing higher-order dependence in the data. In addition to their relative
obscurity, there are few effective methods for analyzing these cumulant tensors. We propose a
technique along the lines of Principal Component Analysis and Independent Component Analysis
to analyze multivariate, non-Gaussian data motivated by the multilinear algebraic properties of
cumulants. Our method relies on finding principal cumulant components that account for most of
the variation in all higher-order cumulants, just as PCA obtains varimax components. An efficient
algorithm based on limited-memory quasi-Newton maximization over a Grassmannian, using only
standard matrix operations, may be used to find the principal cumulant components. Numerical
experiments include forecasting higher portfolio moments and image dimension reduction.

1. Introduction

Data arising from modern-day applications like computational biology, computer vision, and
finance are rarely well described by a multivariate Gaussian distribution; we need to examine not
just the mean and covariance matrix, but higher order structure in the data. A timely example
of the consequence of ignoring non-Gaussianity is the financial crisis, which has been attributed
in part to the over-reliance on measures of risk appropriate primarily for Gaussians. Emphasizing
variance allows risks to creep in through the higher moments. For a single continuous variable,
mean, variance, skewness and kurtosis are commonly used to describe the distribution’s shape. A
negatively skewed distribution has a longer left tail and more mass on the right as compared to
the Gaussian; a leptokurtotic distribution has fatter tails and a more concentrated central peak
(Figure 1).
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Figure 1. Left: Skewness and kurtosis describe univariate distribution shape for
unimodal distributions. Middle: joint and marginals for two pixels in the ORL face
database. Right: Gaussian marginals but not dependence.
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For continuous multivariate data, covariance matrices partially describe the dependence struc-
ture. When the variables are multivariate Gaussian, this description is complete. Rank restrictions
on the covariance matrix yields Principal Component Analysis (PCA) . The covariance matrix plays
a critical role in optimization in finance and other areas involving optimization of risky payoffs,
since it is the bilinear form which computes the variance of a linear combination of variables.

For multivariate, non-Gaussian data, the covariance matrix is an incomplete description of the
dependence structure. Note that even with Gaussian marginals, dependence may be non-Gaussian
(Figure 1). Cumulant tensors are the multivariate generalization of univariate skewness and kurtosis
and the higher-order generalization of covariance matrices. For a Rp-valued random variable, the
tensor corresponding to skewness is a symmetric p × p × p array, while the kurtosis tensor is
symmetric p × p × p × p. Analogously to the covariance matrix, these are multilinear forms that
compute the skewness and kurtosis of a linear combination of variables. Unlike the covariance case
and ICA [3, 6], these tensors cannot in general be diagonalized, so we must make other choices in
modeling them.

Introduced as half-invariants [21], cumulants fell into disuse as they require large amounts of
data to estimate and there were few methods to analyze them. We propose a simple analytic
method with a computational and decompositional [20] flavor, overcoming several of the practical
and theoretical barriers to their wider use. PCA finds orthogonal components that best explain the
variation in the second-order cumulant (the covariance matrix). This is fine if the data is Gaussian
since all higher-order cumulants vanish, but PCA is blind to the non-Gaussian structure in real-
world data. In the proposed Principal Cumulant Component Analysis (PCCA), we find orthogonal
components that best explain the variation in all the cumulants simultaneously. Eigenvalues are
replaced by a small core tensor C that captures irreducible non-Gaussian dependence among the
components.

PCCA is a principled way to incorporate higher-order statistics into PCA via (1) the use of
multivariate cumulants, which are precisely the statistical objects generalizing covariance matrices
to higher-order information; and (2) the analysis of cumulants via a multilinear model suggested
by how cumulants transform.

While there are superficial similarities, PCCA differs statistically, mathematically, and algo-
rithmically from all existing methods that attempt to take higher-order information into account.
PCCA applies broadly to any scenario where it is reasonable to assume a linear generative model
y = Ax+n and so differs from ICA [3, 6], which requires a strong statistical independence assump-
tion for x. It differs from tensor decomposition methods such as ‘Tucker model’-based methods
[22, 24] and ‘CANDECOMP/PARAFAC’-based methods [5, 11] or their nonnegative-constrained
variants NMF/NTF [18]. These ‘tensor’ methods evolved from heuristic-based psychometrics mod-
els that lack strong mathematical or statistical justifications. PCCA is a method that truly uses
tensors as opposed to just manipulating an array of numbers: Cumulants are honest tensors as
they transform as a tensor should under a change of basis, and there is only one natural action,
defined below in (1). Furthermore our algorithmic approach improves on the difficulties of d-mode
SVD or HOSVD and alternating least squares [7]. These tensor decompositions lack rigorous justi-
fication in that they do not optimize well-defined objective functions (and so cannot have likelihood
interpretations), converge to stationary points, nor represent projections to a well-defined space of
models. More details on these issues can be found in Sections 2.3 and 2.5, and the journal version
of this report.

A common argument against cumulants is their sensitivity to outliers. But this is precisely a
problem with covariance-based methods: in a setting of risky payoffs they are too insensitive to
outliers; a 50% drop in the stock market is an outlier, more likely with negative skew and positive
kurtosis, but not one we should ignore. Moreover the issue is one of degree not kind: covariance
K2 is also more outlier sensitive than mean K1, in the same way. PCCA uses outlier information
with low-rank regularization. For simplicity, we have used unbiased estimates for cumulants in this
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paper; but we note that other estimators/methods robust against outliers exist (e.g. peak shaving
and shrinkage) and can provide more robust inputs to PCCA.

Our use of cumulants in PCCA differs substantially from the manners they are typically used
in statistics. In statistics, the use of cumulants often rely on analytic solutions [15] and symbolic
computation [1], which scale poorly with large data sets. On the other hand, our approach exploits
robust numerical algorithms and takes advantage of the abundance of floating-point computation.
This allows us to analyze 300×300×300 skewness cumulants or 50×50×50×50 kurtosis cumulants
with relative ease on a laptop computer.

In Section 2.1, we give the necessary definitions of tensor and cumulants; in Section 2.2 the
properties that make them suitable for modeling dependence, and in Section 2.3 a geometric view
on the difficulties of extending the notion of eigenvalue decomposition to symmetric tensors. In
Section 2.4 we describe the multilinear factor model and loss that define PCCA. In Section 2.5
we show how to estimate the model using a manifold BFGS algorithm, and in Section 3 explore
applications to dimension reduction and multi-moment portfolio optimization.

2. The Cumulant Factor Model

Suppose we are given a p-vector of random variables y that are not multivariate Gaussian or
derived from a linear mixture of independent sources, but follow a law y = Ax+n for some random
r-vector x, p× r matrix A, r � p, and independent Gaussian noise n. For example, y could be the
pixels in an image or the returns on a collection of assets. We show how to estimate these factors,
describing their non-Gaussian dependence structure in terms of cumulants and how it propagates
to the observed variables.

2.1. Tensors and cumulants. A tensor in coordinates is a multi-way array with a multilinear
action. A tensor C = (cijk) ∈ Rp×p×p is symmetric if it is invariant under all permutations of
indices, cijk = cikj = cjik = cjki= ckij = ckji. We denote the set of dth order symmetric tensors with
r dimensions in each mode by Sd(Rr). The multilinear action is a symmetric multilinear matrix
multiplication as follows. If Q is an p × r matrix, and C an r × r × r tensor, define the p × p × p
tensor K = (Q,Q,Q) · C or just K = Q · C as

(1) κ`mn =
∑r,r,r

i,j,k=1,1,1
q`iqmjqnkcijk,

and similarly for d-way tensors; see Figure 2(a). If d = 2, so C is a r × r and Q is a p× r matrix,
we have Q · C = QCQ>. For d > 2, we multiply on 3, 4, . . . “sides” of the multi-way array. Note
that the operation is associative in the the sense of Q1 · (Q2 · C) = (Q1Q2) · C.

(a) K = Q · C (b) K = (X,Y, Z) · C (c) T = u1 ⊗ v1 ⊗w1 + · · ·

Figure 2. (a) Symmetric multilinear action. Multilinear (b) and rank (c) tensor
decompositions.

Multivariate moments and cumulants are symmetric tensors. For a vector-valued random variable
x = (X1, . . . , Xn), three natural d-way tensors are:

• The dth non-central moment si1,...,id of x: Sd(x) =
[
E(Xi1Xi2 · · ·Xid)

]p
i1,...,id=1

.

• The dth central moment Md(x) = Sd(x− E[x]), and
• The dth cumulant κi1...id of x:

Kd(x) =
[∑

P
(−1)q−1(q − 1)!sP1 . . . sPq

]p
i1,...,id=1

,



4 J. MORTON AND L.-H. LIM

where the sum is over all partitions P = P1 t · · · t Pq = {i1, . . . , id} of the index set. The
cumulant definition is just Möbius inversion, as si1,...,id =

∑
P κP1 . . . κPq summing over partitions P

as above. The dth cumulant is the central moment “surprise,” the difference between the dth central
moment and what we would expect it to be given the lower order moments; for example, κijk` =
mijk` − (mijmk` + mikmj` + mi`mjk). For Gaussians, the surprise is zero. For any distribution,
cumulants and central moments are equal for d ≤ 3. We use a simple bias-corrected version of
this definition, known as k-statistics [10], to estimate cumulants from data; for example, kijk =

N
(N−1)(N−2)

∑N
t=1 YtiYtjYtk for an N × p data matrix Y . Future work will explore using various

recent improvements to these estimators, such as peak-shaving and shrinkage (e.g. [25]).
For univariate x, the cumulants Kd(x) for d = 1, 2, 3, 4 yield expectation κi = E[x] and variance

κii = σ2, while skewness = κiii/κ
3/2
ii , and kurtosis = κiiii/κ

2
ii. Of course here the index i ∈

{1}, this being the univariate case. The tensor versions are the multivariate generalizations κijk.
They provide a natural measure of non-Gaussianity; for example, showing they vanish in the
limit is one way to prove central limit theorems. We can also express them in terms of the log

characteristic function, κα1···αd(x) = (−i)d ∂d

∂tα1 ···∂tαd
log E[exp(i〈t,x〉)]

∣∣∣∣
t=0

, or the Edgeworth series,

log E[exp(i〈t,x〉)] =
∑∞

α=0 i
|α|κα(x) tα

α! where α = (α1, . . . , αd) is a multi-index, tα = tα1
1 · · · t

αd
d ,

and α! = α1! · · ·αd!. Note that for z = h>x a linear combination with coefficients h, h>·K3(x)/(h>·
K2(x))3/2 is the skewness of z and h> ·K4(x)/(h> ·K2(x))2 is the kurtosis.

2.2. Properties of cumulant tensors. Cumulants have several important properties that make
them useful and justify their slight additional complexity relative to moments [10, 15]. The first
(also true of moments) is multilinearity. If x is a Rn-valued random variable and A ∈ Rm×n

Kd(Ax) = (A,A, . . . , A) ·Kd(x) = A ·Kd(x),

where · is the multilinear action (1). This generalizes the familiar covariance case (d = 2), where
K2(Ax) = AK2(x)A>. This multilinearity is arguably the most important principle underlying
factor models like PCA — finding a linear transformation of x that yields information about the
data via matrix reduction of the covariance matrix K2(Ax). This same principle, when applied to
higher-order cumulants, motivates our PCCA model. Note that this multilinearity also means that
the cumulant is a tensor, i.e. that it transforms correctly under change of basis (or a linear map).
Independent Component Analysis (ICA) [6] finds an A to approximately diagonalize Kd(x), thus
recovering the mixing matrix.

The second is independence. If x1, . . . ,xp are mutually independent of variables y1, . . . ,yp,
we have Kd(x1 + y1, . . . ,xp + yp) = Kd(x1, . . . ,xp) + Kd(y1, . . . ,yp). Moreover Ki1···id(x) = 0
whenever there is a partition of {i1, . . . , id} into two nonempty sets I and J such that xI and xJ
are independent. Thus diagonal third and fourth order cumulant tensors are a necessary condition
for independent variables, which is why ICA imposes it on the factor cumulant. This property
can also be exploited to derive other sparse cumulant techniques. Sparsity constraints (such as
requiring diagonal cumulants) break rotational symmetry, and can thus be used for blind source
separation.

The third property is vanishing and extending. If x is multivariate normal, then Kd(x) = 0 for
all d ≥ 3. multivariate Gaussianity is a widespread assumption, this is one reason cumulant tensors
are not more popular. The Gaussian is special: unfortunately [14], there are no distributions with
a bound n so that Kd(x) 6= 0 when 3 ≤ d ≤ n, but Kd(x) = 0 for d > n. This means that
parameterization is trickier when working with nonzero cumulants above K2; fixing only the first
four cumulant tensors does not completely specify a distribution, and we must make additional
assumptions such as a loss.
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2.3. Difficulties in extending the eigenvalue decomposition to tensors. Cumulant tensors
are a useful common generalization of skewness, kurtosis, and the covariance matrix, but they can
be very big. The dth cumulant tensor of a p-valued random vector has

(
p+d−1
d

)
quantities. This

number quickly becomes too large to learn without a great deal of data, to optimize with, and even
to store in memory. Thus we require small, implicit models analogous to PCA. PCA is just the
eigenvalue decomposition of a positive semidefinite real symmetric matrix. Hence we need a tensor
analog to this decomposition. However, there is some subtlety in extending the notion of eigenvalue
decomposition to tensors.

In fact, three possible generalizations are the same in the matrix case but not in the tensor case.
Let T be an p×p×p tensor. The tensor rank is the minimum r such that T can be written as a sum
of r rank one tensors, T =

∑r
i=1 ui⊗vi⊗wi; see Figure 2(c). The set of such tensors, for d > 2, is not

closed. Nevertheless approximation schemes have been devised, e.g. [5, 11], for an ill-posed objective
function. The border rank is the minimum r such that T can be written as a limit of a sum of r rank
one tensors T = limε→0(Tε), tensor rank(Tε) = r. Geometrically, these spaces correspond to secant
varieties of Segre (in the non-symmetric case) or Veronese (in the symmetric case) varieties. They
are closed sets but are hard to represent. As the tensor rank may jump arbitrarily for fixed border
rank [8], we cannot know in advance how many parameters we need to store such an object. Its
defining equations are unknown in general, and are a subject of active study in algebraic geometry;
thus they are likely too complex to make an inviting model. The final concept is multilinear rank :
the least r such that we can write K = (X,Y, Z) · C,C ∈ Rr×r×r, X, Y, Z ∈ Rn×r (Figure 2(b)).
The resulting subspace variety is also closed, but its equations are almost trivial and it is well
understood, making it a good candidate for a model.

2.4. Principal Cumulant Component Analysis. Thus we can define a multilinear rank factor
model as follows. Let y = (Y1, . . . , Yn) be a random vector. Write the dth order cumulant Kd(y)
as a best r-multilinear rank approximation in terms of the cumulant Kd(x) of a smaller set of r
factors x:

(2) Kd(y) ≈ Q ·Kd(x).

where Q is orthonormal, and Q> projects an observation y to its factor loadings x. The column
space of Q defines the r-dim subspace which best explains the dth order dependence (best in the
sense of the approximation ≈, defined below). In place of eigenvalues, we have the core tensor
Kd(x), the cumulant of the factors. Critically, Kd(x) is not necessarily diagonal, but captures
irreducible higher-order non-Gaussian dependence among the factors x.

The motivation for (2) may be explained as follows. For a linear generative model y = Ax + n
with independent noise where A ∈ Rp×r, the properties of cumulants discussed earlier imply that
Kd(y) ∈ Sd(Rp), the cumulant of the observed factors, satisfies Kd(y) = A ·Kd(x) + Kd(n). We
will assume that the cumulant of the noise Kd(n) is small (if n is Gaussian, the cumulant estimates
K̂d(n)→ 0 for d > 2 as sample size increases) and seek an approximation Kd(y) ≈ A ·Kd(x). Since
we may always perform QR-factorization to get A = QR with Q ∈ O(p, r) and R ∈ Rr×r, we obtain
Kd(y) ≈ Q · R ·Kd(x). Let C = R ·Kd(x) ∈ Sd(Rr). We then minimize an appropriate loss over
all Q and C. A crucial point to note is that we are not attempting to recover A but the subspace
spanned by the columns of A — as represented by an orthonormal basis Q for the column space of
A. The columns of Q are the principal cumulant components that we seek. Indeed any orthonormal
basis for the subspace would work and since the equivalence class of all orthonormal basis for A is
precisely a point on a Grassmannian, the ultimate optimization problem that we solve is over such
a space.

Given this model, it remains to define a loss (what we mean by ≈ in (2)) and provide an
algorithm to compute this approximation. We choose least squares loss, Kd(y) ≈ Q · Kd(x) if
‖Kd(y) − Q · Kd(x)‖2 is small, though a multilinear operator norm would also make sense. We
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denote the estimated cumulant by K̂d. There are at least two ways to combine the information
appearing at different orders d.

First (PCCA1), we could ask for factors or principal components that account for variation in
each cumulants separately, for d = 2, 3, 4, . . . :

(3) minQd∈O(p,r), Cd∈Sd(Rr)‖K̂d(y)−Qd · Cd‖2,

where Qd is an orthonormal n×r matrix, and Cd = R · K̂d(x) ≈ R ·Kd(x) is the factor cumulant in
each degree d. The projectors Qd may then be used to extract separate sets of features or combined
later. We pursue this approach in Section 3.2.

Second (PCCA2), we could ask for factors or principal components that account for variation in
all cumulants simultaneously with a single mixing matrix Q

(4) minQ∈O(p,r), Cd∈Sd(Rr)
∑∞

d=2
αd‖K̂d(y)−Q · Cd‖2.

Here the αd weight the relative importance of the cumulants by degree. Again, Cd ≈ K̂d(x) is not
necessarily diagonal.

Problem (4), of which (3) is a special case, appears intractable, an optimization over an infinite-
dimensional manifold O(p, r) ×

∏∞
d=2 Sd(Rr). However, as shown in Theorem 2.1, it reduces to

optimization over a single Grassmannian Gr(p, r).

(5) max[Q]∈Gr(p,r)

∑∞

d=2
αd‖Q> · K̂d(y)‖2.

As a set, the Grassmannian is the set of r-dimensional subspaces of a p-dimensional space and has
dimension r(p − r). Note that two matrices represent the same point in Gr(p, r) if they have the
same column space. PCA chooses the subspace (point on the Grassmannian) which best explains
covariance; PCCA chooses the point which best explains covariance and the higher order cumulants.
Note that one consequence of including higher order cumulants in our subspace selection criteria
is that the covariance matrix obtained will not generally be diagonal. In practice we use declining
weights αd = O( 1

d!), which connect our method to the information-theoretic perspective [3, 6] on
ICA. Let ϕ be the pdf of a multivariate Gaussian, and pn of the noise term n := y − Qx, then
given that the noise is not too far from normal, the Kullback-Leibler divergence is approximately
[12]

DKL(pn,ϕ) =
∫
pn(ξ) log

pn(ξ)
pϕ(ξ)

dξ ≈ 1
3!
‖K3(n)‖2 +

1
4!
‖K4(n)‖2,

so we are looking for a mixing matrix Q to make the error as Gaussian as possible; finding it means
we have successfully captured the higher-order dependence structure with our factor model. We
truncate the summation to D = 3 or 4 as cumulants of higher order become increasingly inaccurate
to estimate in practice. Of course, if accuracy of data can be guaranteed, D may be increased as
appropriate.

Theorem 2.1. Let Kd ∈ Sd(Rp), d = 2, . . . , D. The point [Q] ∈ Gr(p, r) is a solution to the
problem

(6) max[Q]∈Gr(p,r)

∑D

d=2
αd‖Q> ·Kd‖2

if and only if for all Q ∈ [Q], Q, (Cd := Q> ·Kd)Dd=2 is a solution to the problem

(7) minQ∈O(p,r),Cd∈Sd(Rr)
∑D

d=2
αd‖Kd −Q · Cd‖2

Proof. The objective (7) can be written
∑D

d=2 αd(‖Kd‖2 − 2〈Kd, Q · Cd〉 + ‖Q · Cd‖2). The first
term can be ignored, and the second and third terms sum to

∑
d αd‖Q> · Kd‖2 as can be seen

by the following. The normal equation in each degree implies each Cd = Q> ·Kd at any solution
Q∗, (C∗d)Dd=2, and Q> is Q adjoint, so 〈Kd, Q ·Cd〉 = 〈Kd, QQ

> ·Kd〉 = 〈Q>Kd, Q
> ·Kd〉 = ‖Q> ·Kd‖
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for all d. Since Q is an L2 isometry Rr → Rp, ‖Q ·Cd‖2 = ‖QQ> ·Kd‖2 = ‖Q> ·Kd‖2. Thus (7) is
minimized if and only if

∑
d αd‖Q> ·Kd‖2 is maximized. Moreover all Q ∈ [Q] give the same value

of the objective in each. �

2.5. Grassmannian BFGS algorithm for tensor approximation. In the case of Gr(p, r), [2]
showed that many operations in Riemannian geometry can be reduced to numerical linear algebra
operations, enabling the translation of gradient-based optimization algorithms to objectives defined
on the Grassmann manifold. In this setting, all data, such as Hessian approximations, must be
parallel transported between steps. This framework led to tensor approximation algorithms [9, 17];
we use the quasi-Newton BFGS algorithm of [17] to optimize (3) and (4). Such gradient-based
optimization methods are theoretically and practically superior to the commonly used alternating
least squares and HOSVD tensor approximation algorithms, which are not guaranteed to converge
to a critical point of the objective and do not respect the problem’s symmetry constraints (see
Figure 3). Furthermore, the BFGS approximate Hessian on a Grassmannian is known to share the
same optimality property as its Euclidean counterpart [17, Theorem 6.6]. Due to space limitations,
implementation details will appear in the journal version.

3. Applications and Experiments

3.1. Muti-moment portfolio optimization. Markowitz mean-variance optimal portfolio theory
defines risk to be variance. The investor selects a portfolio which minimizes variance subject to
achieving a minimum return r. For random vector y of returns on p assets, the optimal portfolio
holdings vector h ∈ Rp is the point on the solution locus of

(8) min h>K2(y)h s.t. h>E[y] > r

tangent to the line crossing the return axis at the risk-free rate. Evidence [13] indicates that in-
vestors optimizing variance with respect to the covariance matrix accept unwanted negative skew-
ness and excess kurtosis risk; this can be easily seen in hedge fund index returns (Figure 3). An
extreme is that selling out-of-the-money puts looks safe and uncorrelated to the market; many
hedge funds pursue strategies which are essentially equivalent.
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Figure 3. Left: Grassmannian BFGS compares favorably with Alternating Least
Squares in estimating a PCCA multilinear factor model for the pixel skewness ten-
sors in an image dimension reduction task. Right: Sharpe ratio (a mean-variance
performance measure, excess return over standard deviation µ−µf
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Hedge Fund Research Indices daily returns.

One way to avoid this is to take skewness and kurtosis into account in the objective function.
Just as we need an estimate K̂2(x) to optimize (8), we will need estimated skewness K̂3 and
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secutive trading days, tested on the following 389.

kurtosis K̂4 tensors to optimize with respect to skewness and kurtosis. The low multilinear rank
PCCA model helps in two ways. First, it regularizes, reducing the variance of our estimates of the
entries of Kd(x) at the cost of bias. See Figure 4 for an example. The benefits of this tradeoff in
the covariance case are well established [19]. Secondly, it makes optimization feasible with many
assets, as we may optimize first with respect to the factors (asset allocation) or easily compute the
derivative of skewness, kurtosis, etc. with respect to each security weight. Consider the problem
faced by an investor whose preferences are a linear combination of mean, variance, skewness, and
kurtosis:

(9) min
∑4

d=2
αdh> ·Kd(y) s.t. h>E[y] > r.

With a multilinear rank-r mixing matrix model y = Qx from PCCA, we can approximate the
univariate portfolio cumulant φd(h) := h> · Kd(y) ≈ h>Q · K̂d(x), so that with w> := h>Q
the factor loadings, ∂φd

∂hi
=
∑(r,...,r)

α=(1,...,1) κα
∑d

j=1 qαji
∏
k 6=j wαk . And in particular, for example,

∂skewness/∂hi = φ−2
2 (φ2∂iφ3 − φ3∂iφ2) gives us the estimated impact on portfolio skewness of an

increase in weight hi.

3.2. Dimension Reduction: Skewfaces. We consider a skew analog to eigenfaces [23], using
the first of the PCCA techniques (PCCA1) to find an optimal subspace for each degree separately,
discarding the core tensors, and combining features at the end. Thus we obtain “skewmax” features
supplementing the PCA varimax subspace. In eigenfaces we begin with a centered #pixels= p ×
N =#images matrix M , with N � p. We used the ORL Database of Faces [16]. The eigenvectors
of the covariance matrix K̂Pixels

2 of the pixels are the eigenfaces. For efficiency, we compute the
covariance matrix K̂Images

2 of the images instead. The SVD gives both implicitly; if USV > is the
SVD of M>, with U, S ∈ RN×N and V > ∈ RN×p, then K̂Pixels

2 = 1
NMM> = 1

N V ΛV >. The
orthonormal columns of V , eigenvectors of K̂Pixels

2 , are the eigenfaces.
For the skew tensor version, let K̂Pixels

3 be the 10, 304× 10, 304× 10, 304 third cumulant tensor
of the pixels. Analogously, we want to compute it implicitly, and we are only interested in the
projector Π onto the subspace of skewfaces that best explains K̂Pixels

3 . Let M> = USV > be the
SVD. Then with K̂3 denoting the operator computing the k-statistic for the third cumulant tensor,
multilinearity implies

K̂Pixels
3 = K̂3(V SU>) = V · K̂3(SU>)

Pick a small multilinear rank r. If K̂3(SU>) ≈ Q · C3 for some N × r matrix Q and non-diagonal
r × r × r core tensor C3,

K̂Pixels
3 ≈ V ·Q · C3 = V Q · C3
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and Π = V Q is our orthonormal-column projection matrix onto the ‘skewmax’ subspace.

Figure 5. Original vs. reconstruction with 30 eigenvectors or 20 eigenvectors with
10 skewvectors.

We have combined the d = 2 and 3 tensors by orthogonalizing the skew factors with respect to
the eigenfactors using a QR decomposition. Thus the first 20 vectors best explain the covariance
matrix K̂Pixels

2 , and the next 10 vectors, together with the first 20, best explain the big skewness
tensor K̂Pixels

3 of the pixels. Typical reconstruction results are shown in Figure 5.
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