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Abstract In this article, we propose an algorithm, NESTA-LASSO, for the LASSO
problem, i.e., an underdetermined linear least-squares problem with a 1-norm con-
straint on the solution. We prove under the assumption of the restricted isometry
property (RIP) and a sparsity condition on the solution, that NESTA-LASSO is guaran-
teed to be almost always locally linearly convergent. As in the case of the algorithm
NESTA, proposed by Becker, Bobin, and Candés, we rely on Nesterov’s accelerated
proximal gradient method, which takes O (4/1/¢) iterations to come within ¢ > 0 of
the optimal value. We introduce a modification to Nesterov’s method that regularly
updates the prox-center in a provably optimal manner. The aforementioned linear
convergence is in part due to this modification. In the second part of this article,
we attempt to solve the basis pursuit denoising (BPDN) problem (i.e., approximat-
ing the minimum 1-norm solution to an underdetermined least squares problem) by
using NESTA-LASSO in conjunction with the Pareto root-finding method employed
by van den Berg and Friedlander in their SPGL1 solver. The resulting algorithm is
called PARNES. We provide numerical evidence to show that it is comparable to
currently available solvers.
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1 Introduction
We would like to find a solution to the sparsest recovery problem with noise
min |x|lo st |JAx — bz <o. )

Here, o specifies the noise level, A is an m-by-n matrix with m < n, and ||x||o is
the number of nonzero entries of x. This problem comes up in fields such as image
processing [33], seismics [24, 25], astronomy [8], and model selection in regres-
sion [16]. Since (1) is known to be ill-posed and NP-hard [21, 26], various convex,
l;-relaxed formulations are often used.

Relaxing the 0-norm in (1) gives the basis pursuit denoising (BPDN) problem

BP(o) min |x||; st [|[Ax —b|2 <o. 2)

The special case of o = 0 is the basis pursuit problem [12]. Two other commonly
used /;-relaxations are the LASSO problem [34]

LS(r) min [[Ax —bl2 st x| <t 3)
and the penalized least-squares problem
QP()  min [|Ax —bl3 + Allx]s @

proposed by Chen et al. [12]. A large amount of work has been done to show
that these formulations give an effective approximation of the solution to (1); see
[11, 14, 35]. In fact, under certain conditions on the sparsity of the solution to
(1), these formulations can exactly recover the solution whenever A satisfies the
restricted isometry property (RIP).

There is a wide variety of algorithms which solve the BP(c), QP()A), and LS(7)
problems. Refer to Section 5 for descriptions of some of the current algorithms. Our
work has been motivated by the accuracy and speed of the recent solvers NESTA
and SPGL1. In [27], Nesterov presents an algorithm to minimize a smooth convex
function over a convex set with an optimal convergence rate. An extension to the
nonsmooth case is presented in [28]. NESTA solves the BP(o) problem using the
nonsmooth version of Nesterov’s work.

For appropriate parameter choices of o, A, and 7, the solutions of BP(c), QP(}),
and LS(t) coincide [37]. Although the exact dependence is usually hard to com-
pute [37], there are solution methods which exploit these relationships. The MATLAB
solver SPGL1 is based on the Pareto root-finding method [37] which solves BP(o') by
approximately solving a sequence of LS(t) problems. In SPGL1, the LS(7) problems
are solved using a spectral projected-gradient (SPG) method.

While we are ultimately interested in solving the BPDN problem in (2), our main
result is an algorithm for solving the LASSO problem (3). Our algorithm, NESTA-
LASSO (cf. Algorithm 3), essentially uses Nesterov’s work to solve the LASSO
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problem. We introduce one improvement to Nesterov’s original method, namely, we
update the prox-center every K steps instead of fixing it throughout the algorithm.
With this modification, we prove in Theorem 3 that NESTA-LASSO is guaranteed to
be almost always locally linearly convergent for sufficiently large K, as long as the
solution is s-sparse and A satisfies the restricted isometry property of order 2s. In
fact, Theorem 3 also provides the choice for the optimal K.

Finally, we show that replacing the SPG method in the Pareto root-finding proce-
dure, used in SPGL1, with our NESTA-LASSO method leads to an effective method
for solving BP(o). We call this modification PARNES and compare its efficacy with
the state-of-the-art solvers presented in Section 5.

1.1 Notation, terminology, and assumptions

In this paper, a vector is s-sparse if it has exactly s nonzero elements. We say that
a vector is at least s-sparse if it has at most s nonzero elements. For a nonzero,
s-sparse vector x € R”, let I, be the set of indices of the nonzero coefficients of
x, i.e. the support of x; x is the vector containing the nonzero elements of x. For
an I C {1,...,n}, I¢ is the complement of /. Given a matrix A € R™*" and
I € {1,...,n}, Ay is the submatrix of A containing the j-th columns of A where
Jj € 1. Throughout the paper, we use MATLAB terminology to describe vectors and
matrices. Thus, x[s : r] represents the subvector of x containing elements s to r. For
aset S, let int(S) be the interior of S and 9§ be the boundary of S.

Throughout the paper, we make the blanket assumption that b € range(A). That
is, Ax —b = 0 is always possible. In many applications, A has full rank and therefore
automatically satisfies this assumption; see [37].

1.2 Organization of the paper

In Section 2, we present and describe the background of NESTA-LASSO. We show in
Section 3 that, under some reasonable assumptions, NESTA-LASSO is almost always
locally linearly convergent. In Section 4, we describe the Pareto root-finding proce-
dure behind the BPDN solver SPGL1 and show how NESTA-LASSO can be used to
solve a subproblem. Section 5 describes some of the available algorithms for solv-
ing BPDN and the equivalent QP(A) problem. Lastly, in Section 6, we show in a
series of numerical experiments that using NESTA-LASSO in SPGL1 to solve BPDN is
comparable with current competitive solvers.

2 NESTA-LASSO

We present the main parts of our method to solve the LASSO problem. Our algo-
rithm, NESTA-LASSO (cf. Algorithm 3), is an application of the accelerated proximal
gradient algorithm of Nesterov [27] outlined in Section 2.1. Additionally, we have a
prox-center update improving convergence which we describe in Section 3. In each
iteration, we use the fast /{-projector of Duchi et al. [15] given in Section 2.3.
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2.1 Nesterov’s algorithm

Let O € R” be a convex closed set. Let f : Q@ — R be smooth, convex and,
Lipschitz differentiable with L as the Lipschitz constant of its gradient, i.e.

IVF(x) =V fMl2 = Lllx — yll2,  forall x,ye Q.

Nesterov’s accelerated proximal gradient algorithm iteratively defines a sequence xj
as a judiciously chosen convex combination of two other sequences y; and zz, which
are in turn solutions to two quadratic optimization problems on Q. The sequence zj
involves a strongly convex prox-function, d(x), which satisfies

d(x) > jux —cll3. )

For simplicity, we have chosen the right-hand side of (5) with @ = 1 as our prox-
function throughout this paper. The ¢ in the prox-function is called the prox-center.
With this prox-function, we have:

. T L 2
ye = argminV f(xg) (v —xe) +  lly — xxll3,
yeQ 2

k.
, i+1 L
o= agmin )" [ fO)+ V0@ = x|+l = el
€0 )

2 n k+1
z .
k3% T kg3t
Nesterov showed that if x* is the optimal solution to

X =

;Iéig fx),

then the iterates defined above satisfy

* L * 2 L
oo e s e eai=o(;).

An implication is that the algorithm requires O (+/L/¢) iterations to bring f(yx) to
within ¢ > 0 of the optimal value.

Algorithm 1 Accelerated proximal gradient method for convex minimization

Input: function f, gradient V f, Lipschitz constant L, prox-center c.
Output: x* = argmin, ¢ f(x)
1: initialize xg;
2: fork=0,1,2,...,do
3 compute f(xx) and V f(xx);
4: Yk = argmin, o V)T —x0+ 5y — xl3;
50 zk=argmingcp Yo B + VDT @ —x)]+ Sl —el3:
6 Xk = ki3 2k + ﬁii Vi
7: end for
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In [28], Nesterov extends his work to minimize nonsmooth convex functions f.
Nesterov shows that one can obtain the minimum by applying his algorithm for
smooth minimization to a smooth approximation f, of f. Since V f;, is shown to
have Lipschitz constant L, = 1/pu, if u is chosen to be proportional to ¢, it takes
O(!) iterations to bring f (xx) within & of the optimal value.

The recent algorithm NESTA solves BP(c) using Nesterov’s algorithm for nons-
mooth minimization. Our algorithm, NESTA-LASSO, solves LS(t) using Nesterov’s
smooth minimization algorithm. In [29], Nesterov suggests an algorithm for mini-
mizing composite functions which has a complexity of O( 6,1/2 ). We are motivated by
the accuracy and speed of NESTA, and the fact that the smooth version of Nesterov’s
algorithm has a faster convergence rate than the nonsmooth version.

2.2 NESTA-LASSO-K: an accelerated proximal gradient algorithm for LASSO

We apply Nesterov’s accelerated proximal gradient method, Algorithm 1, to the
LASSO problem LS(7). We make one slight improvement to Algorithm 1. Namely,
we update our prox-centers every K steps (cf. Algorithm 2); that is, Algorithm 1 is
restarted every K iterations with a new prox-center. We will see that this leads to local
linear convergence under a suitable application of RIP (see Corollary 1 for details).
In fact, we show in Section 3 that the prox-centers may be updated in an optimal
fashion (cf. Algorithm 3).

In our case, f = ,|lb — Ax|3, Vf = AT(Ax — b), and Q is the 1-norm ball
lIx]l1 < . The initial point x is used as the prox-center c. To compute the iterate yx,
we have

. T L 2
Y = argmin V f(xg)  (y — xx) + ) ly — xll3

Iylli<z

= argminy 'y — 2(xx — Vf(xx)/L) "y
Iylhi=t

argmin||y — (xx — V. f (xx) /L) |2

Iylli<z

proj; (xx — V. f(xx)/L, T)

where proj; (v, ) returns the projection of the vector v onto the 1-norm ball of radius
7. By similar reasoning, computing z; can be shown to be equivalent to computing

. 1 k141
Zk = proj; (c 7 Zi:O 5 Vf(x), r) .

In each iteration, we use the fast /1-projector proj; described in the next section.

In NESTA-LASSO-K, Nesterov’s method is restarted every K steps with the
new prox-center proj; (yix — Vf(Vik)/L, t). Here, yix—_1 is the K-th iterate of
Nesterov’s method after the i-th prox-center change; see Algorithm 2. In NESTA-
LASSO, Nesterov’s method is restarted in the same manner, except K is chosen in an
optimal way. Algorithms 2 and 3 are stopped when the duality gap 7y is sufficiently
small.
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Algorithm 2 NESTA-LASSO-K algorithm with prox-center updates every K steps

Input: initial point xo, LASSO parameter 7, tolerance 7, steps to update K

Output: x; = argmin{||b — Ax|l2 : |lx||1 < t}.
1: for j =0,..., jmax, do
2: cj =x0,ho=0,70 =b— Axg, go = —ATro,
no = llrolla — (b Tro — Tllgolleo)/lIroll2;

3 fork=0,...,K—1do

4 Yk = projy (xx — gk/L, 7);

5 he = hi + *5 g

6: zx = proj;(cj — hx/L, 7);

7 Xk = ki3Zk + ﬁ% Vi

8: re =b — Axg;

9: gk = —ATrk;

10: e = llrella — T re — Tllgrlloo) /Irkll2;
11: end for

12: xo=proj;(yx + AT(b — Ayp) /L, 1);
13: if nx < n then

14: return x; = yx;
15: end if
16: end for

Algorithm 3 NESTA-LASSO algorithm with optimal prox-center updates

Input: initial point xo, LASSO parameter 7, tolerance 7.
Output: x; = argmin{||b — Ax|l2: |lx||1 < t}.
1: forj=0,..., jmax,do
2: cj =x0,ho=0,790 =b— Axg, go = —ATro,
1o = llroll2 — (" ro — Tllgolleo) /7o l2;

3: fork =0,..., kopt—1,do
4. if n; < e 21 then

5: return y, ng

6: end if )

7: Yk = proj (xk — gk/L, 7);
8: he = hi + 5 g

9: Zk = proj, (c; — hx/L, 1);
10: Xi = ki3Zk + ﬁ;yk;

11: re =b — Axg;

12: gk =—ATrg

13: me = lrella — & rk — llgklloo)/llrk N2
14: end for

15:  xo=proj,(yk + AT (b — Ay)/L, 7);
16: if nx < n then

17: return x; = yx;
18: end if
19: end for
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2.3 Ij-projector

The projection of an n-vector, d, onto the 1-norm ball, ||x||; < 7, is the solution to
the minimization problem

proj;(d, t) := argmin|d — x| st x|} <.
X

Letd be a reordering of d with |c§1| > ... > |6§n|- Then a = proj; (d, 1), is given by

(114 +1dil) = =

a; = sgn(d;) - max{0, |d;| —n} with 7= r ()

where k is the largest index such that n < |c§k|.

See [15], by Duchi et al., and [37] for fast algorithms to compute a. Such algo-
rithms cost O (nlogn) in the worst case but have been shown experimentally to cost
much less [37]. The results in [36] imply the two calls to proj; in the inner loop of
NESTA-LASSO can be reduced to one call, but due to the low cost of proj;, we do not
make this modification.

3 Local linear convergence and optimality

Under reasonable assumptions on the matrix A and the solution x* of the LASSO
problem, we prove that NESTA-LASSO-K almost always has a local linear conver-
gence rate for large enough K. We also show that we can update the prox-centers ¢
in a provably optimal way (NESTA-LASSO). Let yx be the k-th iterate of Nesterov’s
accelerated proximal gradient method when minimizing a function f. Recall,

e — f(x*) Ix* —cll3 (7

L
<
T k(k+1)
where L is the Lipschitz constant for V f and c is the prox-center [27, 28].
In our case, f(x) = ;||Ax - b||%, where A € R™*" with m < n. We will assume
that A satisfies the restricted isometry property (RIP) of order 2s as described in
[9, 10]. Namely, there exists a constant &y € (0, 1) such that

(1 —829) lIxII3 < 1Ax13 < (1 + 825) lIxII3 8)

whenever ||x||o < 2s. Since the RIP helps ensure that the solution to (1) is closely
approximated by the solution to (2) [9], and we are ultimately interested in solving
(2), this is a reasonable assumption. Moreover, since we hope to recover the sparse
solution to the solution to (1), we assume that the solution x* to the LASSO problem
is s-sparse. We plan to analyze the approximately sparse case for future work.

Under these assumptions, the LASSO problem has a unique solution (see
Theorem 5 in [30]). Since the 1-norm ball is compact, the sequence of yi’s converges
to the solution x*.
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Lemma 1 If A satisfies the restricted isometry property (RIP) of order 2s, and the
optimal solution x* is s-sparse, then the sequence of yi'’s converges to x*.

3.1 Almost sure sparsity of Nesterov’s method

We first state and prove the following results before proving our main results, i.e. the
local linear convergence of NESTA-LASSO-K and the optimality of NESTA-LASSO.
In particular, we show that under certain assumptions on the LASSO problem, the
solution is almost always non-degenerate (see Proposition 11), and the iterates of
Algorithm 1 are almost always eventually s-sparse. Our first lemma describes when
the image of proj; is s-sparse.

For d € R", recall from Section 2.3 that if d is a reordering of d with |c§1| > ... >
|dy|, then a = proj; (d, ) is given by

(114 +1dil) = =

a; = sgn(d;) - max {0, |di| —n} with n= . , (9

where k is the largest index such that n < |c§k|. Foreachi € {1, ..., n}, define

Nl ] -
= , .
l

The n;’s satisfy the following property which is used in the proof of our next
lemma.

Claim n :max{n,- = 1,...,n}.

Proof Assume, without loss of generality, thatd > 0 and d = d so that d >..>
d, > 0. A simple algebraic manipulation shows that n; — n;_1 = l.ll (di — n;) for
i €{2,...,n}. Thus, sgn(n; — ni—1) = sgn(d; — ;). Suppose n = n for some k.
Then n; < di. Since sgn(n; — n;—1) = sgn(d; — n;), it follows that n;_; < n and so
Nk—1 < dy—1; thus, we can repeatedly apply this argument to show that ; < n; for

any i < k. A similar argument shows that n; < ny forany i > k.

Given anonempty I C {1, ...,n} with |/| =s and t > 0, if s < n, define the set

Crei= {x ER' Y nil =T =5 |l forj ¢ 1}.

If71 =A{1,...,n},letCrr := {x € R" : ||x]l; = t}. The following lemma shows
that proj; sends vectors in C; ; to vectors that are at least s-sparse.

Lemma 2 Suppose I C {1,...,n} with |I| = s. If d € Cy ¢ then Ipoj a,v) S 1.
Namely, proj; (d, ©) is at least s-sparse.
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Proof Suppose d € Cy ;. Assume, without loss of generality, thatd > 0 and d = d

so that d; > ... > d,, > 0. For simplicity, let [1], ..., [n] be a labeling of the indices
ofdsothat I ={[1],...,[s]}.d1; > ... > ds, and djs41] = ... = d[n)-
By (9), ajs+1] = ... = apu), so it is enough to show that af;+1] = 0. Since
d € C[,‘L’>
S-dig411 <dp+ ... +d— T (10)

Letr < s be the largest index such that dj,] > d[,+1). Such an r exists since s - d[1] >
dij+ -+ +dis) — T = 5 - djs+1). By (10),

IA

dpy+ -+ dipy + (dypgny = dign) + -0+ (dig) = dign) —
diy+---+dn—r,

r-dis

IA

which implies,

- dn+--+dntds+n—7

dis41) < r i = g1

The last equality holds since we assumed that r is the largest index such that r < s
and d[r] > d[s—i—l]' Thus, d[]] + - 4 d[r] + d[s+1] =di+---+d- +dr41. By the
above claim, dj54+1] < 1, and 5o a[s11] = 0 by definition of a[s1).

The next few lemmas involve the LASSO problem. First note the following LASSO
optimality conditions (see e.g. [19] and [20]).

Proposition 1 (LASSO optimality conditions) For an x* € R”", let [ = I;+. Then x*
is the optimal solution to the LASSO problem if and only if the gradient, —V f (x*) =
AT (b — Ax*), at x* satisfies

Al (b—Ax*) =y -sgn(x*), (11)
I1Afe (b= Arx*)lloo < 7. (12)

for some y > 0. Moreover, there is a one-to-one correspondence between the y and
7. Following the typical convention, if (12) is a strict inequality, we say that x* is a
non-degenerate solution. Otherwise, we say that x* is a degenerate solution.

The following lemma relates non-denerate LASSO solutions x* to the previously
defined set int(Cy . ).

Lemma 3 [f x* is a non-degenerate solution with I,« = I, then x* — V f (x*)/L €
int(Cy 7).
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Proof By (11)and (12), for any j ¢ I, we have

T (b— Ax*) -sgn (x})
a 1x y -sgn (x
le?“—i—’ L —r:in*—i— . -1
iel iel
4
=Z|x;’<|+|1|-L—t
iel
> 1] |a] (b—Aix*)| /L
=1 |x5+a] (b— Aix*)| /L.
The third equation on the right holds since we must have ||x*||; = 7. If not, then we

must have Ax* — b = 0 which is only possible when x* is a degenerate solution.

We now prove that under our assumptions on the LASSO problem, the gradient at
the optimal solution will almost always lie in a desirable direction. In other words,
we have the following result.

Theorem 1 Suppose A € R™*" satisfies the restricted isometry property (RIP) of
order 2s, and the optimal solution x* is s-sparse. The solution x* will almost always
be non-degenerate.

Proof Fix positive integers m, n, and I C {1,...,n} with |I| = s < m. Define
LS(m, n, I') to be the set of LASSO problems

min ||Ax — bl st x| <7

with s-sparse solutions x* such that I,x = [ and A € R™*" satisfying the RIP of
order 2s. As seen in the proof of Lemma 1, x* is unique.

The LASSO optimality conditions above say that x* is the solution to a LASSO
problem if and only if A;'—(b — Arx*) = y - sgn(x*) and ||A;rc(b —AxN)o <y
for some y > 0. Since there is a one-to-one correspondence between t and y, we
represent each LASSO problem in LS(m, n, I) with the quadruple (A, Ajc, b, y).
Following this notation,

LS(m,n, 1) =T UT,
where
T, = |(A,, Age b, y) eLs(m.n, 1) : AL (b— Arx*) floo = y} ,
T = {(A,, Are,b,y) eLs(m,n, 1) : Al (b— Arx*) llos < J/}'

We show that 77 has Lebesgue measure zero and 75 has nonzero Lebesgue measure.
By the RIP, A; has full rank since

0 < (1—8) Ix13 < IAx13 < (1 + 825) lIxII3
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for all nonzero x € R*. Thus, AITAI is invertible, and if x* is the solution to
(Aj, Aje,b,y) € LS(m, n, I) then

x* = (A;FA/)_I (A;rb —y -sgn (x*)) .

Let U := {(A], Aje, b, y) € R™S x Rmx(=s) 5 RM x RT : Ay nonsingular}.
For each w € {—1, 1}*, define the function g, : U — R"™° by

Al (b= Ar(aT AN (ATb—y - w))
gw (A],A[C,b, )’)2 )/ k)

If S := {x € R”™ : |x| < 1} with boundary 3 and interior int(S), then

Tl g Uglzl(as)URmXS X RWIX("—S) X Rm X {O}.
w

Each component function of g,, involves exactly one row of the variables in A,TC,
and g,, is the composition of matrix inversion and basic matrix operations. Thus, gy,
is a smooth map of constant rank (n — s) on the open set U \ g;] (0). An application
of Theorem 1 of [32] shows that g, 1(35) has measure zero. Hence, T} has Lebesgue
measure Zero.

To see that 7, has nonzero measure, note that 75 is the set of (A, Aje, b, y) € U
such that A satisfies the RIP of order 2s intersected with

Ugwl(int(S))ﬂ{(Al, Age,b,y) €U : sgn <(A7A,)_1<A,Tb . w)) = w} .

Using the triangle inequality, it is easy to see that the former set is open since
2 2 2
(I =d25) x5 = 1Ax]l2 = (1 + &25) llx1l3

holds under small perturbations of A. The latter set is open since g, and
(Aj, Afe,b,y) — (A,TAI)_I(A,Tb — y - w) are continuous functions for each w.
Thus, T3 is open. Moreover, it is easy to see that if (A7, Ajc, b, y) € T} then there
exists a small perturbation E such that (A;, Ajce + E,b,y) € Th. If LS(m, n, I) is
nonempty, it must be that 7, is nonempty and therefore, has nonzero measure.

This argument is easily extended for any I C {1, ..., n}. Since there are a finite
number of I’s and a finite union of measure zero sets has measure zero, our lemma
holds.

Let yx be the k-th iterate of Nesterov’s accelerated proximal gradient method
applied to the LASSO problem. The previous results allow us to make the following
conclusion regarding the sparsity of y.

Theorem 2 Suppose A satisfies the restricted isometry property (RIP) of order 2s,

and the optimal solution x* is s-sparse. The iterates yy are almost always eventually
s-sparse.
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Proof By Lemma 1, the sequence {y;} converges to the optimal solution x*. Since
Xp = ki3 Zk + ii; yr and V f(x) = AT (Ax — b) is continuous, the sequence {x; —
V f(xr)/L} convergesto x* — V f(x*)/L.

Theorem 1 says that x* is almost always non-degenerate, in which case, by
Lemma 3, x* — Vf(x*)/L € int(Cjyx+ ), where int(Cjy+ ) is the interior of
Cix+ 7. Thus, if x* is non-degenerate, there exists an N such that for k > N,
xk—V f(xr)/L € int(Cy ). By Lemma 2, for such k, y; = proj; (xx —V f (x¢)/L, T)
is s-sparse.

3.2 Local linear convergence of NESTA-LASSO

We now show that NESTA-LASSO-K, Algorithm 2, is almost always locally linearly
convergent under certain assumptions. First we give some motivation for why we
update the prox-centers in NESTA-LASSO-K.

Consider applying Nesterov’s accelerated proximal gradient method, Algorithm 1,
to the LASSO problem. Suppose A satisfies the restricted isometry property (RIP) of
order 2s and the optimal solution x* is s-sparse. As seen in Theorem 2, the iterates
vk are almost always eventually s-sparse. Thus, it is reasonable to assume that yy is
s-sparse.

Let § = 1 — &, where &y, is the RIP constant of A. We have

1A (x* — )13 +2 (e —x*) T AT (Ax* —b)
=) — £ (&%) = 1A (e — ) 138k — x*113. (13)

To see the first inequality, let y = x*+ 7 (yx —x*) for t € [0, 1]. Due to the convexity
of the 1-norm ball, y is feasible. Since x* is the minimum, for any t € [0, 1],

FO) = f(x*) = A (x* = y) I3+ 27 (e —x*) T AT(Ax* —b) > 0.

Thus, (yx — x*)TAT(Ax* — b) > 0. The second inequality follows from (8) since
the vector yy — x™ has at most 2s nonzeros. Then from (7), we have

L
S o ¥2 < * 2’
Ilye —x7I5 < Kk + 1) x* —cll3

Putting everything together gives

. L . 1 /L .
Iye —x"ll2 < Kk + 1)3 = =clz =y s lle=x72. (14)

The above relation and (7) suggest that when solving the LASSO problem, we
can speed up Algorithm 1 by updating the prox-center, c, every K steps. With
our assumptions, we prove in the first part of following theorem that for every
K > \/ 15 , restarting Algorithm 1 every K steps with the new prox-center, proj; (yx —
Vf(k)/L, t), is locally linearly convergent. In the second part of Theorem 3, we
prove that there is an optimal number of such steps.
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In the following, allow the iterates to be represented by y jx where j is the number
of times the prox-center has been changed (the outer iteration) and k is number of
iterations after the last prox-center change (the inner iteration).

Theorem 3 Suppose A satisfies the restricted isometry property of order 2s and the
solution x* is s-sparse. The following holds if x* is non-degenerate and the initial
point pg = xq in Algorithm 2 is chosen to be sufficiently close to x*.

(1) Algorithm 2 is locally linearly convergent for any K > \/15‘
(ii) In Algorithm 2, let jiot be the total number of prox-center changes. The total
number of iterations, jio- K, to get ||pj —x*|2 < & is minimized if K is equal to
L
kopt :=e (15)
8
where e is the base of the natural logarithm. Moreover, for each j,
* ] *
lpj —x"ll2 = .llpo —x7l2.
el
Proof
(i) By Lemma 3, x* — V f(x*)/L € int(Cy, ), where int(C; . ;) is the interior

of Cy . :. Let Uy be a ball of radius « > 0, centered at x* — V f(x*)/L,
such that Uy, C int(Cy, ;). By continuity, we may choose an € > 0 such that
lx — x*||2 < € implies x — V f(x)/L € Uy.

Now choose 8 > 0 such that for all ||x|l; < 7, f(x) — f(x*) < B implies
lx —x*|2 < €. To see that 8 > 0 exists, suppose for a contradiction that V n,
3 x, with ||x, |l < T where f(x,) — f(x*) < 1/n but ||x, — x*|2 > €. Since
the 1-norm ball is compact, there is a subsequence {x,, } of {x,} converging to
some x’. By continuity, f(x,,) convergesto f(x'). As mentioned right before
the statement of Lemma 1, x* is a unique minimum. Thus, f(x") # f(x*)
contradicting the assumption that f(x,) converges to f(x*).

We now show that Algorithm 2 is linearly convergent if the initial prox-center
po is close enough to x*. Suppose || po — x*|l2 < B/L. Then (7) implies

lpo —x*1I3 < .

" L
fig) — f(x*) < KK 4+ 1)

and so ||y1x — x*|| < €. By Lemma 2, p; = proj;(yix — Vf(yikx)/L, 1) is
s-sparse, and by (13),

8llpr — x*II3 < f(p1) — f (x*). (16)

Note that p; is the result of a step of the projected gradient method, i.e. xy4+1 =
proj; (xk — V f(xx)/L, 7). Since this method is monotonically decreasing
(see [41] for a proof),

fpy = f(x*) = foir) — f(x%). an
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(ii)
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Combining (16) and (17) with (7), gives
1 /L .
< K\/a lpo — x7l2.

Ip1 = x7l2 <

Since we assume that K > \/é, we have ||p; — x*||» < B/L. Thus, the above
arguments can be repeatedly applied to show that for any j,

J
Ipj —x*ll2 < ! \/L o — ™. (18)
“\KVS$

First observe that (18) implies

J
Ipj —x*ll2 < ! \/L lpo — x*ll2 < €llpo — x*|I2
=\ xVs <

| 1\/L _
j log Vs = loge.

This relation allows us to choose K to minimize the product j - K. Since

when

Kloge
K= ,
log/L/§ —log K

taking derivative of the expression on the right shows that j - K is minimized

when
\/ L
K=c¢ ,
8

where e is the base of the natural logarithm. The total number of iterations will
then be

. L
Jiot - K = _e\/5 loge.

Theorem 1 implies that we almost always have local linear convergence:

Corollary 1 If A satisfies the restricted isometry property of order 2s and the solu-
tion x* is s-sparse, Algorithm 2 is almost always locally linearly convergent for any

L
K>\/5.
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Table 1 Number of products with A and AT for NESTA-LASSO without prox-center updates (cf.
Algorithm 1) and NESTA-LASSO with prox-center updates (cf. Algorithm 3)

Number of Number of T Ny Nf‘pd‘m

rows of A columns of A

100 256 6.28 69 37

200 512 12.6 77 47

400 1,024 25.1 157 45
update

These values are given by N4 and N, respectively

In our experiments, there are some cases where updating the prox-center will even-
tually cause the duality gap to jump to a higher value than the previous iteration. This
can cause the algorithm to run for more iterations than necessary. A check is added
to prevent the prox-center from being updated if it no longer helps.

In Table 1, we give some results showing that updating the prox-center is effective
when using NESTA-LASSO to solve the LASSO problem.

4 PARNES

In applications where the noise level of the problem is approximately known, it is
preferable to solve BP(o). The Pareto root-finding method used by van den Berg
and Friedlander [37] interprets BP(o') as finding the root of a single-variable non-
linear equation whose graph is called the Pareto curve. Their implementation of this
approach is called SPGL1. In SPGL1, an inexact version of Newton’s method is used
to find the root, and at each iteration, an approximate solution to the LASSO prob-
lem, LS(7), is found using an SPG approach. Refer to [13] for more information on
the inexact Newton method. In Section 6, we show experimentally that using NESTA-
LASSO in place of the SPG approach for solving the LS(7) subproblems can lead to
improved results. We call this version of the Pareto root-finding method, PARNES.
The pseudocode of PARNES is given in Algorithm 4.

4.1 Pareto curve

Suppose A and b are given, with 0 # b € range(A). The points on the Pareto curve
are given by (7, ¢(t)) where ¢(t) = ||Ax; — b||5, T = ||x¢||, and x; solves LS(7).
The Pareto curve gives the optimal trade-off between the 2-norm of the residual and
1-norm of the solution to LS(7). It can also be shown that the Pareto curve also
characterizes the optimal trade-off between the 2-norm of the residual and 1-norm of
the solution to BP(o'). Refer to [37] for a more detailed explanation of these properties
of the Pareto curve. An example of a Pareto curve is shown in Fig. 1.

Let 7pp be the optimal objective value of BP(0). The Pareto curve is restricted to
the interval t € [0, tgp] with ¢(0) = ||b||, > 0 and ¢(tzp) = 0. The following theo-
rem, proven by van den Berg and Friedlander, shows that the Pareto curve is convex,
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15—

=N
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two-norm of residual ||A:r,. G 6"2
h
]
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one-norm of the solution ||1'1-|||

Fig. 1 An example of a Pareto curve. The solid line is the Pareto curve; the dotted red lines give two
iterations of Newton’s method

strictly decreasing over the interval T € [0, tgp], and continuously differentiable for
T € (0, Tgp).

Proposition 2 [37] The function ¢ is

(i) convex and nonincreasing;

(ii) continuously differentiable for T € (0, tgp) with ¢'(t) = —A; where Ay =
NAT v |loo is the optimal dual variable to LS(t) and y; = re/||re |2 with ry =
Ax; — b;

(iii)  strictly decreasing and || x| = t for T € [0, tpp].

4.2 Root finding

Since the Pareto curve characterizes the optimal trade-off for both BP(o) and LS(7),

solving BP(o) for a fixed o can be interpreted as finding a root of the non-linear

equation ¢(t) = o. The iterations consist of finding the solution to LS(t) for a

sequence of parameters 7y — T, where 7, is the optimal objective value of BP(o).
Applying Newton’s method to ¢ gives

Tr1 =T + (0 — o(w)) /¢ (w).

Since ¢ is convex, strictly decreasing and continuously differentiable, 1z — 74
superlinearly for all initial values tp € (0, tgp) (see Proposition 1.4.1 in [6]). By
Proposition 2, ¢(tx) is the optimal value to LS(tx) and ¢’(z¢) is the dual solution
to LS(tx). Since evaluating ¢(tx) involves solving a potentially large optimization
problem, an inexact Newton method is carried out with approximations of ¢(t)
and ¢’ (t1).
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Let y, and A, be the approximations of the y. and A, defined in Proposition 2.
The duality gap at each iteration is given by

e =lrelh = (b7ye = i)

The following convergence result has been proven by van den Berg and Friedlander.

Theorem 4 [37] Suppose A has full rank, o € (0, ||bll,), and the inexact Newton
method generates a sequence Ty — To. If ng = 1y, — 0 and g is close enough to
Ty, We have

[Tk+1 — To | = Y1k + Skl Tk — Tol,

where ¢ — 0 and y, is a positive constant.
4.3 Solving the LASSO problem

Approximating ¢(ti) and ¢'(tx) require approximately minimizing LS(t). The
solver SPGL1 uses a spectral projected-gradient (SPG) algorithm. T he method fol-
lows the algorithm by Birgin et al. [7] and is shown to be globally convergent. The
costs include evaluating Ax, ATr and a projection onto the 1-norm ball ||x||; < t.
In PARNES, we replace this SPG algorithm with our algorithm, NESTA-LASSO
(cf. Algorithm 3).

Algorithm 4 PARNES: Pareto curve method with NESTA-LASSO

Input: initial point xo, BPDN parameter o, tolerance 7.
Output: x, = argmin{||x||; : |Ax — bl < o}

11 70=0,90 = [1bll2, 95 = IIATblloo;

2: fork=0,...,knax, do

3 Tip1 = T + (0 — @) /@

4 Xk4+1 = NESTA-LASSO(Xk, Tk+1, 1)}
3 Tie1 = b — Axpqa;

6: Or+1 = lIre+1ll2;

7o @y = —IA g oo/l ll2s

8 if lrkt1ll2 — o < n - max{l, [rg+1ll2} then
9 return x, = Xj41;

0 end if

1: end for

5 Other solution techniques and tools
In the our numerical experiments, we compare PARNES with other state-of-the-art

methods. The algorithms we test and their experimental details are described below.
Note that the algorithms either solve BP(o) or QP(A).
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5.1 NESTA [5]

NESTA is used to solve BP(o). Its code is available at http://www.acm.caltech.edu/
~nestanesta. The parameters for NESTA are set to be

xo=A'b, u=0.02,

where x is the initial guess and p is the smoothing parameter for the 1-norm function
in BP(0).

Continuation techniques are used to speed up NESTA in [5]. Such techniques are
useful when it is observed that a problem involving some parameter X is faster for
large A, [22, 31]. Thus, the idea of continuation is to solve a sequence of problems
for decreasing values of A. In the case of NESTA, it is observed that convergence is
faster for larger values of ;. When continuation is used in the experiments, there are
four continuation steps with pp = ||xp|lec and p; = (w/po)*ug forr = 1,2, 3, 4.

5.2 GPSR: gradient projection for sparse reconstruction [17]

GPSR is used to solve the penalized least-squares problem QP(A). The code is
available at http://www.Ix.it.pt/~mtf/GPSR. The problem is first recast as a bound-
constrained quadratic program (BCQP) by using a standard change of variables on x.
Here, x = u| — uy, and the variables are now given by [u1, u;] where the entries are
positive. The new problem is then solved using a gradient projection (GP) algorithm.
The parameters are set to the default values in the following experiments.

A version of GPSR with continuation is also tested. The number of continuation
steps is 40, the variable TOLERANCEA is set to 1073, and the variable MINITERA is
set to 1. All other parameters are set to their default values.

5.3 SPARSA: sparse reconstruction by separable approximation [18]

SPARSA is used to minimize functions of the form ¢ (x) = f(x) + Ac(x) where f is
smooth and c is non-smooth and non-convex. The QP(}) problem is a special case of
functions of this form. The code for SPARSA is available at http://www.Ix.it.pt/~mtf/
SpaRSA.

In a sense, SPARSA is an iterative shrinkage/thresholding algorithm. Utilizing con-
tinuation and a Brazilai-Borwein heuristic [3] to find step sizes, the speed of the
algorithm can be increased. The number of continuation steps is set to 40 and the
variable MINITERA is set to 1. All remaining variables are set to their default values.

5.4 spGL1 [37] and SPARCO [38]

SPGLI1 is available at http://www.cs.ubc.ca/labs/scl/spgll. The parameters for our
numerical experiments are set to their default values.

Due to the vast number of available and upcoming algorithms for sparse recon-
struction, the authors of SPGL1 and others have created SPARCO [38]. In SPARCO,
they provide a much needed testing framework for benchmarking algorithms. It
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consists of a large collection of imaging, compressed sensing, and geophysics prob-
lems. Moreover, it includes a library of standard operators which can be used to create
new test problems. SPARCO is implemented in MATLAB and was originally created
to test SPGL1. The toolbox is available at http://www.cs.ubc.ca/labs/scl/sparco.

5.5 FISTA: fast iterative soft-thresholding algorithm [4]

FISTA solves QP(A). It can be thought of as a simplified version of the Nesterov
algorithm in Section 2.1 since it involves two sequences of iterates instead of three.
In Section 4.2 of [5], FISTA is shown to give very accurate solutions provided enough
iterations are taken. Due to its ease of use and accuracy, FISTA is used to compute
reference solutions in [5] and in this paper. The code for FISTA can be found in the
NESTA experiments code at http://www.acm.caltech.edu/~nesta.

5.6 FPC: fixed point continuation [22, 23]

FPC solves the general problem miny ||x||; + Af(x) where f(x) is differentiable
and convex. The special case with f(x) = ; |Ax — b||% is the QP(A) problem. The
algorithm is available at http://www.caam.rice.edu/~optimization/L1/fpc.

FPC is equivalent to iterative soft-thresholding. The approach is based on the
observation that the solution solves a fixed-point equation x = F(x) where the
operator F is a composition of a gradient descent-like operator and a shrinkage
operator. It can be shown that the algorithm has g-linear convergence and also, finite-
convergence for some components of the solution. Since the parameter A affects
the speed of convergence, continuation techniques are used to slowly decrease A for
faster convergence. A more recent version of FPC, FPC-BB, uses Brazilai-Borwein
steps to speed up convergence. Both versions of FPC are tested with their default
parameters.

5.7 FPC-AS: fixed-point continuation and active set [39]

FPC-AS is an extension of FPC into a two-stage algorithm which solves QP(A). The
code can be found at http://www.caam.rice.edu/~optimization/L1/fpc. It has been
shown in [22] that applying the shrinkage operator a finite number of times yields
the support and signs of the optimal solution. Thus, the first stage of FPC-AS involves
applying the shrinkage operator until an active set is determined. In the second stage,
the objective function is restricted to the active set and ||x||; is replaced by ¢’ x
where c is the vector of signs of the active set. The constraint ¢; - x; > 0 is also
added. Since the objective function is now smooth, many available methods can now
be used to solve the problem. In the following tests, the solvers L-BFGS and con-
jugate gradients, CG (referred to as FPC-AS (CG)), are used. Continuation methods
are used to decrease A to increase speed. For experiments involving approximately
sparse signals, the parameter controlling the estimated number of nonzeros is set to
n, and the maximum number of subspace iterations is set to 10. The other parame-
ters are set to their default values. All other experiments were tested with the default
parameters.
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5.8 Bregman iteration [40]

The Bregman Iterative algorithm consists of solving a sequence of QP(A) problems
for a fixed A and updated observation vectors b. Each QP()) is solved using the
Brazilai-Borwein version of FPC. Typically, very few (around four) outer iterations
are needed. Code for the Bregman algorithm can be found at http://www.caam.rice.
edu/~optimization/L1/2006/10/bregman-iterative-algorithms-for.html. All parame-
ters are set to their default values.

5.9 c-SALSA[1, 2]

This state-of-the-art method solves BP(o') and has been shown to be competitive with
SPGL1 and NESTA. The method solves the general constrained optimization problem

min ¢ (x) s.t.||Ax — bl < €.
X

First, the method transforms the problem into an unconstrained problem which is then
transformed into a different constrained problem and then solved with an augmented
Lagrangian scheme.

The algorithm requires a method to compute the inverse of (AT A + ) with
a > 0 and an efficient method for computing the denoising operator associated with
¢. We have hand-tuned the parameters j| and wy for optimal performance. The code
for C-SALSA can be found at http://cascais.Ix.it.pt/~mafonso/salsa.html.

6 Numerical results

In the NESTA paper [5] extensive experiments are carried out, comparing the
effectiveness of the state-of-the-art sparse reconstruction algorithms described in
Section 5. The code used to run these experiments is available at http://www.acm.
caltech.edu/~nesta. We have modified this NESTA experiment infrastructure to
include PARNES and C-SALSA, and we repeat some of the tests in [5] using the same
experimental standards and parameters. Refer to the [5] for a detailed description of
the experiments.

One difficulty that arises in carrying out such broad experiments is that some of the
algorithms solve QP(X) whereas others solve BP(o). Comparing the algorithms thus
requires a way of finding a (o, 1) pair for which the solutions of QP(X) and BP(o)
coincide. The NESTA experiments utilize a two-step procedure. Given the noise level

€, the authors choose o := \/m + 2\/2m6, and then use SPGL1 to solve the corre-
sponding BP(op) problem. The SPGL1 dual solution then provides an estimate of the
corresponding A. In practice, the computation of X is not very stable, and so a second
step is performed in which FISTA is used to compute a o corresponding to A using a
very high accuracy of around 10~14.

The highly accurate solution computed by FISTA is used to determine the accuracy
of the solutions computed by the other solvers. Section 4.2 of [5] shows that this is
reasonable since FISTA gives very accurate solutions provided that enough iterations

@ Springer


http://www.caam.rice.edu/~optimization/L1/2006/10/bregman-iterative-algorithms-for.html
http://www.caam.rice.edu/~optimization/L1/2006/10/bregman-iterative-algorithms-for.html
http://cascais.lx.it.pt/~mafonso/salsa.html
http://www.acm.caltech.edu/~nesta
http://www.acm.caltech.edu/~nesta

Numer Algor (2013) 64:321-347 341

are taken. For each test, FISTA is ran twice. In the first run, FISTA is ran with no limit
on the number of iterations until the relative change in the function value is less than
1014, This solution is used to determine the accuracy of the computed solutions. The
results recorded for FISTA are from running FISTA a second time with either stopping
criterion (19) or (20).

Since the different algorithms utilize different stopping criteria, to maintain fair-
ness, the codes have been modified to allow for two new stopping criteria. Intuitively,
the algorithms are run until they achieve a solution at least as accurate as the one
obtained by NESTA. In [5], NESTA (with continuation) is used to compute a solution
XNES- Let X be the k-th iteration in the algorithm being tested. The stopping criteria
used are:

IXklle, < llxngslle, and ||b — AXklle, < 1.05 |6 — Axngslle,, (19)
and
. 1 1
MZlle, + ) |AX; — b||%2 < Allxngslle, + 5 | Axngs — b||%2- (20)

The rationale for having two stopping criteria is to reduce any potential bias arising
from the fact that some algorithms solve QP(A), for which (20) is the most natural,
while others solve BP(o ), for which (19) is the most natural. It is evident from the
tables below that there is not a significant difference between using (19) and (20).
For each test, the number of calls to A and AT (N4) is recorded, and the algorithms
are said to have not converged (DNC) if the number of calls exceeds 20,000.

In Tables 3 and 4, we repeat the experiments done in Tables 5.1 and 5.2 of
[5]. These experiments involve recovering an unknown, exactly s-sparse signal with
n = 262,144, m = n/8, and s = m/5. For each run, the measurement operator A
is a randomly subsampled discrete cosine transform, and the noise level is set to 0.1.
The experiments are performed with increasing values of the dynamic range d where
d =20, 40, 60, 80, 100 dB.

The dynamic range d is a measure of the ratio between the largest and smallest
magnitudes of the non-zero coefficients of the unknown signal. Problems with a high
dynamic range occur often in applications. In these cases, high accuracy becomes
important since one must be able to detect and recover low-power signals with small
amplitudes which may be obscured by high-power signals with large amplitudes.

Table 2 compares the accuracy of the different solvers when used to calculate the
results in the last column of Table 3. As this corresponds to a very high dynamic
range (100 dB), one hopes to obtain very accurate results. Although FISTA produces
the most accurate results (x — x*[|1/[x*l; = 3.63 - 107%), with at least twice
the accuracy of the other solvers, it requires the over 10,000 calls to A and AT. In
contrast, PARNES only requires 632 function calls to reach a relative accuracy of
lx — x*|l1/llx*|l1 = 6.93 - 10~*. The solvers FPC-AS and FPC-AS (CG) do well and
only require around 300 iterations to reach a relative accuracy of around 6.93 - 107%.
The remaining algorithms reach relative accuracies of around 8 - 10™* or more, and
GSPR does not converge. Without continuation, NESTA only achieves a relative accu-
racy of 4.12 - 1073 after 15,227 function calls. However, NESTA with continuation
does much better and reaches a relative accuracy of 8.12 - 10~* after 787 function
calls.
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Table 2 Comparison of accuracy using experiments from Table 3

Methods Na
PARNES 632
NESTA 15,227
NESTA + CT 787
GPSR DNC
GPSR + CT 11,737
SPARSA 693
SPGL1 504
FISTA 12,462
FPC-AS 287
FPC-AS (CG) 361
FPC 9,614
FPC-BB 1,082
BREGMAN-BB 1,408
C-SALSA 1,338

llxli lAx — bll2

942,197.606 2.692
942,402.960 2.661
942,211.581 2.661
DNC DNC

942,211.377 2.725
942,197.785 2.728
942,211.520 2.628
942,211.540 2.654
942,210.925 2.498
942,210.512 2.508
942,211.540 2.719
942,209.854 2.726
942,286.656 1.326
942,219.455 2.317

flx—x*1ly
lx*1l

0.000693
0.004124
0.000812
DNC

0.001420
0.000783
0.001326
0.000363
0.000672
0.000671
0.001422
0.001378
0.000891
0.000851

flx — x*lloo

8.312
45.753
9.317
DNC
15.646
9.094
14.806
4.358
9.374
9.361
15.752
15.271
9.303
9.541

Dynamic range 100 dB, o = 0.100, i = 0.020, sparsity level s = m /5. Stopping rule is (19)

flx — x*]l2

46.623
255.778
52.729
DNC
90.493
51.839
84.560
26.014
45.071
45.010
90.665
87.963
52.449
55.14

In Tables 3 and 4, the same experiment is ran for the two stopping criteria. Since
there is no notable difference between the two sets of results, we only analyze Table 3.
Here, FPC-AS and FPC-AS (CG) perform the best for large values of d, and the number
of function calls ranges from 200 to 375 for all values of the dynamic range. In these
cases, we see a relatively small increase in N4 as d increases from 20 dB to 100 dB.
Our method, PARNES, and SPGL1 generally perform well and do particularly well for

Table 3 Number of function
calls where the sparsity level
is s = m/5 and the stopping

rule is (19)
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Method

PARNES
NESTA
NESTA + CT
GPSR
GPSR + CT
SPARSA
SPGL1
FISTA
FPC-AS
FPC-AS (CG)
FPC

FPC-BB
BREGMAN-BB
C-SALSA

20dB

122
383
483

64
271
323

58

69
209
253
474
164
211
242

40 dB

172
809
513
622
219
387
102
267
231
289
386
168
223
602

60 dB

214
1,639
583
5,030
357
465
191
1,020
299
375
478
206
309
702

80 dB

470
4,341
685
DNC
1,219
541
374
3,465
371
481
1,068
278
455
970

100 dB

632
15,227
787
DNC
11,737
693
504
12,462
287
361
9,614
1,082
1,408
1,338
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Table 4 Number of function

calls where the sparsity level Method
is s = m/5 and the stopping

rule is (20) PARNES

NESTA
NESTA + CT
GPSR
GPSR + CT
SPARSA
SPGL1

FISTA
FPC-AS
FPC-AS (CG)
FPC

FPC-BB
BREGMAN-BB
C-SALSA

20dB

74
383
483

62
271
323

43

72
115
142
472
164
211
202

40 dB

116
809
513
618
219
387

99
261
167
210
386
164
223
550

60 dB

166
1,639
583
5,026
369
463
185
1,002
159
198
466
202
309
650

80 dB

364
4,341
685
DNC
1,237
541
365
3,477
371
481
1,144
276
455
898

343

100 dB

562
15,227
787
DNC
11,775
689
488
12,462
281
355
9,734
1,092
1,408
1,230

small values of d. However, both exhibit a larger increase in N4 with d, with PARNES
increasing from 122 to 632 function calls and SPGL1 ranging between 58 and 504.
The solvers NESTA + CT and SPARSA perform relatively well for large values of d

with N4 ranging between 500 and 800.

In applications, the signal to be recovered is often approximately sparse rather
than exactly sparse. Again, high accuracy is important when solving these problems.
The last two tables, Tables 5 and 6, replicate Tables 5.3 and 5.4 of [5]. Each run
involves an approximately sparse signal obtained from a permutation of the Haar

Table 5 Recovery results of an
approximately sparse signal Method
(with Gaussian noise of variance

1 added) and with (20) as a PARNES
stopping rule NESTA
NESTA + CT
GPSR

GPSR + CT
SPARSA
SPGL1

FISTA

FPC-AS
FPC-AS (CG)
FPC

FPC-BB
BREGMAN-BB
C-SALSA

Run 1

838
8,817
3,807
DNC
DNC
2,143
916
3,375
DNC
DNC
DNC
5,614
3,288
742

Run 2

810
10,867
3,045
DNC
DNC
2,353
892
2,940
DNC
DNC
DNC
7,906
1,281
626

Run 3

1,038
9,887
3,047
DNC
DNC
1,977
1115
2,748
DNC
DNC
DNC
5,986
1,507
630

Run 4

1,098
9,093
3,225
DNC
DNC
1,613
1,437
2,538
DNC
DNC
DNC
4,652
2,892
1,226

Run 5

654
11,211
2,735
DNC
DNC
DNC
938
3,855
DNC
DNC
DNC
6,906
3,104
826
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Table 6 Recovery results of an

approximately sparse signal Method Run 1 Run 2 Run 3 Run4  Run5

(with Gaussian noise of variance

0.1 added) and with (20) as a PARNES 1,420 1,772 1,246 1,008 978

stopping rule NESTA 11573 10457 10705 8807  13.795
NESTA + CT 7,543 13,655 11,515 3,123 2,777
GPSR DNC DNC DNC DNC DNC
GPSR + CT DNC DNC DNC DNC DNC
SPARSA 12,509 DNC DNC 3,117 DNC
SPGL1 1,652 1,955 2,151 1,311 2,365
FISTA 10,845 12,165 10,050 7,647 11,997
FPC-AS DNC DNC DNC DNC DNC
FPC-AS (CG) DNC DNC DNC DNC DNC
FPC DNC DNC DNC DNC DNC
FPC-BB DNC DNC DNC DNC DNC
BREGMAN-BB 3,900 3,684 2,045 3,292 3,486
C-SALSA 1,886 1,926 1,770 1,754 1,854

wavelet coefficients of a 512 x 512 image. The measurement vector b consists of
m = n/8 = 512%/8 = 32,768 random discrete cosine measurements, and the noise
level is set to have a variance of 1 in Table 5 and 0.1 in Table 6. For more specific
details, refer to [5].

We have seen that NESTA + CT, SPARSA, SPGL1, PARNES, and both versions
of FPC-AS perform well in the case of exactly sparse signals for all values of the
dynamic range. However, in the case of approximately sparse signals, SPARSA and
all versions of FPC no longer converge in under 20,000 function calls. In Table 5,
PARNES, SPGL1, and C-SALSA perform well, with PARNES and C-SALSA taking
around 650 function calls for some runs (compare to NESTA + CT which takes at least
3,000 iterations). These algorithms also perform the best in Table 6, and most other
algorithms no longer converge in under 10,000 function calls.

6.1 Choice of parameters

As Tseng observed, accelerated proximal gradient algorithms will converge so long
as the condition given as (45) in [36] is satisfied. In our case this translates into

i L
min, {Vf(yk)Tx + = xills + P(X)} > Vi) v+ P, 21
X
upon setting yx = 1 and

0 if flxllh <,

Px) =
(x) oo otherwise,

in (45) in [36]. In other words, the value of L need not necessarily be fixed at the
Lipschitz constant of V f but may be decreased, and decreasing L has the same effect
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as increasing the stepsize. Tseng suggests to decrease L adaptively by a constant
factor until (45) is violated, then backtrack and repeat the iteration (cf. Note 6 in
[36]). For simplicity, and very likely at the expense of speed, we do not change our
L adaptively in PARNES and NESTA-LASSO. Instead, we choose a small fixed L by
trying a few different values so that (21) is satisfied for all k£ and likewise for the
tolerance n in Algorithm 3. However, even with this crude way of selecting L and 7,
the results obtained are still rather encouraging.

7 Conclusions

As seen in the numerical results, SPGL1 and NESTA are among some of the top
performing solvers available for basis pursuit denoising problems. We have there-
fore made use of Nesterov’s accelerated proximal gradient method in our algorithm
NESTA-LASSO and shown that updating the prox-center leads to improved results.
Through our experiments, we have shown that using NESTA-LASSO in the Pareto
root-finding method leads to results comparable to those of currently available
state-of-the-art methods. Moreover, PARNES performs consistently well in all our
experiments.
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