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Modern ranking data

Multicriteria decision systems

I Recommendation system (user-product, e.g. Amazon)
I Interest ranking in social networks (person-interest, e.g. LinkedIn)
I Popularity contest (voter-candidate, e.g. YouTube)

Peer review systems

I publication citation systems (paper-paper, e.g. CiteSeer)
I webpage ranking (web-web, e.g. Google)
I reputation system (customer-customer, e.g. eBay)

Alternatives: websites, scholarly articles, sellers, movies

Voters:
I other websites, other scholarly articles, buyers, viewers
I groups of websites (topics), scholarly articles (authorship), buyers

(buying pattern), viewers (movie taste)
I different criteria used to judge the alternatives
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Old problems with ranking

Condorcet’s paradox: intransitivity can happen in group decision
making, i.e. the majority prefers a to b and b to c , but may yet prefer
c to a.

I [Condorcet, 1785]

Impossibility theorems in social choice: any societal preference
aggregation that is sophisticated enough must exhibit intransitivitiy.

I [Arrow, 1950]
I [Sen, 1970]

Empirical studies in psychology:
I lack of majority consensus common in group decision making,
I even an individual can exhibit such seemingly irrational behaviour

(multiple criteria used to make preference judgement).
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New problems with ranking

Modern ranking data often

incomplete: typically about 1%,

imbalanced: power-law, heavy-tail distributed votes,

cardinal: given in terms of scores or stochastic choices.

Implicitly or explicitly, ranking data may be regarded to be living on a
pairwise comparison graph G = (V ,E ), where

V : set of alternatives (products, interests, etc) to be ranked,

E : pairs of alternatives to be compared.

Properties

incomplete: sparsity in E ,

imbalanced: degree distribution of V ,

cardinal: real-valued functions on V .
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Example: Netflix customer-product rating

Example (Netflix Customer-Product Rating)

480189-by-17770 customer-product rating matrix A.

incomplete: 98.82% of values missing.

imbalanced: number of raters on each movie varies enormously.

However,

pairwise comparison graph G = (V ,E ) is very dense!

only 0.22% edges are missed, almost a complete graph

rank aggregation may be carried out without estimating missing
values

Caveat: we are not trying to solve the Netflix prize problem
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Objective

Ranking data in form of voter-alternative ratings A = [aαi ], highly
incomplete and imbalanced. Want the following.

A global ranking of the alternatives if one exists.

A certificate of reliability to quantify the validity of the global ranking.

If there are no meaningful global ranking, analyze cyclic
inconsistencies. E.g. Are the inconsistencies local or global or neither?

Allow for globally cyclic rankings.

L.-H. Lim (NIPS 2008) Graph Helmholtzian and Rank Learning December 12, 2008 6 / 23



Local inconsistencies

If there are only local inconsistencies, then

Condorcet paradox happens to items ranked closed together but not
to items ranked far apart, i.e. ordering of 4th, 5th, 6th ranked items
cannot be trusted but ordering of 4th, 60th, 100th ranked items can;

may rank groups of alternatives: e.g. among gourmets, no consensus
for hamburgers, hot dogs, pizzas, and no consensus for caviar, foie
gras, truffles, but clear preference for latter group.
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Basic model for rank learning
Optimize over model class M

min
X∈M

∑
α,i ,j

wα
ij (Xij − Y α

ij )2.

Y α
ij quantifies degree of preference of alternative i over alternative j held

by voter α. Y α skew-symmetric matrix.

wα
ij = w(α, i , j) =

{
1 if α made comparison for {i , j},
0 otherwise.

Kemeny optimization:

MK := {X ∈ Rn×n | Xij = sign(sj − si ), s : V → R},

where sign : R→ {±1}. NP-hard to compute.

Relaxed version:

MG = {X ∈ Rn×n | Xij = sj − si , s : V → R}.

Least squares regression over skew-symmetric matrices of rank 2.
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Rank aggregation

Previous problem may be reformulated

min
X∈MG

‖X − Ȳ ‖22,w = min
X∈MG

[∑
{i ,j}∈E

wij(Xij − Ȳij)
2
]

where
wij :=

∑
αwα

ij and Ȳij :=
∑

α wα
ij Y α

ij∑
α wα

ij
.

Why not just aggregate over scores directly? Mean score is a first
order statistics and is inadequate because

I most voters would rate just a very small portion of the alternatives,
I different alternatives may have different voters, mean scores affected by

individual rating scales.

Use higher order statistics.
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Pairwise rank aggregation

Given voter-alternative rating matrix A = [aαi ] (highly incomplete).

Linear Model: average score difference between product i and j over
all voters who have rated both of them,

Ȳij =

∑
α(aαj − aαi )

#{α | aαi , aαj exist}
.

Invariant up to translation.

Log-linear Model: when all the scores are positive, the logarithmic
average score ratio,

Ȳij =

∑
α(log aαj − log aαi )

#{α | aαi , aαj exist}
.

Invariant up to a multiplicative constant.
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More second order statistics

Linear Probability Model: the probability difference j is preferred to
i than the other way round,

Ȳij = Pr{α | aαj > aαi} − Pr{α | aαj < aαi}.

Invariant up to monotone transformation.

Bradley-Terry Model: logarithmic odd ratio (logit)

Ȳij = log
Pr{α | aαj ≥ aαi}
Pr{α | aαj ≤ aαi}

.

Invariant up to monotone transformation.
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Functions on graph

G = (V ,E ) undirected graph. V vertices, E ∈
(V

2

)
edges, T ∈

(V
3

)
triangles/3-cliques. {i , j , k} ∈ T iff {i , j}, {j , k}, {k , i} ∈ E .

Function on vertices: s : V → R
Edge flows: X : V × V → R, X (i , j) = 0 if {i , j} 6∈ E ,

X (i , j) = −X (j , i) for all i , j .

Triangular flows: Φ : V ×V ×V → R, Φ(i , j , k) = 0 if {i , j , k} 6∈ T ,

Φ(i , j , k) = Φ(j , k , i) = Φ(k , i , j)

= −Φ(j , i , k) = −Φ(i , k , j) = −Φ(k , j , i) for all i , j , k .

Physics: s,X ,Φ potential, alternating vector/tensor field.

Topology: s,X ,Φ 0-, 1-, 2-cochain.

Ranking: s scores/utility, X pairwise rankings, Φ triplewise rankings
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Hilbert space of forms

Let |V | = n. Then s is a vector in Rn, X is a skew-symmetric matrix
in Rn×n, Φ is an alternating 3-tensor in Rn×n×n.

Inner products

〈s, t〉 =
∑

i
wi si ti , 〈X ,Y 〉 =

∑
i ,j

wijXijYij ,

〈Φ,Ψ〉 =
∑

i ,j ,k
wijkΦijkΨijk ,

I w = [wi ] ∈ Rn
+, wi > 0 all i ;

I W = [wij ] ∈ Rn×n
+ symmetric, wij = 0 iff {i , j} 6∈ E ,

I W = [wijk ] ∈ Rn×n×n
+ symmetric, wijk = 0 iff {i , j , k} 6∈ T .

For simplicity, assume wi = 1, wijk = 1T ({i , j , k}). Write
I L2(V ) = L2

w (V ),
I L2(E ) = L2

W (V ∧ V ),
I L2(T ) = L2

W(V ∧ V ∧ V ).
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Operators

Gradient: grad : L2(V )→ L2(E ),

(grad s)(i , j) = sj − si .

Curl: curl : L2(E )→ L2(T ),

(curl X )(i , j , k) = Xij + Xjk + Xki .

Divergence: div : L2(E )→ L2(V ),

(div X )(i) =
∑

j
wijXij .

Graph Laplacian: ∆0 : L2(V )→ L2(V ),

∆0 = div ◦ grad .

Graph Helmholtzian: ∆1 : L2(E )→ L2(E ),

∆1 = curl∗ ◦ curl− grad ◦ div .
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Properties

For each triangle {i , j , k}, curl X )(i , j , k) measures the total flow-sum
along the loop i → j → k → i .

If W is {0, 1}-valued edge indicator, then
I div X (i) measures the inflow-outflow sum at i ,
I div ◦ grad is vertex Laplacian, curl ◦ curl∗ is edge Laplacian.

in all pairwise comparisons.

Theorem (Helmholtz decomposition)

Let G = (V ,E ) be an undirected, unweighted graph and ∆1 its
Helmholtzian. The space of edge flows on G , i.e. L2(E ), admits an
orthogonal decomposition

L2(E ) = im(grad)⊕ ker(∆1)⊕ im(curl∗).

Furthermore, ker(∆1) = ker(δ1) ∩ ker(δ∗0) = ker(curl) ∩ ker(div).
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Helmholtz decomposition

Vector calculus: vector fields on may be resolved into irrotational
(curl-free) and solenoidal (divergence-free) and harmonic component
vector fields

F = −∇ϕ+∇× A + H,

ϕ scalar potential, A vector potential.

Linear algebra: additive orthogonal decomposition of a
skew-symmetric matrix into three skew-symmetric matrices

X = X1 + X2 + X3

X1 = se> − es>, X2(i , j) + X2(j , k) + X2(k, i) = 0.

Graph theory: orthogonal decomposition of network flows into
acyclic and cyclic components.
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Hodge theory: matrix theoretic

A skew-symmetric matrix X associated with G can be decomposed
uniquely

X = X1 + X2 + X3

where

X1 satisfies

I ‘integrable’: X1(i , j) = sj − si for some s : V → R.

X2 satisfies

I ‘curl free’: X2(i , j) + X2(j , k) + X2(k , i) = 0 for all (i , j , k) 3-clique;
I ‘divergence free’:

∑
j :(i,j)∈E X2(i , j) = 0

X3 ⊥ X1 and X3 ⊥ X2.
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Hodge theory: graph theoretic

Orthogonal decomposition of network flows on G into

gradient flow + globally cyclic + locally cyclic

where the first two components make up transitive component and

gradient flow is integrable to give a global ranking

example (b) is locally (triangularly) acyclic, but cyclic on large scale

example (a) is locally (triangularly) cyclic
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Rank aggregation problem revisited

Recall our formulation

min
X∈MG

‖X − Ȳ ‖22,w = min
X∈MG

[∑
{i ,j}∈E

wij(Xij − Ȳij)
2
]
.

The exact case is:

Problem

Does there exist a global ranking function, s : V → R, such that

Xij = sj − si =: (grad s)(i , j)?

Equivalently, does there exists a scalar field s : V → R whose gradient
field gives the flow X ? i.e. is X integrable?
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Answer: not always!
Multivariate calculus: there are non-integrable vector fields; cf. the film A
Beautiful Mind :

A = {F : R3 \ X → R3 | F smooth}, B = {F = ∇g},
dim(A/B) =?

Similarly here,
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Figure: No global ranking s gives Xij = sj − si : (a) triangular cyclic, note
XAB + XBC + XCA 6= 0; (b) it contains a 4-node cyclic flow
A→ C → D → E → A, note on a 3-clique {A,B,C} (also {A,E ,F}),
wAB + wBC + wCA = 0

L.-H. Lim (NIPS 2008) Graph Helmholtzian and Rank Learning December 12, 2008 20 / 23



Boundary of a boundary is empty

Fundamental tenet of topology: (co)boundary of (co)boundary is null.

Global
grad−−→ Pairwise

curl−−→ Triplewise

and so

Global
grad∗(=:− div)←−−−−−−−−− Pairwise

curl∗←−−− Triplewise.

We have
curl ◦ grad = 0, div ◦ curl∗ = 0.

This implies

global rankings are transitive/consistent,

no need to consider rankings beyond triplewise.
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Illustration

Figure: Hodge decomposition for pairwise rankings
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Harmonic rankings: locally consistent but globally
inconsistent
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Figure: A locally consistent but globally
cyclic harmonic ranking.

Figure: A harmonic ranking from
truncated Netflix movie-movie network
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