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Slight change of plans

Week 1

I Mon: Overview: tensor approximations (LH)
I Wed: Conditioning and ill-posedness of tensor approximations,

nonnegative and symmetric tensors, some applications (LH)

Week 2

I Tue: Computations: Gauss-Seidel method, semidefinite programming,
Hilbert’s 17th problem, optimization on Stiefel and Grassmann
manifolds (LH)
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Tensor rank is hard to compute

Eugene L. Lawler: “The Mystical Power of Twoness.”

I 2-SAT is easy, 3-SAT is hard;
I 2-dimensional matching is easy, 3-dimensional matching is hard;
I Order-2 tensor rank is easy, order-3 tensor rank is hard.

Theorem (Håstad)

Computing rank⊗(A) for A ∈ Fl×m×n is NP-hard for F = Q and
NP-complete for F = Fq?

Open question: Is tensor rank NP-hard/NP-complete over F = R,C
in the sense of BCSS?

I L. Blum, F. Cucker, M. Shub, S. Smale, Complexity and real
computation, Springer-Verlag, New York, NY, 1998.
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Tensor rank depends on base field

For A ∈ Rm×n ⊂ Cm×n, rankR(A) = rankC(A). Not true for tensors.

Theorem (Bergman)

For A ∈ Rl×m×n ⊂ Cl×m×n, rank⊗(A) is base field dependent.

x, y ∈ Rn linearly independent and let z = x + iy.

x⊗ x⊗ x− x⊗ y ⊗ y + y ⊗ x⊗ y + y ⊗ y ⊗ x

=
1

2
(z⊗ z̄⊗ z̄ + z̄⊗ z⊗ z).

May show that rank⊗,R(A) = 3 and rank⊗,C(A) = 2.

R2×2×2 has 8 distinct orbits under GL2(R)× GL2(R)× GL2(R).

C2×2×2 has 7 distinct orbits under GL2(C)× GL2(C)× GL2(C).

L.-H. Lim (MSRI SGW) Conditioning and illposedness July 7–18, 2008 4 / 31



Recall: fundamental problem of multiway data analysis

A hypermatrix, symmetric hypermatrix, or nonnegative hypermatrix.
Want

argminrank(B)≤r‖A − B‖.
rank(B) may be outer product rank, multilinear rank, symmetric rank
(for symmetric hypermatrix), or nonnegative rank (nonnegative
hypermatrix).

Example

Given A ∈ Rd1×d2×d3 , find σi ,ui , vi ,wi , i = 1, . . . , r , that minimizes

‖A − σ1u1 ⊗ v1 ⊗w1 − σ2u2 ⊗ v2 ⊗w2 − · · · − σrur ⊗ vr ⊗wr‖

or C ∈ Rr1×r2×r3 and U ∈ Rd1×r1 ,V ∈ Rd2×r2 ,W ∈ Rd3×r3 , that minimizes

‖A − (U,V ,W ) · C‖.

May assume ui , vi ,wi unit vectors and U,V ,W orthonormal columns.
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Recall: fundamental problem of multiway data analysis

Example

Given A ∈ Sk(Cn), find ui , i = 1, . . . , r , that minimizes

‖A − λ1u
⊗k
1 − λ2u

⊗k
2 − · · · − λru

⊗k
r ‖

or C ∈ Rr1×r2×r3 and U ∈ Rn×ri that minimizes

‖A − (U,U,U) · C‖.

May assume ui unit vector and U orthonormal columns.

Pierre’s lectures in Week 2.
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Best low rank approximation of a matrix

Given A ∈ Rm×n. Want

argminrank(B)≤r‖A− B‖.

More precisely, find σi ,ui , vi , i = 1, . . . , r , that minimizes

‖A − σ1u1 ⊗ v1 − σ2u2 ⊗ v2 − · · · − σrur ⊗ vr‖.

Theorem (Eckart–Young)

Let A = UΣV> =
∑rank(A)

i=1 σiuiv
>
i be singular value decomposition. For

r ≤ rank(A), let

Ar :=
∑r

i=1
σiuiv

>
i .

Then
‖A− Ar‖F = min

rank(B)≤r
‖A− B‖F .

No such thing for hypermatrices of order 3 or higher.

L.-H. Lim (MSRI SGW) Conditioning and illposedness July 7–18, 2008 7 / 31



Lemma

Let r ≥ 2 and k ≥ 3. Given the norm-topology on Rd1×···×dk , the following
statements are equivalent:

1 The set Sr (d1, . . . , dk) := {A | rank⊗(A) ≤ r} is not closed.

2 There exists a sequence An, rank⊗(An) ≤ r , n ∈ N, converging to B
with rank⊗(B) > r .

3 There exists B, rank⊗(B) > r , that may be approximated arbitrarily
closely by hypermatrices of strictly lower rank, i.e.

inf{‖B − A‖ | rank⊗(A) ≤ r} = 0.

4 There exists C, rank⊗(C) > r , that does not have a best rank-r
approximation, i.e.

inf{‖C − A‖ | rank⊗(A) ≤ r}

is not attained (by any A with rank⊗(A) ≤ r).
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Non-existence of best low-rank approximation

For xi , yi ∈ Rdi , i = 1, 2, 3,

A := x1 ⊗ x2 ⊗ y3 + x1 ⊗ y2 ⊗ x3 + y1 ⊗ x2 ⊗ x3.

For n ∈ N,

An := n

(
x1 +

1

n
y1

)
⊗
(

x2 +
1

n
y2

)
⊗
(

x3 +
1

n
y3

)
− nx1 ⊗ x2 ⊗ x3.

Lemma

rank⊗(A) = 3 iff xi , yi linearly independent, i = 1, 2, 3. Furthermore, it is
clear that rank⊗(An) ≤ 2 and

limn→∞An = A.

Original result, in a slightly different form, due to:

I D. Bini, G. Lotti, F. Romani, “Approximate solutions for the bilinear
form computational problem,” SIAM J. Comput., 9 (1980), no. 4.
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Outer product approximations are ill-behaved

Such phenomenon can and will happen for all orders > 2, all norms,
and many ranks:

Theorem

Let k ≥ 3 and d1, . . . , dk ≥ 2. For any s such that

2 ≤ s ≤ min{d1, . . . , dk},

there exists A ∈ Rd1×···×dk with rank⊗(A) = s such that A has no best
rank-r approximation for some r < s. The result is independent of the
choice of norms.

For matrices, the quantity min{d1, d2} will be the maximal possible
rank in Rd1×d2 . In general, a hypermatrix in Rd1×···×dk can have rank
exceeding min{d1, . . . , dk}.
Vin’s next three lectures.
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Outer product approximations are ill-behaved

Tensor rank can jump over an arbitrarily large gap:

Theorem

Let k ≥ 3. Given any s ∈ N, there exists a sequence of order-k
hypermatrix An such that rank⊗(An) ≤ r and limn→∞An = A with
rank⊗(A) = r + s.

Hypermatrices that fail to have best low-rank approximations are not
rare. May occur with non-zero probability; sometimes with certainty.

Theorem

Let µ be a measure that is positive or infinite on Euclidean open sets in
Rl×m×n. There exists some r ∈ N such that

µ({A | A does not have a best rank-r approximation}) > 0.

In R2×2×2, all rank-3 hypermatrices fail to have best rank-2 approximation.
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Message

That the best rank-r approximation problem for hypermatrices has no
solution poses serious difficulties.

It is incorrect to think that if we just want an ‘approximate solution’,
then this doesn’t matter.

If there is no solution in the first place, then what is it that are we
trying to approximate? i.e. what is the ‘approximate solution’ an
approximate of?
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Weak solutions

For a hypermatrix A that has no best rank-r approximation, we will
call a C ∈ {A | rank⊗(A) ≤ r} attaining

inf{‖C − A‖ | rank⊗(A) ≤ r}

a weak solution. In particular, we must have rank⊗(C) > r .

It is perhaps surprising that one may completely parameterize all limit
points of order-3 rank-2 hypermatrices.
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Weak solutions

Theorem

Let d1, d2, d3 ≥ 2. Let An ∈ Rd1×d2×d3 be a sequence of hypermatrices
with rank⊗(An) ≤ 2 and

limn→∞An = A,

where the limit is taken in any norm topology. If the limiting hypermatrix
A has rank higher than 2, then rank⊗(A) must be exactly 3 and there
exist pairs of linearly independent vectors x1, y1 ∈ Rd1 , x2, y2 ∈ Rd2 ,
x3, y3 ∈ Rd3 such that

A = x1 ⊗ x2 ⊗ y3 + x1 ⊗ y2 ⊗ x3 + y1 ⊗ x2 ⊗ x3.

In particular, a sequence of order-3 rank-2 hypermatrices cannot
‘jump rank’ by more than 1.

Details: Vin’s lectures. Not possible in general: JM’s lectures.
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Conditioning of linear systems

Let A ∈ Rn×n and b ∈ Rn. Suppose we want to solve system of linear
equations Ax = b.

M = {A ∈ Rn×n | det(A) = 0} is the manifold of ill-posed problems.

A ∈M iff Ax = 0 has nontrivial solutions.

Note that det(A) is a poor measure of conditioning.

Conditioning is the inverse distance to ill-posedness [Demmel; 1987]
(also Dedieu, Shub, Smale), ie.

1

‖A−1‖2
.

Normalizing by ‖A‖2 yields condition number

1

‖A‖2‖A−1‖2
=

1

κ2(A)
.

Note that

‖A−1‖−1
2 = σn = min

xi ,yi

‖A− x1 ⊗ y1 − · · · − xn−1 ⊗ yn−1‖2.

L.-H. Lim (MSRI SGW) Conditioning and illposedness July 7–18, 2008 15 / 31



Conditioning of linear systems

Important for error analysis [Wilkinson, 1961].

Let A = UΣV> and define

Sforward(ε) = {x′ ∈ Rn | Ax = b, ‖x′ − x‖2 ≤ ε}
= {x′ ∈ Rn |

∑n
i=1|x ′i − xi |2 ≤ ε2},

Sbackward(ε) = {x′ ∈ Rn | Ax′ = b′, ‖b′ − b‖2 ≤ ε}
= {x′ ∈ Rn | x′ − x = V (y′ − y),∑n

i=1σ
2
i |y ′i − yi |2 ≤ ε2}.

Then

Sbackward(ε) ⊆ Sforward(σ−1
n ε), Sforward(ε) ⊆ Sbackward(σ1ε).

Determined by σ1 = ‖A‖2 and σ−1
n = ‖A−1‖2.

Rule of thumb: log10 κ2(A) ≈ loss in number of digits of precision.
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What about multilinear systems?

Look at the simplest case. Take A = JaijkK ∈ R2×2×2 and b0,b1,b2 ∈ R2.

a000x0y0 + a010x0y1 + a100x1y0 + a110x1y1 = b00,

a001x0y0 + a011x0y1 + a101x1y0 + a111x1y1 = b01,

a000x0z0 + a001x0z1 + a100x1z0 + a101x1z1 = b10,

a010x0z0 + a011x0z1 + a110x1z0 + a111x1z1 = b11,

a000y0z0 + a001y0z1 + a010y1z0 + a011y1z1 = b20,

a100y0z0 + a101y0z1 + a110y1z0 + a111y1z1 = b21.

When does this have a solution?

What is the corresponding manifold of ill-posed problems?

When does the homogeneous system, ie. b0 = b1 = b2 = 0, have a
non-trivial solution, ie. x 6= 0, y 6= 0, z 6= 0?
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2× 2× 2 hyperdeterminant
Hyperdeterminant of A = JaijkK ∈ R2×2×2 [Cayley; 1845] is

Det2,2,2(A) =
1

4

[
det

([
a000 a010

a001 a011

]
+

[
a100 a110

a101 a111

])
− det

([
a000 a010

a001 a011

]
−
[
a100 a110

a101 a111

])]2

− 4 det

[
a000 a010

a001 a011

]
det

[
a100 a110

a101 a111

]
.

A result that parallels the matrix case is the following: the system of
bilinear equations

a000x0y0 + a010x0y1 + a100x1y0 + a110x1y1 = 0,

a001x0y0 + a011x0y1 + a101x1y0 + a111x1y1 = 0,

a000x0z0 + a001x0z1 + a100x1z0 + a101x1z1 = 0,

a010x0z0 + a011x0z1 + a110x1z0 + a111x1z1 = 0,

a000y0z0 + a001y0z1 + a010y1z0 + a011y1z1 = 0,

a100y0z0 + a101y0z1 + a110y1z0 + a111y1z1 = 0,

has a non-trivial solution iff Det2,2,2(A) = 0.
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2× 2× 3 hyperdeterminant
Hyperdeterminant of A = JaijkK ∈ R2×2×3 is

Det2,2,3(A) = det

a000 a001 a002

a100 a101 a102

a010 a011 a012

 det

a100 a101 a102

a010 a011 a012

a110 a111 a112


− det

a000 a001 a002

a100 a101 a102

a110 a111 a112

 det

a000 a001 a002

a010 a011 a012

a110 a111 a112


Again, the following is true:

a000x0y0 + a010x0y1 + a100x1y0 + a110x1y1 = 0,

a001x0y0 + a011x0y1 + a101x1y0 + a111x1y1 = 0,

a002x0y0 + a012x0y1 + a102x1y0 + a112x1y1 = 0,

a000x0z0 + a001x0z1 + a002x0z2 + a100x1z0 + a101x1z1 + a102x1z2 = 0,

a010x0z0 + a011x0z1 + a012x0z2 + a110x1z0 + a111x1z1 + a112x1z2 = 0,

a000y0z0 + a001y0z1 + a002y0z2 + a010y1z0 + a011y1z1 + a012y1z2 = 0,

a100y0z0 + a101y0z1 + a102y0z2 + a110y1z0 + a111y1z1 + a112y1z2 = 0,

has a non-trivial solution iff Det2,2,3(A) = 0.
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Cayley hyperdeterminant and tensor rank

The Cayley hyperdeterminant Det2,2,2 may be extended to any
A ∈ Rd1×d2×d3 with rank⊗(A) ≤ 2.

Theorem

Let d1, d2, d3 ≥ 2. A ∈ Rd1×d2×d3 is a weak solution, i.e.

A = x1 ⊗ x2 ⊗ y3 + x1 ⊗ y2 ⊗ x3 + y1 ⊗ x2 ⊗ x3,

iff Det2,2,2(A) = 0.

Theorem (Kruskal)

Let A ∈ R2×2×2. Then rank⊗(A) = 2 if Det2,2,2(A) > 0 and
rank⊗(A) = 3 if Det2,2,2(A) < 0.

Vin’s next three lectures.
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Condition number of a multilinear system

Like the matrix determinant, the value of the hyperdeterminant is a
poor measure of conditioning. Need to compute distance to M .

Theorem

Let A ∈ R2×2×2. Det2,2,2(A) = 0 iff

A = x⊗ x⊗ y + x⊗ y ⊗ x + y ⊗ x⊗ x

for some xi , yi ∈ R2, i = 1, 2, 3.

Conditioning of the problem can be obtained from

min
x,y
‖A− x⊗ x⊗ y − x⊗ y ⊗ x− y ⊗ x⊗ x‖.

x⊗ x⊗ y + x⊗ y⊗ x + y⊗ x⊗ x has outer product rank 3 generically
(in fact, iff x, y are linearly independent).

Surprising: the manifold of ill-posed problem has full rank almost
everywhere!
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Nonnegative hypermatrices and nonnegative tensor rank

Let 0 ≤ A ∈ Rl×m×n. The nonnegative rank of A is

rank+(A) := min
{

r
∣∣ ∑r

p=1
xp ⊗ yp ⊗ zp, xp, yp, zp ≥ 0

}
Clearly nonnegative decomposition exists for any A ≥ 0.

Arises in the Näıve Bayes model, Gaussian mixture models.

Theorem

Let A = JaijkK∈ Rl×m×n be nonnegative. Then

inf
{∥∥A−∑r

p=1
xp ⊗ yp ⊗ zp

∥∥ ∣∣ xp, yp, zp ≥ 0
}

is always attained.
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Nonnegative matrix factorization

D.D. Lee and H.S. Seung, “Learning the parts of objects by
nonnegative matrix factorization,” Nature, 401 (1999), pp. 788–791.

Main idea behind NMF (everything else is fluff): the way dictionary
functions combine to build ‘target objects’ is an exclusively additive
process and should not involve any cancellations between the
dictionary functions.

NMF in a nutshell: given nonnegative matrix A, decompose it into a
sum of outer-products of nonnegative vectors:

A = XY> =
∑r

i=1
xi ⊗ yi .

Noisy situation: approximate A by a sum of outer-products of
nonnegative vectors

min
X≥0,Y≥0

‖A− XY>‖F = min
xi≥0,yi≥0

∥∥∥A−
∑r

i=1
xi ⊗ yi

∥∥∥
F
.
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Generalizing to hypermatrices

Nonnegative outer-product decomposition for hypermatrix A ≥ 0
is

A =
∑r

p=1
xp ⊗ yp ⊗ zp

where xp ∈ Rl
+, yp ∈ Rm

+, zp ∈ Rn
+.

Clear that such a decomposition exists for any A ≥ 0.

Nonnegative outer-product rank: minimal r for which such a
decomposition is possible.

Best nonnegative outer-product rank-r approximation:

argmin
{∥∥A−∑r

p=1
xp ⊗ yp ⊗ zp

∥∥
F

∣∣ xp, yp, zp ≥ 0
}
.
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Recap: outer product decomposition in spectroscopy

Application to fluorescence spectral analysis by [Bro; 1997].

Specimens with a number of pure substances in different
concentration

I aijk = fluorescence emission intensity at wavelength λem
j of ith sample

excited with light at wavelength λex
k .

I Get 3-way data A = JaijkK ∈ Rl×m×n.
I Get outer product decomposition of A

A = x1 ⊗ y1 ⊗ z1 + · · ·+ xr ⊗ yr ⊗ zr .

Get the true chemical factors responsible for the data.

I r : number of pure substances in the mixtures,
I xp = (x1p, . . . , xlp): relative concentrations of pth substance in

specimens 1, . . . , l ,
I yp = (y1p, . . . , ymp): excitation spectrum of pth substance,
I zp = (z1p, . . . , znp): emission spectrum of pth substance.

Noisy case: find best rank-r approximation (candecomp/parafac).
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Proof

Naive choice of objective: g : (Rl × Rm × Rn)r → R,

g(x1, y1, z1, . . . , xr , yr , zr ) :=
∥∥A−∑r

p=1
xp ⊗ yp ⊗ zp

∥∥2

F
.

Need to show g attains infimum on (Rl
+ × Rm

+ × Rn
+)r .

Doesn’t work because of an additional degree of freedom — xi , yi , zi

may be scaled by non-zero positive scalars that product to 1,

αx⊗ βy ⊗ γz = x⊗ y ⊗ z, αβγ = 1,

e.g. (nx)⊗ y ⊗ (z/n) can have a diverging loading vector even while
the outer-product remains fixed.
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Picking the right objective function

Define f : Rr × (Rl × Rm × Rn)r → R by

f (X ) :=
∥∥A−∑r

p=1
λpup ⊗ vp ⊗wp

∥∥2

F

where X = (λ1, . . . , λr ; u1, v1,w1, . . . ,ur , vr ,wr ).

Let Sn−1
+ := {x ∈ Rn

+ | ‖x‖2 = 1} and

P := Rr
+ × (Sl−1

+ × Sm−1
+ × Sn−1

+ )r .

Global minimizer of f on P,
(λ1, . . . , λr ; u1, v1,w1, . . . ,ur , vr ,wr ) ∈P, gives required global
minimizer (non-unique).
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Level sets are compact

Note P is closed but unbounded.

Will show that the level set of f restricted to P,

Eα = {X ∈P | f (X ) ≤ α}

is compact for all α.

Eα = P ∩ f −1(−∞, α] closed since f continuous.

Now to show Eα bounded.

I Suppose not, {Xn}∞n=1 ⊂P with ‖Xn‖ → ∞ but f (Xn) ≤ α for all n.
I Clearly, ‖Xn‖ → ∞ implies λ

(n)
q →∞ for at least one q ∈ {1, . . . , r}.

I Note
f (X ) ≥

(
‖A‖F −

∥∥∑r

p=1
λpup ⊗ vp ⊗wp

∥∥
F

)2
.
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Using nonnegativity

I Taking X ≥ 0 into account,∥∥∑r

p=1
λpup ⊗ vp ⊗wp

∥∥2

F
=
∑l,m,n

i,j,k=1

(∑r

p=1
λpupivpjwpk

)2
≥
∑l,m,n

i,j,k=1
(λquqivqjwqk)2

= λ2
q

∑l,m,n

i,j,k=1
(uqivqjwqk)2

= λ2
q‖uq ⊗ vq ⊗wq‖2F

= λ2
q

since ‖uq‖ = ‖vq‖ = ‖wq‖ = 1.

I Hence, as λ
(n)
q →∞, f (Xn)→∞.

I Contradicts f (Xn) ≤ α for all n.

L.-H. Lim (MSRI SGW) Conditioning and illposedness July 7–18, 2008 29 / 31



Symmetric hypermatrices for blind source separation

Problem

Given y = Mx + n. Unknown: source vector x ∈ Cn, mixing matrix
M ∈ Cm×n, noise n ∈ Cm. Known: observation vector y ∈ Cm. Goal:
recover x from y.

Assumptions:

1 components of x statistically independent,
2 M full column-rank,
3 n Gaussian.

Method: use cumulants

κk(y) = (M,M, . . . ,M) · κk(x) + κk(n).

By assumptions, κk(n) = 0 and κk(x) is diagonal. So need to
diagonalize the symmetric hypermatrix κk(y).

Pierre’s lectures in Week 2.
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Diagonalizing a symmetric hypermatrix

A best symmetric rank approximation may not exist either:

Example

Let x, y ∈ Rn be linearly independent. Define for n ∈ N,

An := n

(
x +

1

n
y

)⊗k

− nx⊗k

and

A := x⊗ y ⊗ · · · ⊗ y + y ⊗ x⊗ · · · ⊗ y + · · ·+ y ⊗ y ⊗ · · · ⊗ x.

Then rankS(An) ≤ 2, rankS(A) = k, and

limn→∞An = A.
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