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Slight change of plans

o Week 1

» Mon: Overview: tensor approximations (LH)
» Wed: Conditioning and ill-posedness of tensor approximations,
nonnegative and symmetric tensors, some applications (LH)

o Week 2

» Tue: Computations: Gauss-Seidel method, semidefinite programming,
Hilbert’s 17th problem, optimization on Stiefel and Grassmann
manifolds (LH)

L.-H. Lim (MSRI SGW) Conditioning and illposedness July 7-18, 2008 2 /31



Tensor rank is hard to compute

o Eugene L. Lawler: “The Mystical Power of Twoness.”

» 2-SAT is easy, 3-SAT is hard;

» 2-dimensional matching is easy, 3-dimensional matching is hard;
» Order-2 tensor rank is easy, order-3 tensor rank is hard.

Theorem (Hastad)

Computing rankg (A) for A € F/*m*n js NP-hard for F = Q and
NP-complete for F = Fg?

e Open question: Is tensor rank NP-hard/NP-complete over F = R, C
in the sense of BCSS?

» L. Blum, F. Cucker, M. Shub, S. Smale, Complexity and real
computation, Springer-Verlag, New York, NY, 1998.
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Tensor rank depends on base field

For A € R™*" C C™*", rankr(A) = rankc(A). Not true for tensors.

Theorem (Bergman)
For A € R/*Xmxn c C/*mxn vankg (A) is base field dependent. J

@ x,y € R" linearly independent and let z = x + iy.

XXX —XQYRQY+YyRIXQYy+yRYyRX

1 o
:§(z®z®z+z®z®z).

e May show that rankg r(A) = 3 and rankg c(A) = 2.
o R?%2x2 has 8 distinct orbits under GLy(R) x GLo(R) x GL(R).
@ (2%2x2 has 7 distinct orbits under GL»(C) x GLo(C) x GL(C).
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Recall: fundamental problem of multiway data analysis

o A hypermatrix, symmetric hypermatrix, or nonnegative hypermatrix.
Want

argminrank(l’j’)gr”'A - BH

@ rank(B) may be outer product rank, multilinear rank, symmetric rank
(for symmetric hypermatrix), or nonnegative rank (nonnegative

hypermatrix).

Example

Given A € R%*x%%d find o u;,vi,w;, i = 1,...,r, that minimizes
|A—o1u; @vi QW1 — 02U @ V2 @ Wp — -+ — 0,y @V, @ W]

or C € RM*2X13 and UJ € RA*1, V € REX2 W € RB*73, that minimizes

A= (U, V,W)-C||.

@ May assume u;, v;, w; unit vectors and U, V., W orthonormal columns.
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Recall: fundamental problem of multiway data analysis

Example

Given A € SK(C"), find u;, i = 1,...,r, that minimizes
| A — Alui@k — )\gu?k — = A,u?kH
or C € Rn=x2Xis gnd J € R™' that minimizes

@ May assume u; unit vector and U orthonormal columns.

@ Pierre's lectures in Week 2.

L.-H. Lim (MSRI SGW) Conditioning and illposedness

July 7-18, 2008

6/31



Best low rank approximation of a matrix
o Given A € R™" Want

argminrank(B)SrHA - BH
@ More precisely, find o;,u;,v;, i =1,...,r, that minimizes
A —o1u; @ vi —ooup @ vy — -+ — ou, @ V.
Theorem (Eckart—Young)

Let A= ULV = Z;a:nlk(A) o',-u,-v,-T be singular value decomposition. For

r < rank(A), let
Ar = Z::l 0','U,'V,-T.

A—Alr= min ||A—B|F.
| rllF ranrkrgg\)QH IF

Then

@ No such thing for hypermatrices of order 3 or higher.
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Lemma
Let r > 2 and k > 3. Given the norm-topology on R%**% the following
statements are equivalent:

Q The set S (d1,...,dk) :={A| rankg(A) < r} is not closed.

@ There exists a sequence A, rankg(A,) < r, n € N, converging to B
with rankg (B) > r.

© There exists B, rankg(B) > r, that may be approximated arbitrarily
closely by hypermatrices of strictly lower rank, i.e.

inf{||B — Al | rankg(A) < r} =0.

© There exists C, rankg(C) > r, that does not have a best rank-r
approximation, i.e.

inf{||C — Al| | rankg(A) < r}

is not attained (by any A with rankg(A) < r).
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Non-existence of best low-rank approximation
e Forx;,y;eR%, i=1,2,3,

A=x1 0% QY3+ X1 QY2 ® X3+ Y1 ® X2 ® X3.
@ For ne N,

1 1 1
Ap:=n x1+;¥1 ® X2+;Y2 ® X3+EY3 — M1 ® X2 & X3.

Lemma

rankg(A) = 3 iff x;,y; linearly independent, i = 1,2,3. Furthermore, it is
clear that rankg(Ap) < 2 and

”mn_)oo An = A

@ Original result, in a slightly different form, due to:

» D. Bini, G. Lotti, F. Romani, “Approximate solutions for the bilinear
form computational problem,” SIAM J. Comput., 9 (1980), no. 4.
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Outer product approximations are ill-behaved

@ Such phenomenon can and will happen for all orders > 2, all norms,
and many ranks:

Theorem
Let k>3 and di,...,dx > 2. For any s such that

2<s<min{d,...,dk},

there exists A € RAX"*% with rankg(A) = s such that A has no best
rank-r approximation for some r < s. The result is independent of the
choice of norms.

e For matrices, the quantity min{di, d>} will be the maximal possible
rank in R%% |n general, a hypermatrix in R% %9 can have rank
exceeding min{dy, ..., dk}.

@ Vin's next three lectures.
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Outer product approximations are ill-behaved

@ Tensor rank can jump over an arbitrarily large gap:

Theorem

Let k > 3. Given any s € N, there exists a sequence of order-k
hypermatrix A, such that rankg(A,) < r and lim,_ A, = A with
rankg(A) =r +s.

@ Hypermatrices that fail to have best low-rank approximations are not
rare. May occur with non-zero probability; sometimes with certainty.

Theorem

Let . be a measure that is positive or infinite on Euclidean open sets in
R/>*mxn " There exists some r € N such that

w({A | A does not have a best rank-r approximation}) > 0.

R2><2><2

In , all rank-3 hypermatrices fail to have best rank-2 approximation.
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Message

@ That the best rank-r approximation problem for hypermatrices has no
solution poses serious difficulties.

@ It is incorrect to think that if we just want an ‘approximate solution’,
then this doesn’t matter.

@ If there is no solution in the first place, then what is it that are we
trying to approximate? i.e. what is the ‘approximate solution’ an
approximate of?
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Weak solutions

@ For a hypermatrix A that has no best rank-r approximation, we will
call a C € {A | rankg(A) < r} attaining

inf{||C — A|| | rankg(A) < r}

a weak solution. In particular, we must have rankg(C) > r.

o It is perhaps surprising that one may completely parameterize all limit
points of order-3 rank-2 hypermatrices.
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Weak solutions

Theorem

Let dy,dr,d3 > 2. Let A, € RN*%X% pe 5 sequence of hypermatrices
with rankg (A,) < 2 and

”mn_)oo An = A,

where the limit is taken in any norm topology. If the limiting hypermatrix
A has rank higher than 2, then rankg(A) must be exactly 3 and there
exist pairs of linearly independent vectors x1,y1 € R, x5,y, € R%,
X3,Y3 € R% such that

A=%x1 X ®y3+ X1 ®Yy2 R X3+ Yy1 ® X ® X3.

@ In particular, a sequence of order-3 rank-2 hypermatrices cannot
‘jump rank’ by more than 1.

@ Details: Vin's lectures. Not possible in general: JM's lectures.
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Conditioning of linear systems

o Let Ac R™" and b € R". Suppose we want to solve system of linear
equations Ax = b.

o M ={AeR™|det(A) =0} is the manifold of ill-posed problems.

o A€ . iff Ax =0 has nontrivial solutions.

@ Note that det(A) is a poor measure of conditioning.

e Conditioning is the inverse distance to ill-posedness [Demmel; 1987]
(also Dedieu, Shub, Smale), ie.

1
IA=1]]2"
e Normalizing by ||A||2 yields condition number
1 !
IAll2[A=Hl2 — w2(A)
o Note that
HA_IHz_l =op=min|[A=x1®y1 — -+ = Xp—1 @ ¥Yp-1l2-

Xi,Yi
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Conditioning of linear systems

e Important for error analysis [Wilkinson, 1961].
o Let A= UZ VT and define

Storward(€) = {X' €R" | Ax =b, [|xX' —x[]2 <¢}
= {X eR"[ X1 Ix —xi|* < €%},
Sbackward(€) = {x' € R" | AX' = b', ||b" —b|]> <¢}
={XeR" X —x=V(y ~y),
Yoty —yil? < e

Then

Shackward (5) - Sforward(o';le)a Sforward(g) - Sbackward(015)~

o Determined by o1 = ||Al]2 and o, = A7}

@ Rule of thumb: log;y k2(A) ~ loss in number of digits of precision.
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What about multilinear systems?

Look at the simplest case. Take A = [aji] € R?*2%2 and bg, by, by € R2.

ap00X0Yo + @010X0Y1 + a100X1Yo + ai1ox1y1 = boo,
ap01X0Yo + d@o11X0y1 + a101x1yo + ai11x1yr = boi,
ap00X0Zo + A001X0Z1 + d100X120 + a101x121 = bio,
a010X02Z0 + d011X0Z1 + a110X120 + a111x121 = b1z,
a000Y0Z0 + 4001Y0Z1 + do10y120 + do11y121 = boo,

a100Y020 + a101Y021 + aioy120 + aii1y1z1 = bor.

@ When does this have a solution?
@ What is the corresponding manifold of ill-posed problems?

@ When does the homogeneous system, ie. bg = b; = by = 0, have a
non-trivial solution, ie. x # 0,y # 0,z # 07
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2 X 2 X 2 hyperdeterminant
Hyperdeterminant of A = [ajx] € R?*2%2 [Cayley; 1845] is

Det222(A):l det 4000 9010 + ai00 4110
” 4 4001 do1l alol a1l

2
4000 4010 d100 4110

— det —
doo1  4do11l diol a1l

a
— 4 det |79
001

010
ao11

di00 4110
det
dio1 a1l

A result that parallels the matrix case is the following: the system of

bilinear equations

a000X0Y0 + do10Xoy1 + @100X1Y0 + a110X1y1
a001X0Y0 + do11Xoy1 + @101X1Yo + a111X1y1
a000X020 + @001X0Z1 + d100X120 + 3101X121
a010X020 + A011X0Z1 + @110X120 + A111X121
a000Y020 + A001Y0Z1 + ao10y120 + Ao11Y1Z1

ai00Y02o0 + aio1yozi + aioy12o + a1y1z1

has a non-trivial solution iff Detz 2 2(.A) = 0.
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2 X 2 X 3 hyperdeterminant

Hyperdeterminant of A = [ajx] € R?*2%3 is
4000 4001 4002 a100 4101 4102
Dets23(A) =det |a100 ai01 a2 | det | 010 @011 ao12
4010 4011 4012 d110 4111 8112
4000 4001 4002 do00 4001 4002
—det |a0 a1 a2 det [aoi0 @011 dor2
a0 aur A aio  aur A

Again, the following is true:

a000X0Y0 + ao10Xoy1 + aiooXxiyo + awoxiyr = 0,
aoo1XoYo + ao11Xoy1 + aroixiyo + amxiyr = 0,
ao02X0Yo + ao12Xoy1 + ato2Xxiyo + aiexiyr = 0,
a000X020 + A001X0Z1 + A002X022 + A100X120 + d101X121 + a102x122 = 0,
a010X020 + @011X021 + A012X022 + a110X120 + a111x121 + aiexize = 0,
a000Y020 + @001Y021 + @002Y022 + @o10y120 + ao11y1z1 + ao2y1z2 = 0,

a100y020 + aio1yoz1 + ai2yoz2 + atoy12o + aiiy1zi + aiey1z = 0,

has a non-trivial solution iff Dets 5 3(.A) = 0.
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Cayley hyperdeterminant and tensor rank

@ The Cayley hyperdeterminant Det; > > may be extended to any
A € REXXd3 with rankg(A) < 2.

Theorem

Let di,dr,d3 > 2. A€ RAXEXD js 5 weak solution, i.e.

A=x1@% ®y3+ X1 ®Y2 ® X3+ Y1 ® X2 ® X3,
iff Det2,272(¢4) =0.

Theorem (Kruskal)

Let A € R?%?%2_ Then rankg(A) = 2 if Dety22(A) > 0 and
rank®(.,4) =3 if Detz’z,z(A) < 0.

@ Vin's next three lectures.

L.-H. Lim (MSRI SGW) Conditioning and illposedness July 7-18, 2008 20 /31



Condition number of a multilinear system

@ Like the matrix determinant, the value of the hyperdeterminant is a
poor measure of conditioning. Need to compute distance to .Z.

Theorem

Let A € R2X2x2 Det272,2(A) =0 iff

A=xQXQY+XQYydx+YyRXx®X

for some x;,y; € R?, i =1,2,3.

@ Conditioning of the problem can be obtained from
r;1iyn||A—x®x®y—x®y®x—y®x®x“.
O XAXRY+XRYRX+YRX®X has outer product rank 3 generically

(in fact, iff x,y are linearly independent).

@ Surprising: the manifold of ill-posed problem has full rank almost
everywhere!
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Nonnegative hypermatrices and nonnegative tensor rank

o Let 0 < A € R/*™X" The nonnegative rank of A is
. r
rank..(A) := min{r | szl Xp @ Yp @ Zp, Xp,Yp,Zp > 0}
@ Clearly nonnegative decomposition exists for any A > 0.
@ Avrises in the Naive Bayes model, Gaussian mixture models.

Theorem
Let A = [ajx]€ R'*™*" be nonnegative. Then

mf{”'A o Z;:l xP ® yP ® ZP” | xP’ypvzp 2 0}

is always attained.
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Nonnegative matrix factorization

@ D.D. Lee and H.S. Seung, “Learning the parts of objects by

nonnegative matrix factorization,” Nature, 401 (1999), pp. 788-791.

e Main idea behind NMF (everything else is fluff): the way dictionary
functions combine to build ‘target objects’ is an exclusively additive

process and should not involve any cancellations between the
dictionary functions.

o NMF in a nutshell: given nonnegative matrix A, decompose it into a

sum of outer-products of nonnegative vectors:
r
A=XY" = Xi ® Y.
Do Xi®Y

@ Noisy situation: approximate A by a sum of outer-products of
nonnegative vectors

r
in IA—XYTllr= mi HA -3 xoy
somin lF = roin_ X ®Yi

£
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Generalizing to hypermatrices

@ Nonnegative outer-product decomposition for hypermatrix A > 0
is

r
where x, € Ri,yp € RT,z, e R,
@ Clear that such a decomposition exists for any 4 > 0.

@ Nonnegative outer-product rank: minimal r for which such a
decomposition is possible.

@ Best nonnegative outer-product rank-r approximation:

argmin{|| 4 — Z;Zl Xp QYp & ZPHF | Xp,¥p,2p > 0}.
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Recap: outer product decomposition in spectroscopy

@ Application to fluorescence spectral analysis by [Bro; 1997].

@ Specimens with a number of pure substances in different
concentration

> ajx = fluorescence emission intensity at wavelength Af™ of ith sample
excited with light at wavelength Ag*.

» Get 3-way data A = [a;x] € R*mx"n.

» Get outer product decomposition of A

A=x1Q0y102z14+ - +X Yy, Q2.

@ Get the true chemical factors responsible for the data.

» r: number of pure substances in the mixtures,

> X, = (x1p,-..,Xp): relative concentrations of pth substance in
specimens 1,...,/,

> Yp = (V1p,.--,¥mp): excitation spectrum of pth substance,

> 2z, = (Zip, ..., Znp): emission spectrum of pth substance.

@ Noisy case: find best rank-r approximation (CANDECOMP/PARAFAC).
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Proof

o Naive choice of objective: g : (R/ x R™ x R")" — R,
r 2
g(XhYLZla v 7xr7yr72r) = HA_ Zp:l Xp ®YP ®ZPHF‘

o Need to show g attains infimum on (R, x RT x R7)".

@ Doesn’t work because of an additional degree of freedom — x;,y;, z;
may be scaled by non-zero positive scalars that product to 1,

xXQPYyR1Z=xQYyRzZ, afy =1,

e.g. (nx) ® y ® (z/n) can have a diverging loading vector even while
the outer-product remains fixed.
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Picking the right objective function

o Define f : R x (R/ x R™ x R")" — R by
F(X):=||A- Z,r,:1 )\pup®vp®pr2F

where X = (A1,..., A\ U1, VI, W1,. .., UV, W,).
o Let ST :={x€R" | |x|[2 =1} and

P =R x (STt x ST x st
@ Global minimizer of f on &,

(A, AU, Vi, W, .U, v W) € P2 gives required global
minimizer (non-unique).
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Level sets are compact

@ Note & is closed but unbounded.
@ Will show that the level set of f restricted to &7,

by ={XeZ|f(X)<a}

is compact for all a.
° & =P NFf1(~o0,a] closed since f continuous.
@ Now to show &, bounded.

> Suppose not, {X,}52; C & with || X,|| — oo but f(X,) < « for all n.
X,|| — oo implies Ay — oo for at least one g € {1,...,r}.

> Clearly, |
» Note

F(X) > (||AllF - ||Z;:1 Aoty D v, @ wp| ).
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Using nonnegativity

@ » Taking X > 0 into account,

I,m,n

r r
||Zp:1 Aptip @ Vp ® WPH?—' - Z;Xi’kzl(zpzl )‘p“inijpk)2

I,m,n A\ 5
> UgiVgi W,
= E :i’j’kzl( qtqiVqj qk)

5 I,m,n 5
= >‘q Zi,j,k:l(uqivquqk)
= A?;”“q QVg @ Wq”/zf

2
=y
since [ug| = [[vgl| = [lwgl = 1.

> Hence, as Ay — oo, £(X,) — oo.
» Contradicts f(X,) < « for all n.
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Symmetric hypermatrices for blind source separation

Problem
Given'y = Mx + n. Unknown: source vector x € C", mixing matrix

M € C™*", noise n € C™. Known: observation vectory € C™. Goal:

recover x fromy.

@ Assumptions:

@ components of x statistically independent,
@ M full column-rank,
© n Gaussian.

@ Method: use cumulants
kr(y) = (M, M, .... M) - kk(x) + xk(n).

@ By assumptions, kx(n) = 0 and kg(x) is diagonal. So need to
diagonalize the symmetric hypermatrix r(y).

@ Pierre's lectures in Week 2.
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Diagonalizing a symmetric hypermatrix

@ A best symmetric rank approximation may not exist either:

Example
Let x,y € R” be linearly independent. Define for n € N,

1 \®
A,:=n <x + —y) — nx®k
n

and

A=xQy® - Qy+y®x® - -Qy+- - -+tyy®---®x.

Then ranks(A,) < 2, ranks(A) = k, and

”mn_)oo .A.n = ./4
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