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Hodge decomposition)

Vector calculus: Helmholtz’s decomposition, ie. vector fields on nice
domains may be resolved into irrotational (curl-free) and solenoidal
(divergence-free) component vector fields

F = −∇ϕ+∇× A

ϕ scalar potential, A vector potential.

Linear algebra: additive orthogonal decomposition of a
skew-symmetric matrix into three skew-symmetric matrices

W = W1 + W2 + W3

W1 = veT − evT , W2 clique-consistent, W3 inconsistent.

Graph theory: orthogonal decomposition of network flows into
acyclic and cyclic components.
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Ranking on networks (graphs)

Multicriteria rank/decision systems

I Amazon or Netflix’s recommendation system (user-product)
I Interest ranking in social networks (person-interest)
I S&P index (time-price)
I Voting (voter-candidate)

Peer review systems

I publication citation systems (paper-paper)
I Google’s webpage ranking (web-web)
I eBay’s reputation system (customer-customer)
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Characteristics

Aforementioned ranking data often

incomplete: typically about 1% (cf. earlier talks by Agarwal, Banerjee)

imbalanced: power-law, heavy-tail distributed votes (cf. earlier talks
by Fatlousos, Mahoney, Mihail)

cardinal: given in terms of scores or stochastic choices

Implicitly or explicitly, ranking data may be viewed to live on a simple
graph G = (V ,E ), where

V : set of alternatives (products, interests, etc) to be ranked

E : pairs of alternatives to be compared
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Example: Netflix customer-product rating

Example (Netflix Customer-Product Rating)

480189-by-17770 customer-product rating matrix X

X is incomplete: 98.82% of values missing

However,

pairwise comparison graph G = (V ,E ) is very dense!

only 0.22% edges are missed, almost a complete graph

rank aggregation may be carried out without estimating missing
values

imbalanced: number of raters on e ∈ E varies

Caveat: we are not trying to solve the Netflix prize problem
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Netflix example continued

The first order statistics, mean score for each product, is often inadequate
because of the following:

most customers would rate just a very small portion of the products

different products might have different raters, whence mean scores
involve noise due to arbitrary individual rating scales

customers give ratings instead or orderings

How about high order statistics?
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From 1st order to 2nd order: pairwise rankings

Linear Model : average score difference between product i and j over
all customers who have rated both of them,

wij =

∑
k(Xkj − Xki )

#{k : Xki ,Xkj exist}
.

Invariant up to translation.

Log-linear Model : when all the scores are positive, the logarithmic
average score ratio,

wij =

∑
k(log Xkj − log Xki )

#{k : Xki ,Xkj exist}
.

Invariant up to a multiplicative constant.
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More invariants

Linear Probability Model : the probability that product j is preferred
to i in excess of a purely random choice,

wij = Pr{k : Xkj > Xki} −
1

2
.

Invariant up to monotone transformation.

Bradley-Terry Model : logarithmic odd ratio (logit)

wij = log
Pr{k : Xkj > Xki}
Pr{k : Xkj < Xki}

.

Invariant up to monotone transformation.
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Skew-symmetric matrices of pairwise rankings

Recall skew-symmetric matrices: W ∈ Rn×n, W T = −W :

every A ∈ Rn×n decomposable into A = S + W , S = (A + AT )/2
symmetric, W = (A− AT )/2 skew-symmetric

W = {skew-symmetric matrices} = ∧2(R) = on(R)

All previous models induce (sparse) skew-symmetric matrices of size
|V |-by-|V |

wij =

{
−wji if {i , j} ∈ E

? otherwise

where G = (V ,E ) is a pairwise comparison graph.
Note: such a skew-symmetric matrix induces a pairwise ranking flow on
graph G .
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Pairwise ranking graph for IMDb top 20 movies

 

 

Figure: Pairwise ranking flow of Netflix data restricted to top IMDb movies
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Rank aggregation problem

Difficulties:

Arrow’s impossibility theorem

Kemeny-Snell optimal ordering is NP-hard to compute

Harmonic analysis on Sn is impractical for large n since |Sn| = n!

Our approach:

Problem

Does there exist a global ranking function, v : V → R, such that

wij = vj − vi =: δ0(v)(i , j)?

Equivalently, does there exists a scalar field v : V → R whose gradient
field gives the flow w? ie. is w integrable?
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Answer: not always!
Multivariate calculus: there are non-integrable vector fields; cf. the film A
Beautiful Mind :

A = {F : R3 \ X → R3 | F smooth}, B = {F = ∇g},
dim(A/B) =?

Similarly here,
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Figure: No global ranking v gives wij = vj − vi : (a) triangular cyclic, note
wAB + wBC + wCA 6= 0; (b) it contains a 4-node cyclic flow
A→ C → D → E → A, note on a 3-clique {A,B,C} (also {A,E ,F}),
wAB + wBC + wCA = 0
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Triangular transitivity

Fact

W = [wij ] skew symmetric associated with graph G = (V ,E ). If
wij = vj − vi for all {i , j} ∈ E , then wij + wjk + wki = 0 for all 3-cliques
{i , j , k}.

Transitivity subspace:

{W skew symmetric | wij + wjk + wki = 0 for all 3-cliques}

Example in the last slide, (a) lies outside; (b) lies in this subspace, but not
a gradient flow.
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Hodge theory: matrix theoretic

A skew-symmetric matrix W associated with G can be decomposed
uniquely

W = W1 + W2 + W3

where

W1 satisfies

I ‘integrable’: W1(i , j) = vj − vi for some v : V → R.

W2 satisfies

I ‘curl free’: W2(i , j) + W2(j , k) + W2(k , i) = 0 for all (i , j , k) 3-clique;
I ‘divergence free’:

∑
j :(i,j)∈E W2(i , j) = 0

W3 ⊥W1 and W3 ⊥W2.
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Hodge theory: graph theoretic

Orthogonal decomposition of network flows on G into

gradient flow + globally cyclic + locally cyclic

where the first two components make up transitive component and

gradient flow is integrable to give a global ranking

example (b) is locally (triangularly) acyclic, but cyclic on large scale

example (a) is locally (triangularly) cyclic

L.-H. Lim and Y. Yao (MMDS 2008) Rank aggregation and Hodge decomposition June 28, 2008 15 / 32



Clique complex of a graph

Extend graph G to a simplicial complex K(G ) by attaching triangles

0-simplices K0(G ): V

1-simplices K1(G ): E

2-simplices K2(G ): triangles {i , j , k} such that every edge is in E

k-simplices Kk(G ): (k + 1)-cliques {i0, . . . , ik} of G

For ranking problems, suffices to construct K(G ) up to dimension 2!

global ranking v : V → R, 0-forms, ie. vectors

pairwise ranking w(i , j) = −w(j , i) for (i , j) ∈ E , 1-forms, ie.
skew-symmetric matrices
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Clique complex

k-forms:

C k(K(G ),R) = {u : Kk+1(G )→ R, uiσ(0),...,iσ(k)
= sign(σ)ui0,...,ik}

for (i0, . . . , ik) ∈ Kk+1(G ), where σ ∈ Sk+1 is a permutation on
(0, . . . , k).

May put metrics/inner products on C k(K(G ),R).

The following metric on 1-forms, is useful for the imbalance issue

〈wij , ωij〉D =
∑

(i ,j)∈E

Dijwijωij

where
Dij = |{customers who rate both i and j}|.
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Discrete exterior derivatives (coboundary maps)

k-coboundary maps δk : C k(K(G ),R)→ C k+1(K(G ),R) are defined
as the alternating difference operator

(δku)(i0, . . . , ik+1) =
k+1∑
j=0

(−1)j+1u(i0, . . . , ij−1, ij+1, . . . , ik+1)

δk plays the role of differentiation

δk+1 ◦ δk = 0

In particular,

I (δ0v)(i , j) = vj − vi =: (grad v)(i , j)
I (δ1w)(i , j , k) = (±)(wij + wjk + wki ) =: (curl w)(i , j , k)

(triangular-trace of skew-symmetric matrix [wij ])
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Div, Grad, Curl

For each triangle {i , j , k}, the curl

(curl w)(i , j , k) = (δ1w)(i , j , k) = wij + wjk + wki

measures the total flow-sum along the loop i → j → k → i .

(δ1w)(i , j , k) = 0 implies the flow is path-independent, which
defines the triangular transitivity subspace.

For each alternative i ∈ V , the divergence

(div w)(i) := −(δT0 w)(i) :=
∑

wi∗

measures the inflow-outflow sum at i .

(δT0 w)(i) = 0 implies alternative i is preference-neutral in all pairwise
comparisons.

divergence-free flow δT0 w = 0 is cyclic
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Boundary of a boundary is empty

Fundamental tenet of topology: δk+1 ◦ δk = 0.
For k = 0,

C 0 δ0−→ C 1 δ1−→ C 2,

ie.
Global

grad−−→ Pairwise
curl−−→ Triplewise

and so

Global
grad∗(=:− div)←−−−−−−−−− Pairwise

curl∗←−−− Triplewise.

We have
curl ◦ grad(Global Rankings) = 0.

This implies

global rankings are transitive/consistent,

no need to consider rankings beyond triplewise.
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Combinatorial Laplacians

k-dimensional combinatorial Laplacian, ∆k : C k → C k by

∆k = δk−1δ
∗
k−1 + δ∗kδk , k > 0

k = 0, graph Laplacian or vertex Laplacian

∆0 = δ∗0δ0

k = 1, vector Laplcian (first term is edge Laplacian)

∆1 = δ0δ
∗
0 + δ∗1δ1 = curl ◦ curl∗− div ◦ grad

Important Properties:

I ∆k positive semidefinite
I ker(∆k) = ker(δ∗k−1) ∩ ker(δk) harmonic forms
I Hodge decomposition
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Hodge decomposition for combinatorial Laplacians

Every combinatorial Laplacians ∆k has an associated Hodge
decomposition.

For k = 1, this is the decomposition (of discrete vector fields/skew
symmetric matrices/network flows) that we have been discussing.

Theorem (Hodge decomposition for pairwise ranking)

The space of pairwise rankings, C 1(K(G ),R), admits an orthogonal
decomposition into three

C 1(K(G ),R) = im(δ0)⊕ H1 ⊕ im(δ∗1)

where
H1 = ker(δ1) ∩ ker(δ∗0) = ker(∆1).
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Illustration

Figure: Hodge decomposition for pairwise rankings
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Harmonic rankings: locally consistent but globally
inconsistent
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Figure: A locally consistent but globally
cyclic harmonic ranking.

Figure: A harmonic ranking from
truncated Netflix movie-movie network
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Rank aggregation as projection

Rank aggregation problem reduced essentially to linear least squares

Corollary

Every pairwise ranking admits a unique orthogonal decomposition,

w = projim(δ0) w + projker(δ∗0 ) w

i.e.
pairwise = grad(global) + cyclic

Particularly the first projection grad(global) gives a global ranking

x∗ = (δ∗0δ0)†δ∗0w = −(∆0)† div(w)

O(n3) flops complexity with great algorithms (dense: Givens/Householder
QR, Golub-Reinsch SVD; sparse: CGLS, LSQR; sampling: DMM ’06)
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Erdős-Rényi random graph

Heuristical justification from Erdős-Rényi random graphs (cf. earlier talks
by Chung, Mihail, Saberi)

Theorem (Kahle ’07)

For an Erdős-Rényi random graph G (n, p) with n vertices and edges
forming independently with probability p, its clique complex χG will have
zero 1-homology almost always, except when

1

n2
� p � 1

n
.

Since the full Netflix movie-movie comparison graph is almost complete
(0.22% missing edges), one may expect the chance of nontrivial harmonic
ranking is small.
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Which pairwise ranking model might be better?

Use curl distribution:
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Figure: Curl distribution of three pairwise rankings, based on most popular 500
movies. The pairwise score difference in red have the thinnest tail.
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Comparisons of Netflix global rankings

Mean Score Score Difference Probability Difference Logarithmic Odd Ratio

Mean Score 1.0000 0.9758 0.9731 0.9746
Score Difference 1.0000 0.9976 0.9977

Probability Difference 1.0000 0.9992
Logarithmic Odd Ratio 1.0000

Cyclic Residue - 6.03% 7.16% 7.15%

Table: Kendall’s Rank Correlation Coefficients between different global rankings
for Netflix. Note that the pairwise score difference has the smallest relative
residue.
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Why pairwise ranking works for Netflix?

Pairwise rankings are good approximations of gradient flows on
movie-movie networks

In fact, Netflix data in the large scale behaves like a 1-dimensional
curve in high dimensional space

To visualize this, we use a spectral embedding approach
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Spectral embedding

Technique proposed by Goel, Diaconis, and Holmes (cf. earlier talk by
Jordan).

Map every movie to a point in S5 by

movie m→ (
√

p1(m), . . . ,
√

p5(m))

where pk(m) is the probability that movie m is rated as star
k ∈ {1, . . . , 5}. Obtain a movie-by-star matrix Y .

Do SVD on Y , which is equivalent to do eigenvalue decomposition on
the linear kernel

K (s, t) = 〈s, t〉d , d = 1

K (s, t) is nonnegative, whence the first eigenvector captures the
centricity (density) of data and the second captures a tangent field
of the manifold.
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SVD embedding

Figure: The second singular vector is monotonic to the mean score, indicating the
intrinsic parameter of the horseshoe curve is driven by the mean score
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Conclusions

Ranking as 1-dimensional scaling of data

Pairwise ranking as approximate gradient fields or flows on graphs

Hodge Theory provides an orthogonal decomposition for pairwise
ranking flows,

This decomposition helps characterize the local (triangular) vs. global
consistency of pairwise rankings, and gives a natural rank aggregation
scheme
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