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What is not a tensor, I

• What is a vector?

– Mathematician: An element of a vector space.

– Physicist: “What kind of physical quantities can be rep-
resented by vectors?”
Answer: Once a basis is chosen, an n-dimensional vector
is something that is represented by n real numbers only
if those real numbers transform themselves as expected
(ie. according to the change-of-basis theorem) when one
changes the basis

• What is a tensor?

– Mathematician: An element of a tensor product of vector
spaces.

– Physicist: “What kind of physical quantities can be rep-
resented by tensors?” Answer: Slide 7.
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What is not a tensor, II

By a tensor, physicists and geometers often mean a tensor field

(roughly, these are tensor-valued functions on manifolds):

• stress tensor

• moment-of-intertia tensor

• gravitational field tensor

• metric tensor

• curvature tensor
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Tensor product of vector spaces

U, V, W vector spaces. Think of U ⊗ V ⊗W as the vector space

of all formal linear combinations of terms of the form u⊗ v⊗w,∑
αu⊗ v ⊗w,

where α ∈ R,u ∈ U,v ∈ V,w ∈ W.

One condition: ⊗ decreed to have the multilinear property

(αu1 + βu2)⊗ v ⊗w = αu1 ⊗ v ⊗w + βu2 ⊗ v ⊗w,

u⊗ (αv1 + βv2)⊗w = αu⊗ v1 ⊗w + βu⊗ v2 ⊗w,

u⊗ v ⊗ (αw1 + βw2) = αu⊗ v ⊗w1 + βu⊗ v ⊗w2.
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Tensors and multiway arrays

Up to a choice of bases on U, V, W , A ∈ U ⊗ V ⊗ W can be

represented by a 3-way array A = JaijkKl,m,n
i,j,k=1 ∈ Rl×m×n on which

the following algebraic operations are defined:

1. Addition/Scalar Multiplication: for JbijkK ∈ Rl×m×n, λ ∈ R,

JaijkK+JbijkK := Jaijk+bijkK and λJaijkK := JλaijkK ∈ Rl×m×n

2. Multilinear Matrix Multiplication: for matrices L = [λi′i] ∈
Rp×l, M = [µj′j] ∈ Rq×m, N = [νk′k] ∈ Rr×n,

(L, M, N) ·A := Jci′j′k′K ∈ Rp×q×r

where

ci′j′k′ :=
l∑

i=1

m∑
j=1

n∑
k=1

λi′iµj′jνk′kaijk.
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Change-of-basis theorem for tensors

Two representations A, A′ of A in different bases are related by

(L, M, N) ·A = A′

with L, M, N respective change-of-basis matrices (non-singular).

Henceforth, we will not distinguish between an order-k tensor and

a k-way array that represents it (with respect to some implicit

choice of basis).
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Segre outer product

If U = Rl, V = Rm, W = Rn, Rl⊗Rm⊗Rn may be identified with
Rl×m×n if we define ⊗ by

u⊗ v ⊗w = JuivjwkKl,m,n
i,j,k=1.

A tensor A ∈ Rl×m×n is said to be decomposable if it can be
written in the form

A = u⊗ v ⊗w

for some u ∈ Rl,v ∈ Rm,w ∈ Rn.

The set of all decomposable tensors is known as the Segre variety
in algebraic geometry. It is a closed set (in both the Euclidean
and Zariski sense) as it can be described algebraically:

Seg(Rl, Rm, Rn) = {A ∈ Rl×m×n | ai1i2i3aj1j2j3 = ak1k2k3
al1l2l3, {iα, jα} = {kα, lα}}
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Tensor ranks

Matrix rank. A ∈ Rm×n

rank(A) = dim(spanR{A•1, . . . , A•n}) (column rank)

= dim(spanR{A1•, . . . , Am•}) (row rank)

= min{r | A =
∑r

i=1uiv
ᵀ
i } (outer product rank).

Multilinear rank. A ∈ Rl×m×n. rank�(A) = (r1(A), r2(A), r3(A))
where

r1(A) = dim(spanR{A1••, . . . , Al••})
r2(A) = dim(spanR{A•1•, . . . , A•m•})
r3(A) = dim(spanR{A••1, . . . , A••n})

Outer product rank. A ∈ Rl×m×n.

rank⊗(A) = min{r | A =
∑r

i=1ui ⊗ vi ⊗wi}

In general, rank⊗(A) 6= r1(A) 6= r2(A) 6= r3(A).
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Credit

Both notions of tensor rank (also the corresponding decomposi-

tion) due to Frank L. Hitchcock in 1927. Multilinear rank is a

special case (uniplex) of his more general multiplex rank.

F.L. Hitchcock, “The expression of a tensor or a polyadic as a

sum of products,” J. Math. Phys., 6 (1927), no. 1, pp. 164–189.

F.L. Hitchcock, “Multiple invariants and generalized rank of a

p-way matrix or tensor,” J. Math. Phys., 7 (1927), no. 1, pp.

39–79.

Often wrongly attributed. Predates CANDECOMP/PARAFAC

or Tucker by 40 years.
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Outer product rank

Theorem (Håstad). Computing rank⊗(A) for A ∈ Rl×m×n is an

NP-hard problem.

Matrix: A ∈ Rm×n ⊂ Cm×n, rank(A) is the same whether we

regard it as a real matrix or a complex matrix.

Theorem (Bergman). For A ∈ Rl×m×n ⊂ Cl×m×n, rank⊗(A) is

base field dependent.

Example. x,y ∈ Rn linearly independent and let z = x + iy.

x⊗ x⊗ x− x⊗ y ⊗ y + y ⊗ x⊗ y + y ⊗ y ⊗ x

=
1

2
(z⊗ z̄⊗ z̄ + z̄⊗ z⊗ z)

rank⊗(A) is 3 over R and is 2 over C.
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Fundamental problem of multiway data analysis

Let A be a tensor, symmetric tensor, or nonnegative tensor.
Solve

argminrank(B)≤r‖A−B‖

where rank may be outer product rank, multilinear rank, sym-
metric rank (for symmetric tensors), or nonnegative rank (non-
negative tensors).

Example. Given A ∈ Rd1×d2×d3, find ui,vi,wi, i = 1, . . . , r, that
minimizes

‖A− u1 ⊗ v1 ⊗w1 − u2 ⊗ v2 ⊗w2 − · · · − ur ⊗ vr ⊗ zr‖.
or C ∈ Rr1×r2×r3 and Li ∈ Rdi×ri that minimizes

‖A− (L1, L2, L3) · C‖.

Example. Given A ∈ Sk(Cn), find ui, i = 1, . . . , r, that minimizes

‖A− u⊗k
1 − u⊗k

2 − · · · − u⊗k
r ‖.

13



Harmonic analytic approach to data analysis

More generally, F = C, R, R+, Rmax (max-plus algebra), R[x1, . . . , xn]

(polynomial rings), etc.

Dictionary, D ⊂ FN , not contained in any hyperplane. Let D2 =

union of bisecants to D, D3 = union of trisecants to D, . . . ,

Dr = union of r-secants to D.

Define D-rank of A ∈ FN to be min{r | A ∈ Dr}.

If ϕ : FN × FN → R is some measure of ‘nearness’ between pairs

of points (eg. norms, Bregman divergences, etc), we want to

find a best low-rank approximation to A:

argmin{ϕ(A, B) | D-rank(B) ≤ r}.
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Feature revelation

Get low-rank approximation

A ≈ α1 ·B1 + · · ·+ αr ·Br ∈ Dr.

Bi ∈ D reveal features of the dataset A.

Note that another way to say ‘best low-rank’ is ‘sparsest possi-

ble’.

Example. D = {A | rank⊗(A) ≤ 1}, ϕ(A, B) = ‖A − B‖F — get

usual CANDECOMP/PARAFAC.

Example. D = {A | rank�(A) ≤ (r1, r2, r3)} (an algebraic set),

ϕ(A, B) = ‖A−B‖F — get De Lathauwer decomposition.
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Simple lemma

Lemma (de-Silva, L.). Let r ≥ 2 and k ≥ 3. Given the norm-
topology on Rd1×···×dk, the following statements are equivalent:

(a) The set Sr(d1, . . . , dk) := {A | rank⊗(A) ≤ r} is not closed.

(b) There exists a sequence An, rank⊗(An) ≤ r, n ∈ N, converg-
ing to B with rank⊗(B) > r.

(c) There exists B, rank⊗(B) > r, that may be approximated
arbitrarily closely by tensors of strictly lower rank, ie.

inf{‖B −A‖ | rank⊗(A) ≤ r} = 0.

(d) There exists C, rank⊗(C) > r, that does not have a best
rank-r approximation, ie.

inf{‖C −A‖ | rank⊗(A) ≤ r}

is not attained (by any A with rank⊗(A) ≤ r).
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Non-existence of best low-rank approximation

D. Bini, M. Capovani, F. Romani, and G. Lotti, “O(n2.7799)

complexity for n× n approximate matrix multiplication,” Inform.

Process. Lett., 8 (1979), no. 5, pp. 234–235.

Let x,y, z,w be linearly independent. Define

A := x⊗x⊗x+x⊗y⊗z+y⊗z⊗x+y⊗w⊗z+z⊗x⊗y+z⊗y⊗w

and, for ε > 0,

Bε := (y + εx)⊗ (y + εw)⊗ ε−1z + (z + εx)⊗ ε−1x⊗ (x + εy)

− ε−1y ⊗ y ⊗ (x + z + εw)− ε−1z⊗ (x + y + εz)⊗ x

+ ε−1(y + z)⊗ (y + εz)⊗ (x + εw).

Then rank⊗(Bε) ≤ 5, rank⊗(A) = 6 and ‖Bε −A‖ → 0 as ε → 0.

A has no optimal approximation by tensors of rank ≤ 5.
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Simpler example

Let xi,yi ∈ Rdi, i = 1,2,3. Let

A := x1 ⊗ x2 ⊗ y3 + x1 ⊗ y2 ⊗ x3 + y1 ⊗ x2 ⊗ x3

and for n ∈ N,

An := x1 ⊗ x2 ⊗ (y3 − nx3) +
(
x1 +

1

n
y1

)
⊗

(
x2 +

1

n
y2

)
⊗ nx3.

Lemma (de Silva, L). rank⊗(A) = 3 iff xi,yi linearly indepen-

dent, i = 1,2,3. Furthermore, it is clear that rank⊗(An) ≤ 2

and

lim
n→∞An = A.

[Inspired by an exercise in D. Knuth, The art of computer pro-

gramming, 2, 3rd Ed., Addison-Wesley, Reading, MA, 1997.]
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Furthermore

Such phenomenon can and will happen for all orders > 2, all

norms, and many ranks:

Theorem 1 (de Silva, L). Let k ≥ 3 and d1, . . . , dk ≥ 2. For any

s such that 2 ≤ s ≤ min{d1, . . . , dk} − 1, there exist A ∈ Rd1×···×dk

with rank⊗(A) = s such that A has no best rank-r approximation

for some r < s. The result is independent of the choice of norms.

For matrices, the quantity min{d1, d2} will be the maximal pos-

sible rank in Rd1×d2. In general, a tensor in Rd1×···×dk can have

rank exceeding min{d1, . . . , dk}.
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Furthermore

Tensor rank can jump over an arbitrarily large gap:

Theorem 2 (de Silva, L). Let k ≥ 3. Given any s ∈ N, there

exists a sequence of order-k tensor An such that rank⊗(An) ≤ r

and limn→∞An = A with rank⊗(A) = r + s.
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Furthermore

Tensors that fail to have best low-rank approximations are not

rare — they occur with non-zero probability:

Theorem 3 (de Silva, L). Let µ be a measure that is positive or

infinite on Euclidean open sets in Rd1×···×dk. There exists some

r ∈ N such that

µ({A | A does not have a best rank-r approximation}) > 0.
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Message

That the best rank-r approximation problem for tensors has no

solution poses serious difficulties.

It is incorrect to think that if we just want an ‘approximate

solution’, then this doesn’t matter.

If there is no solution in the first place, then what is it that are

we trying to approximate? ie. what is the ‘approximate solution’

an approximate of?
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Weak solutions

For a tensor A that has no best rank-r approximation, we will

call a C ∈ {A | rank⊗(A) ≤ r} attaining

inf{‖C −A‖ | rank⊗(A) ≤ r}

a weak solution. In particular, we must have rank⊗(C) > r.

It is perhaps surprising that one may completely parameterize all

limit points of order-3 rank-2 tensors:

Theorem 4 (de Silva, L.) Let d1, d2, d3 ≥ 2. Let An ∈ Rd1×d2×d3

be a sequence of tensors with rank⊗(An) ≤ 2 and

lim
n→∞An = A,

where the limit is taken in any norm topology. If the limiting

tensor A has rank higher than 2, then rank⊗(A) must be exactly 3
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and there exist pairs of linearly independent vectors x1,y1 ∈ Rd1,

x2,y2 ∈ Rd2, x3,y3 ∈ Rd3 such that

A = x1 ⊗ x2 ⊗ y3 + x1 ⊗ y2 ⊗ x3 + y1 ⊗ x2 ⊗ x3.

In particular, a sequence of order-3 rank-2 tensors cannot ‘jump

rank’ by more than 1.



Symmetric tensors

Write Tk(Rn) = Rn ⊗ · · · ⊗ Rn = Rn×···×n, the set of all order-k
dimension-n cubical tensors.

An order-k cubical tensor Jai1···ikK ∈ Tk(Rn) is called symmetric
if

aiσ(1)···iσ(k)
= ai1···ik, i1, . . . , ik ∈ {1, . . . , n},

for all permutations σ ∈ Sk.

These are order-k generalization of symmetric matrices. They
are often mistakenly called ‘supersymmetric tensors’.

Write Sk(Rn) for the set of all order-k symmetric tensors. Write

y⊗k :=
k copies︷ ︸︸ ︷

y ⊗ · · · ⊗ y

Examples. higher order derivatives of smooth functions, mo-
ments and cumulants of random vectors.
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Cumulants

X1, . . . , Xn random variables. Moments and cumulants of X =
(X1, . . . , Xn) are

mk(X) =
[
E(xi1xi2 · · ·xik

)
]n

i1,...,ik=1
=

[∫
· · ·

∫
xi1xi2 · · ·xik

dµ(xi1) · · · dµ(xik
)

]n

i1,...,ik=1

κk(X) =

[∑
A1t···tAp={i1,...,ik}

(−1)p−1(p− 1)!E(
∏

i∈A1
xi) · · ·E(

∏
i∈Ap

xi)

]n

i1,...,ik=1

For n = 1, κk(X) for k = 1,2,3,4 are the expectation, variance,
skewness, and kurtosis of the random variable X respectively.

Symmetric tensors, in the form of cumulants, are of particular
importance in Independent Component Analysis. Good read:

L. De Lathauwer, B. De Moor, and J. Vandewalle, “An intro-
duction to independent component analysis,” J. Chemometrics,
14 (2000), no. 3, pp. 123-149.
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Symmetric ⊗ decomposition and symmetric rank

Let A ∈ Sk(Rn). Define the symmetric rank of A as

rankS(A) = min
{
r

∣∣∣ A =
∑r

i=1
αiy

⊗k
i

}
.

The definition is never vacuous because of the following:

Lemma (Comon, Golub, L, Mourrain). Let A ∈ Sk(Rn). Then

there exist y1, . . . ,ys ∈ Rn such that

A =
∑s

i=1
αiy

⊗k
i

Question: given A ∈ Sk(Rn), is rankS(A) = rank⊗(A)?

Partial answer: yes in many instances (cf. [CGLM2]).
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Non-existence of best low-symmetric-rank approximation

Example (Comon, Golub, L, Mourrain). Let x,y ∈ Rn be

linearly independent. Define for n ∈ N,

An := n

(
x +

1

n
y

)⊗k
− nx⊗k

and

A := x⊗ y ⊗ · · · ⊗ y + y ⊗ x⊗ · · · ⊗ y + · · ·+ y ⊗ y ⊗ · · · ⊗ x.

Then rankS(An) ≤ 2, rankS(A) = k, and

lim
n→∞An = A.

ie. symmetric rank can jump over an arbitrarily large gap too.
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Nonnegative tensors and nonnegative rank

Let 0 ≤ A ∈ Rd1×···×dk. The nonnegative rank of A is

rank+(A) := min
{
r

∣∣∣ ∑r

i=1
ui ⊗ vi ⊗ · · · ⊗ zi, ui, . . . , zi ≥ 0

}
Clearly, such a decomposition exists for any A ≥ 0.

Theorem (Golub, L). Let A = Jaj1···jkK ∈ Rd1×···×dk be non-

negative. Then

inf
{∥∥∥A−

∑r

i=1
ui ⊗ vi ⊗ · · · ⊗ zi

∥∥∥ ∣∣∣ ui, . . . , zi ≥ 0
}

is attained.

Corollary. The set {A | rank+(A) ≤ r} is closed.
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NMD as an `1-SVD

A ∈ Rm×n. The SVD of A is, in particular, an expression

A =
∑r

i=1
σiui ⊗ vi

r = rank(A) is the minimal number where such a decomposition is possible,

‖σ‖2 =
(∑r

i=1
|σi|2

)1/2
= ‖A‖F , and ‖ui‖2 = ‖vi‖2 = 1,

for i = 1, . . . , r.

Lemma (Golub, L). Let 0 ≤ A ∈ Rm×n, there exist ui,vi ≥ 0 such that

A =
∑r

i=1
λiui ⊗ vi

r = rank+(A) is the minimal number where such a decomposition is possible,

‖λ‖1 =
∑r

i=1
|λi| = ‖A‖G, and ‖ui‖1 = ‖vi‖1 = 1,

for i = 1, . . . , r. The G-norm of A,

‖A‖G =
∑m

i=1

∑n

j=1
|aij|,

is the `1-equivalent of the F -norm

‖A‖F =
(∑m

i=1

∑n

j=1
|aij|2

)1/2
.

The NMD, viewed in the light of an `1-SVD, will be called an `1-NMD.
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`1-nonnegative tensor decomposition

The SVD of a matrix does not generalize to tensors in any ob-

vious way. The `1-NMD, however, generalizes to nonnegative

tensors easily.

Lemma (Golub, L). Let 0 ≤ A ∈ Rd1×···×dk. Then there exist

ui,vi, . . . , zi ≥ 0 such that

A =
∑r

i=1
λiui ⊗ vi ⊗ · · · ⊗ zi

r = rank+(A) is the minimal number where such a decomposition

is possible,

‖λ‖1 = ‖A‖G, and ‖ui‖1 = ‖vi‖1 = · · · = ‖zi‖1 = 1

for i = 1, . . . , r. Here

‖A‖G :=
∑n

i1,...,ik=1
|ai1···ik|.

30



Naive Bayes model

Let X1, X2, . . . , Xk, H be finitely supported discrete random vari-

ables be such that

X1, X2, . . . , Xk are statistically independent conditional on H

or, in notation, (X1 ⊥ X2 ⊥ · · · ⊥ Xk) ‖ H. In other words, the

probability densities satisfy

Pr(X1 = x1, X2 = x2, . . . , Xk = xk | H = h) =∏k

i=1
Pr(Xi = xi | H = h).

This is called the Naive Bayes conditional independence assump-

tion.

31



`1-NTD and Naive Bayes model

For β = 1, . . . , k, let support of Xβ be {x(β)
1 , . . . , x(β)

dβ
} and support of H be

{h1, . . . , hr}. Marginal probability density is then

Pr(X1 = x(1)
j1

, . . . , Xk = x(k)
jk

) =
∑r

i=1
Pr(H = hi)

∏k

β=1
Pr(Xβ = x(β)

jβ
| H = hi).

Let aj1···jk
= Pr(X1 = x(1)

j1
, . . . , Xk = x(k)

jk
), u(β)

i,jβ
= Pr(Xβ = x(β)

jβ
| H = hi),

λi = Pr(H = hi). We get

aj1···jk
=

∑r

p=1
λp

∏k

β=1
u(β)

p,jβ
.

Set A = Jaj1···jk
K ∈ Rd1×···×dk, u(β)

i = [u(β)
i,1 , . . . , u(β)

i,dβ
]ᵀ ∈ Rdβ, β = 1, . . . , k, to get

A =
∑r

i=1
λiu

(1)
i ⊗ · · · ⊗ u(k)

i .

Note that the quantities A, λ,u(β)
i , being probability densities values, must

satisfy

‖λ‖1 = ‖A‖G = ‖ui‖1 = ‖vi‖1 = · · · = ‖zi‖1 = 1.

By earlier lemma, this is always possible for any non-negative tensor, provided

that we first normalize A by ‖A‖G.
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`1-NTD as a graphical model/Bayesian network

Corollary (Golub, L). Given 0 ≤ A ∈ Rd1×···×dk, there exist

X1, X2, . . . , Xk, H finitely supported discrete random variables in

a Naive Bayes model, (X1 ⊥ X2 ⊥ · · · ⊥ Xk) ‖ H, such that

its marginal-conditional decomposition is precisely the NTD of

A/‖A‖G. Furthermore. the support of H is minimal over all such

admissible models.

Remark. This is prompted by a more high-brow algebraic ge-

ometric approach relating the Naive Bayes model with secant

varieties of Segre variety in projective spaces:

L.D. Garcia, M. Stillman and B. Sturmfels, “Algebraic geometry

of Bayesian networks,” J. Symbolic Comp., 39 (2005), no. 3–4,

pp. 331–355.
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Variational approach to eigen/singular values/vectors

A symmetric matrix. Eigenvalues/vectors are critical values/points of Rayleigh
quotient, xᵀAx/‖x‖22, or equivalently, the critical values/points of quadratic
form xᵀAx constrained to vectors with unit l2-norm, {x | ‖x‖2 = 1}. Associ-
ated Lagrangian,

L(x, λ) = xᵀAx− λ(‖x‖22 − 1).

Vanishing of ∇L at a critical point (xc, λc) ∈ Rn × R yields the familiar

Axc = λcxc.

A ∈ Rm×n. Singular values/vectors may likewise be obtained with xᵀAy/‖x‖2‖y‖2
playing the role of the Rayleigh quotient. Associated Lagrangian function now

L(x,y, σ) = xᵀAy − σ(‖x‖2‖y‖2 − 1).

At a critical point (xc,yc, σc) ∈ Rm × Rn × R,

Ayc/‖yc‖2 = σcxc/‖xc‖2, Aᵀxc/‖xc‖2 = σcyc/‖yc‖2.
Write uc = xc/‖xc‖2 and vc = yc/‖yc‖2 to get the familiar

Avc = σcuc, Aᵀuc = σcvc.
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Multilinear spectral theory

May extend the variational approach to tensors to obtain a theory

of eigen/singular values/vectors for tensors (cf. [L] for details).

For x = [x1, . . . , xn]ᵀ ∈ Rn, write

xp := [xp
1, . . . , xp

n]
ᵀ.

We also define the ‘`k-norm’

‖x‖k = (xk
1 + · · ·+ xk

n)
1/k.

Define `2- and `k-eigenvalues/vectors of A ∈ Sk(Rn) as the critical

values/points of the multilinear Rayleigh quotient A(x, . . . ,x)/‖x‖k
p.

Differentiating the Lagrangian

L(x1, . . . ,xk, σ) := A(x1, . . . ,xk)− σ(‖x1‖p1 · · · ‖xk‖pk − 1).

yields

A(In,x, . . . ,x) = λx
35



and

A(In,x, . . . ,x) = λxk−1

respectively. Note that for a symmetric tensor A,

A(In,x,x, . . . ,x) = A(x, In,x, . . . ,x) = · · · = A(x,x, . . . ,x, In).

This doesn’t hold for nonsymmetric cubical tensors A ∈ Sk(Rn)

and we get different eigenpair for different modes (this is to be

expected: even for matrices, a nonsymmetric matrix will have

different left/right eigenvectors).

These equations have also been obtained by L. Qi independently

using a different approach.



Perron-Frobenius theorem for nonnegative tensors

An order-k cubical tensor A ∈ Tk(Rn) is reducible if there exist a

permutation σ ∈ Sn such that the permuted tensor

Jbi1···ikK = Jaσ(j1)···σ(jk)
K

has the property that for some m ∈ {1, . . . , n− 1}, bi1···ik = 0 for

all i1 ∈ {1, . . . , n−m} and all i2, . . . , ik ∈ {1, . . . , m}. We say that

A is irreducible if it is not reducible. In particular, if A > 0, then

it is irreducible.

Theorem (L). Let 0 ≤ A = Jaj1···jkK ∈ Tk(Rn) be irreducible.

Then A has a positive real lk-eigenvalue µ with an lk-eigenvector

x that may be chosen to have all entries non-negative. Further-

more, µ is simple, ie. x is unique modulo scalar multiplication.
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Hypergraphs

For notational simplicity, the following is stated for a 3-hypergraph

but it generalizes to k-hypergraphs for any k.

G = (V, E) be a 3-hypergraph. V is the finite set of vertices and

E is the subset of hyperedges, ie. 3-element subsets of V . We

write the elements of E as [x, y, z] (x, y, z ∈ V ).

G is undirected, so [x, y, z] = [y, z, x] = · · · = [z, y, x]. A hyper-

edge is said to degenerate if it is of the form [x, x, y] or [x, x, x]

(hyperloop at x). We do not exclude degenerate hyperedges.

G is m-regular if every v ∈ V is adjacent to exactly m hyper-

edges. We can ’regularize’ a non-regular hypergraph by adding

hyperloops.
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Adjacency tensor of a hypergraph

Define the order-3 adjacency tensor A by

Axyz =

1 if [x, y, z] ∈ E,

0 otherwise.

Note that A is |V |-by-|V |-by-|V | nonnegative symmetric tensor.

Consider cubic form A(f, f, f) =
∑

x,y,z Axyzf(x)f(y)f(z) (note

that f is a vector of dimension |V |).

Call critical values and critical points of A(f, f, f) constrained

to the set
∑

x f(x)3 = 1 (like the `3-norm except we do not

take absolute value) the `3-eigenvalues and `3-eigenvectors of A

respectively.
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Very basic spectral hypergraph theory I

As in the case of spectral graph theory, combinatorial/topological

properties of a k-hypergraph may be deduced from `k-eigenvalues

of its adjacency tensor (henceforth, in the context of a k-hypergraph,

an eigenvalue will always mean an `k-eigenvalue).

Straightforward generalization of a basic result in spectral graph

theory:

Theorem (Drineas, L). Let G be an m-regular 3-hypergraph

and A be its adjacency tensor. Then

(a) m is an eigenvalue of A;

(b) if µ is an eigenvalue of A, then |µ| ≤ m;

(c) µ has multiplicity 1 if and only if G is connected.
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Very basic spectral hypergraph theory II

A hypergraph G = (V, E) is said to be k-partite or k-colorable if

there exists a partition of the vertices V = V1∪ · · · ∪Vk such that

for any k vertices u, v, . . . , z with Auv···z 6= 0, u, v, . . . , z must each

lie in a distinct Vi (i = 1, . . . , k).

Lemma (Drineas, L). Let G be a connected m-regular k-partite

k-hypergraph on n vertices. Then

(a) If k is odd, then every eigenvalue of G occurs with multiplicity

a multiple of k.

(b) If k is even, then the spectrum of G is symmetric (ie. if µ

is an eigenvalue, then so is −µ). Furthermore, every eigen-

value of G occurs with multiplicity a multiple of k/2. If µ

is an eigenvalue of G, then µ and −µ occurs with the same

multiplicity.
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