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Basic Idea I: Geometric Sparsityl

Notion of geometric sparsity — accounting for sparse matrix rep-
resentation of linear maps using underlying geometry of problem.

A geometrically sparse matrix with a scale parameter rg has the
following form modulo row- and column-permutations:

y

Strongly filtered matrix. block triangular where the diagonal
blocks are themselves block decomposed.




Basic Idea II: Decomposing Strongly Filtered Matricesl

The block structure of strongly filtered matrices suggests a nat-
ural way of organizing the computation of LU and QR factors.

i RE | |
qu%q] —
s

W &
A

i
!

hS

5

k

I/

!
i
!

My
el | D] | e




Basic Idea III: Multiscale Characterl

The ‘remaining’ submatrix on the bottom right is geometrically
sparse with a larger scale parameter r1 > rq.

%Em | |

The same process may be repeated to this submatrix.

The process can in theory be repeated until the scale parameter
IS as large as the size of the bottom right submatrix.



Geometrically Sparse Matricesl

‘Definition’ (Wilkinson). A sparse matrix is any matrix with
enough zeros that it pays to take advantage of them.

Attempt to give a more concrete definition that accounts for
how the sparseness arise.

Definition. A matrix A = (a;;) € R™*" is geometrically sparse
with scale parameter r if there exist maps ¢ : {1,...,m} — X
and ¢ :{1,...,n} — X sending row and column indices of A into
a metric space (X,d) so that a;; = 0 whenever d(¢(i),¥(j5)) > r.



Speculation l

Sparse matrices that arise from physical problems are naturally
geometrically sparse or perturbations of geometrically sparse ma-
trices.

The metric space (X, d) is suggested by the problem at hand.



Examplesl

A € R™X™ panded with bandwidth 2¢ 4+ 1:
X = Z or R with usual metric |- |, a;; = 0 if |[¢ — j] > £.

A = diag[Aq, ..., An] € R™*X™M block diagonal (with square blocks):
X ={1,...,n} with discrete metric 6, a;; = 0 if 6(¢(%),»(j)) > 0.

X X X
X X X

A= X X X e Rmxm.
X X X

X = St with usual (Riémannian) metric on circle d;
o {1,...,m} — S, i — (cos(2mwi/m),sin(2xwi/m)), a;; = 0 if
d(p(2),0(5)) > 1.



Examples: Numerical PDEI

Finite Difference Methods: discrete approximations of partial
differential operators are geometrically sparse.

A L2(Z) — L2(Z), Af@G) =2f3G) - [f(i—1)+ fG+ 1)],
A L2(Z°%) — L2(Z?), AfG,5) =4f(,5) —[f(i+1,5) + fG—1,7)
+7G, 5+ 1)+ f(,5 — 1)].

Finite Element Methods: stiffness matrices in Galerkin's method
are geometrically sparse.
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Examples: Computational Topologyl

> simplicial complex embedded in R". To compute Hy(X), need
to find null space of boundary map

O : Cp(X) — Cp_1(X2),
k .
[’UO,...,’Uk] = Z<_1)Z[v07“'76i7"°7vk]'
1=0

Basis for Cr.(X): k-simplices;

basis for C,,_1(X): (k — 1)-simplices;

X = R™

@ maps each (k — 1)-simplex to its barycenter;
¥ maps each k-simplex to its barycenter;

¢ = maximal diameter of any simplex of 2.

Then the matrix representation of 9, is geometrically sparse with
scale ¢ (likewise for the Laplacian A := 69 + 99).



An Illustration |

Problem: given some domain of interest €2; want to factor-
ize, say, stiffness matrix A arising from an application of finite
element method to an elliptic problem on S2.

Traditional Approach: from A, construct graph G(A) from the
non-zero pattern, sparsity is exploited in computations by ex-
amining the structure of G(A), e.g. graph-theoretic algorithms
for minimizing fill-ins, algorithms of Dulmage-Mendelsohn and
Pothen-Fan.

Our Approach: sparsity of A is a consequence of the geometry
of Q2 (slogan: sparsity arise because local changes have local
effects), so we should use geometric information in €2 to organize
our computation.

G(A) may capture some amount of geometric information in Q2
but ought to be better to work with €2 (or an approximation of
it) directly.
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Cech Complexl

X a space, U = {Ua}qca @ (finite) covering of X.
Let V(U) = Aand Z(U) ={o = [ag,...,aq] | UsgN---NU,; # S}.
The Cech complex, C(U) = (V(U),>=(U)), of the covering is an

abstract simplicial complex:

vertex «—— Uy #= I
edge «— UaNUg# <

d-simplex «— UqoN---NUqy, #

C(U) may be viewed as a topological/simplicial ‘approximation’
of X: for nice spaces X, may choose U so that C(U/) is homotopy
equivalent to X (in particular H«(X) = H.(CU)).
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Choice of Coverl

F :V — W linear and geometrically sparse with parameter r.

V' has basis {eq1,...,en} and W has basis {f1,..., fm} such that if

F(ei) = > ojifj,

=1
then a;; = 0 whenever

d(p(2),9(5)) > .

U ={Uy,...,Un} cover of X and U" = {U7,..., Uy}, U = {x €
X | d(x,U;) < r} ‘thickened’ cover.

For simplicity, choose U/ so that C(U) = C(U").

We would also want to choose U so that C(i/) correctly approx-
imates X.
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Permuting to Strongly Filtered FormI

For each o = [ag,...,a4 € C(U), define
Ve ::{ej lb(J)G UOéO AEEERD Uada w(]) §§ Uﬁo ARRRNA Uﬁd—l—l}
W i={fi | v(i) € ngo -0 Ug‘d’ p(1) & Ugo e UECH—l}
and set

vi= @ v, wi= FH we
dim(o)=d dim(o)=d
Reordering {eq,...,en} and {f1,..., fm} in decreasing dim(o) while

keeping the elements corresponding to a simplex together vields
a strongly filtered matrix:

Wt [ Agy Bpg1  Bgge—o - Byg |
w1 Ap_10-1 Be—1p0—2 -+ By—ipo
Wl A11 Bipo

wo | Apo |
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where each A, is block diagonal:

Val Vas(d)
wo' [ pt@
s(d) @ |
Wo _ Doy
ol ... 0%(d peing an exhaustive list of the d-dimensional sim-

plices in C(U).



Organizing the Computation of LU Factorsl

Perform GECP on each Di(d) (in parallel):

(d) (d) o(d)
pDp@a@ — L = O U7 5
i ) i Ti(d> 7 0 0
This yields the LU factors of Ay 4:
% o ] [u® 5
L@ ) @ @
PA — d Sa Sd
1 AgdQd Tl(d) ; 5 0
] TV ]| 0 0
_ |Lg O] |Us Sy
STy 110 0O
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The off-diagonal blocks may be computed (in parallel) as

[ L C(l)

dBd Q=

9= gy o] |o®

where
(1) 1 (1) (0) (0) —1 (1)
Caj =Lq Bgj dj = Baj —1alyg By ;-

Further partition C(glj) and Co(l(;) into columns lying above U; and
columns lying above Sd:

(1) (1 1) C(1 0)]
(0) = (0 1) (o 0)
,J i d,J C
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Doing the

Eliminate Cio’l) to get the following:

obvious column permutations vields

1o

PAQ =

(1,1)
C&z—z
(1,1)
C&—lx—z

Ui—o

Ur CiY
Ui—1

(0,1)
6&1—2
(0,1)
C&—lx—z

(0,1)
Crei

o5 s

(1,1)
C)llo
(1,1)
C16
Uo
(0,1)
Coo
(0,1)
Coo

(0,1)
CO,O
0

(1,0)
C&x—z
(1,0
C?—lx—z

Sp—2

(1,0)
Cpq
Sr-1

(0,0) (0,0)
CZ,Z—I CE,E—l

(0,0
C&—l[—Q
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(1,0) ]
CZ,O

(1,0)
C&—lp

(1,0)
C’1,0

(0,0
C&p

(0,0)
C&—1p

(0,0)
Cl,O




Ly
Lo
Ly_» 0
Lo
PAQ = X
0,771 0, 1)7r-1 0,771
Ty CZ,E—lUé—l CE,E—QUZ—Q Cz,o Uog
(0,1) -1 (0,1) 71
Ty C£—1,€—2U£—2 Cé—l,OUO
Ty_> I
To
[ (1,1) (1,1) (1,1) (1,0) (1,0) (1,0)
Ue Cﬁ,é—l Ce,e—z Cé,o St Ce,e—l Ce,e—Q C€,0
(1,1) (1,1 (1,0) (1,0)
Ur-1 CE—l,Z—Q Ce—l,o Se-1 C£—1,€—2 Ce—l,o
UE—Q ; Sg_g :
(1,1) (1,0)
Cl,o Cl,O
Uo SO
(0,0) (0,0) (0,0)
G€,€—1 G£,£—2 Ge,o
(0,0) (0,0)
G£—1,£—2 G£—1,o
(0,0)
Gl,O
0
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Multiscale Characterl

The lower right block

[ (0.0 0.0 0.0
¢%% 699 ... %Y
0.0 0.0
o) . Gé—l,)e—z Gé—l,)o
0.0
| Gio”

where

(0,0) _ ~(0,0) (0,1) (1 0)
Gaiii=Caxsi— CatiaVa xey

IS geometrically sparse with scale parameter

ri . =2r+4 max diam(U, N U;
1 + dim(o)=d (Ui td

).
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The process may be repeated again. In theory, may obtain a
sequence of geometrically sparse matrices of decreasing dimen-

sion {G(k)} with a corresponding increasing sequence of scale
parameters:

r. = 27r._ 4 max diam(U;.N---NU;

K k-1 dim(o)=d—k+1 (Wio ’
In practice, the geometric sparsity ceases to be useful when rg
becomes comparable in size with the dimension of el

d—k—l—l)'

19



Numerical Issuesl

Method works fine when exact arithmetic is used. E.g. in com-
puting H«(X;Z/pZ), matrix decompositions over the (max, +)-
algebra or finite fields.

Numerically unstable when floating point operations are involved
since pivots are not chosen dynamically as in GECP or GEPP.

A possible way to reduce the effect of numerical instability —
Li-Demmel’s static pivoting strategy.
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Topological Origins of these Ideasl

Geometric Sparsity — Bounded K-Theory

Organizing LU and QR Computations — Theory of Spectral
Sequences

Multiscale Character — Novikov Conjecture (proof of special
cases)
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Divide-and-Conquer l

Mayer-Vietoris. If a space X is broken up into two pieces X =
X1 UX>, then its homology H«(X) can be calculated in terms of
H.(X1), H«(X5) and H«(X1 N X5) via the long exact sequence

- — Hp (X1 N X2) — Hp(X1) © Hi(X2)
— Hk(X) — Hk:—l(Xl ﬂXQ) — e

Spectral Sequence. Generalization of Mayer-Vietoris to X =
Xq1U---UXp, any n.
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A Spectral Sequence ViewI

Recall previous notation. Set

Vd L= ED VG, Wd L= EB Wwe.

dim(o)>d dim(o)>d

We have the following filtration:
V=V2Vi2---2V;=0

W=Wog2oW12:---2DW,=0
A geometrically sparse matrix A is one that preserves this filtra-
tion, i.e.

A(Vy) C Wy

The aforementioned technique for LU factorization is then mo-
tivated by the spectral sequence of a filtration.
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Spectral Sequence Notationl

V and W play the roles of two successive terms C)p and C,,_1 in
a filtered chain complex:

Op+2 Op+1 Op Op—1
Cp —

The filtration in question is
0=CpoC Cp1C---CCpp=0Cp

The geometrically sparse matrix A plays the role of the boundary
map Op.

We set

0o .__ 0 o
Ep,q - Cp,q/cp,q—la Ep—l,q F— p—l,q/Cp—l,q—l-
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Sloganl

Every (geometrically) sparse matrix is a boundary map in a fil-
tered complex that preserves the filtration:

0 0 0 0
B Ep7€ Ep7£_1 Ep’f—Q Y Epao -
]gg_u * X X X
Ep_l,g_l * >< ¢ ><
O:
E%—l,l * X
Ep_]_’O ] X |
In earlier notation:
Wo/Vi Vi/Vo Vo/V3 oo V1 [V
Wo /W1 * X X X
W]_/W2 * X X
Wyo_o/Wip_q * X
Wi /Wy | *
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More IS True l

Note that
Va/Vayr1=Vi= @ V7
dim(o)=d
Wy/Wip1=W'= H Ww°
dim(o)=d

A geometrically sparse matrix preserves this grading, i.e.
A(VT) C W,

That's why the diagonal blocks (marked *) are themselves blocked-

decomposed

el L oyt

we X

Wweo s(d) X
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