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Abstract. We propose a new regularization for spherical deconvolution
in diffusion MRI. It is based on observing that higher-order tensor rep-
resentations of fiber ODFs should be H-psd, i.e., they should have a
positive semidefinite (psd) matrix HT . We show that this constraint is
stricter than the currently more widely used non-negativity, and that it
can be enforced easily using quadratic cone programming. We demon-
strate its use in a multi-tissue deconvolution framework that models the
different tissue types in the continuous SHORE basis and can therefore
be applied to data with multiple b values that are not organized on shells,
such as in Diffusion Spectrum Imaging. Experiments on simulated fiber
crossings, data from the Human Connectome Project, and clinical data,
demonstrate the improved speed and accuracy of this new method.

1 Introduction

Spherical deconvolution [14] is widely used to analyze white matter (WM) in
high angular resolution diffusion imaging (HARDI). Recently, it has been shown
that, when HARDI data is available on multiple shells, parameters related to
the volume fractions of gray matter (GM) and corticospinal fluid (CSF) can
be added to the deconvolution model [3,5]. An important advantage of this is
increased accuracy in voxels with partial voluming between different tissue types.

We present a novel method for multi-tissue deconvolution that makes two
main contributions: First, non-negativity constraints have long been recognized
as an indispensible regularization in deconvolution, and are most frequently
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enforced at a set of discrete points on the sphere [14,16]. In contrast, we derive
a positive definiteness constraint from a higher-order tensor representation of
the fiber orientation distribution function (fODF) which implies non-negativity
everywhere on the sphere. It can be implemented easily using quadratic cone pro-
gramming, and can be combined both with multi-tissue and traditional single-
shell single-tissue deconvolution.

Second, many dMRI acquisition schemes do not use a shell structure. This
includes Diffusion Spectrum Imaging [15], which uses a Cartesian grid, and some
recently proposed schemes that distribute samples freely in Q-space [7,9]. Our
approach improves upon previous multi-tissue deconvolution methods, which
have modeled the signal on each shell separately [3,5], by instead estimating
the tissue response as a continuous function in Q-space, using the SHORE basis
functions [8]. This allows us to work with data that is not organized on shells.

In a direct comparison between our approach and a state-of-the-art alterna-
tive [5], we demonstrate that ours is more well-conditioned, more accurate at
small angles, and faster.

2 Related Work

Our approach extends previous work that has used higher-order Cartesian ten-
sors to represent fiber ODFs [6,11,13,16] by the ability to handle data acquired
at multiple b-values and by modeling multiple tissue types.

Our H-psd constraint is new, and stronger than the non-negativity con-
straints used previously when estimating higher-order diffusion tensors [1,4], or
in the non-negative spherical deconvolution (NNSD) [2] approach. In addition,
in contrast to NNSD, our method can be implemented using standard convex
cone optimization packages rather than requiring a custom implementation of a
computationally expensive Riemannian gradient descent.

3 Fiber ODFs are H-psd Tensors

Our approach extends previous work [13], which has proposed to describe fODFs
f by fully symmetric fourth order tensors:

f(v) = T (v) =
3∑

i,j,k,l=1

Tijkl vivjvkvl, v ∈ S
2 (1)

Such fODF tensors T are obtained by deconvolution in the Spherical Har-
monics basis and a subsequent change to the monomial basis, which spans the
same space of functions. However, there are two important differences to stan-
dard spherical deconvolution [14]: First, the deconvolution step is constructed
so that it maps the single fiber response in direction v to a symmetric rank-one
tensor v ⊗ v ⊗ v ⊗ v, rather than to a truncated delta peak. Second, principal
fODF directions for fiber tractography are found using a low-rank approximation
of the fODF tensor, rather than peaks in the fODF function.
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The set of symmetric three-dimensional fourth-order tensors will be denoted
by S3,4. The subset of positive semidefinite tensors is

P3,4 = {T ∈ S3,4 : T (v) ≥ 0 ∀v ∈ S
2} . (2)

As pointed out in Chap. 5 of [10], T ∈ S3,4 has an associated matrix

HT =

⎛

⎜⎜⎜⎜⎜⎜⎝

Txxxx Txxxy Txxxz Txxyy Txxyz Txxzz

Txxxy Txxyy Txxyz Txyyy Txyyz Txyzz

Txxxz Txxyz Txxzz Txyyz Txyzz Txzzz

Txxyy Txyyy Txyyz Tyyyy Tyyyz Tyyzz

Txxyz Txyyz Txyzz Tyyyz Tyyzz Tyzzz

Txxzz Txyzz Txzzz Tyyzz Tyzzz Tzzzz

⎞

⎟⎟⎟⎟⎟⎟⎠
(3)

that represents T ’s action on the six-dimensional space of symmetric products
v ⊗ v. We will denote the subset of tensors with a positive semidefinite matrix
HT as

PH = {T ∈ S3,4 : HT is psd} (4)

and call these tensors H-psd.
PH is closely related to decomposable tensors. To show this, let

Q3,4 = {T ∈ S3,4 : T (v) =
k∑

i=1

〈αi,v〉4} (5)

Σ3,4 = {T ∈ S3,4 : T (v) =
k∑

i=1

h 2
i (v)} (6)

be the subsets of tensors that are sums of fourth powers and sums of squares,
respectively. Due to their geometric structure, these sets are called cones.
They obey

Q3,4 � Σ3,4 ⊆ P3,4 . (7)

Obviously, sums of squares and sums of fourth powers are positive semidefi-
nite. In fact, a result by Hilbert, which has been applied to enforce non-negativity
of fourth-order diffusion tensors [1,4], states that P3,4 = Σ3,4. In contrast, not
every tensor in P3,4 can be written as a sum of fourth powers [10].

The dual of a cone C is defined as C� = {y ∈ C : 〈x, y〉 ≥ 0 ∀x ∈ C} and, in
[10], it is shown that

Σ�
3,4 = PH and P �

3,4 = Q3,4 . (8)

Combining these dualities with the dual of the result by Hilbert yields

Q3,4 = P �
3,4 = Σ�

3,4 = PH , (9)

i.e., a tensor in S3,4 can be written as a sum of fourth powers or, equivalently,
decomposed into symmetric rank-1 terms, if and only if it is H-psd.
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For spherical deconvolution, this has the following implications: First, fODF
tensors arise from a mixture of an unknown number of single-fiber compartments,
each of which is represented as a symmetric rank-1 tensor. Therefore, any valid
fODF tensor must be decomposable. Second, decomposability can be checked
easily by positive semidefiniteness of Eq. (3) (H-psd). Third, as Eq. (7) shows,
H-psd is a stronger condition than simple non-negativity, as it has been imposed
previously on fODFs [2,14], or on fourth-order diffusion tensors [1,4].

4 Using SHORE for Multi-tissue Deconvolution

Multi-tissue deconvolution requires modelling the dMRI response of all tissue
types. Previous approaches [3,5] do so separately for each shell. To avoid depen-
dence on a shell structure, we instead create a continuous model of functions
f(q = qu) in Q-space using the SHORE basis functions [8]

φlnm(q) =

[
2(n − l)!

ζ3/2Γ (n + 3/2)

]1/2(
q2

ζ

)l/2

exp

(
−q2

2ζ

)
L

l+1/2
n−l

(
q2

ζ

)
Y m

l (u) (10)

with the associated Laguerre polynomials Lα
n, the real Spherical Harmonics Y m

l

and a radial scaling factor ζ.
Let K(q) =

∑
ln Kln φln0(q) be the white matter single-fiber response, with

m = 0 due to cylinder symmetry. The signal from an fODF f is then modeled by
a convolution on the sphere, S(q) ≈ K �S2 f [2]. For a given K and signal vector
Si = S(qi), finding the Spherical Harmonics coefficients f via deconvolution
then becomes a linear least squares problem with a nonlinear constraint:

argminf ‖Mf − S‖2 subject to f ∈ PH (11)

with convolution matrix

M(i)(lm) =
∑

n

1
αl

Kln φlnm(qi). (12)

As in [13], the αl are the Spherical Harmonics coefficients of the unit rank-1
tensor along the z-axis.

The problem is equivalent to the quadratic cone program (QCP)

argminf

1
2
〈f, Pf〉 + 〈q, f〉 subject to (Gf) psd (13)

with P = MT M , q = −MT S, and a matrix G that first maps f from Spherical
Harmonics to the monomial basis, and then to its HT matrix, Gf = Hf . This
QCP can be solved efficiently using cvxopt (cvxopt.org).

Multi-tissue support is added by concatenating individual tissue matrices

M = [MCSF,MGM,MWM] , f =

⎡

⎣
fCSF

fGM

fWM

⎤

⎦ . (14)

Since CSF and GM are isotropic, MCSF and MGM are single-column matrices.
In the QCP, non-negativity constraints are enforced for fGM and fCSF.

http://cvxopt.org
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5 Results

5.1 Condition and Computational Efficiency

We compared our method to the approach of Jeurissen et al. [5], using cvxopt
in both cases. We used data provided by the Human Connectome Project (HCP)
with 270 DWIs, 90 each at b ≈ {1000, 2000, 3000} s/mm2, and a two-shell clinical
data set (“clin-2-sh”) with 94 DWIs, 30 at b = 700 and 64 at b = 2000. We also
show results on another clinical data set (“clin-dsi”) with 128 DWIs, acquired
on a Cartesian grid with bmax = 3000. The approach in [5] cannot be applied to
this data, since it includes many different b values with few directions each.

Tissue response functions were estimated as described previously [5], based
on tissue segmentation of a coregistered T1 image, and FA thresholds (FA > 0.7
for white matter, FA < 0.2 for CSF), except that we model the responses in the
SHORE basis as described in Sect. 4.

The processing time (on a single CPU core) as well as the condition num-
ber of the matrix P in the quadratic program are listed in Table 1. The fact
that we use fourth-order fODFs makes the problem much better conditioned.
Our method is also significantly faster, despite the fact that we guarantee non-
negativity everywhere, instead of enforcing it only at discrete points. We will
now demonstrate that, when combined with tensor approximation [13], order 4
is sufficient to resolve crossings, and even more accurate at smaller angles.

Table 1. Our approach is much better conditioned than the traditional one, and
requires less computation. Unlike the existing method, it is applicable also to DSI
data

cond(P ) Optimization time

HCP clin-2-sh clin-dsi HCP clin-2-sh clin-dsi

SHORE order 4, H-psd 290 1 545 889 51m 10 s 11 m 02 s 8m 58 s

SH order 8, non-neg [5] 619 063 8 999 150 N/A 239m 53 s 21 m 27 s N/A

5.2 Accuracy on Simulated Data

Evaluating the accuracy of our method requires data for which volume fractions
and orientations of crossing fiber compartments are known. From an HCP data
set, we extracted the signal from voxels believed to contain a single fiber of white
matter, i.e., being within the white matter mask and having FA > 0.7. The fiber
direction for each voxel was estimated by fitting the diffusion tensor model and
finding the eigenvector to the highest eigenvalue. Every voxel of simulated data
was created by randomly choosing several single fiber voxels and a voxel with
FA < 0.2 from either the grey matter or the CSF mask, and adding their signals
with random volume fractions.
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For comparison, we evaluated the original method by Jeurissen et al. [5],
our proposed method, as well as a hybrid, which uses our novel regularization
and tensor decomposition, but models the response functions using Spherical
Harmonics for each shell, rather than SHORE.

The accuracy of estimated fiber directions and volume fractions on simulated
data containing two fibers can be seen in Fig. 1. They demonstrate that, for
crossing angles below 60◦, order-4 tensor approximation reconstructs the fibers
much more accurately than finding peaks in order-8 fODFs. The theoretical
advantage of H-psd being stricter than non-negativity becomes relevant for small
angles, starting around 40◦. Our simulated data includes the noise from the HCP
data from which it was generated. We tried adding more noise, and observed that
this increased the advantage of using the H-psd constraint.

Practically no difference is visible when replacing SHORE with Spherical
Harmonics models on each shell. This demonstrates that, while SHORE is more
flexible in that it does not assume a multi-shell structure, it does not decrease
accuracy when data is given on shells.

Fig. 1. On simulated two-fiber crossings with variable amounts of GM and CSF, our
method estimates fiber directions and volume fractions with improved accuracy.

5.3 Results on Real Data

On the two-shell clinical data, our method and the state-of-the-art approach by
Jeurissen et al. [5] produced similar results. The estimated directions of up to
three fibers with volume fractions above 0.1 are shown on a map of white matter
volume fractions in Fig. 2(a/b), and exhibit little difference.

Averaged over the brain mask, the absolute deviation between tissue volume
fractions estimated by the two methods was only 0.005 (CSF), 0.022 (GM), and
0.027 (WM). Averaged over the white matter, the angular deviation of fiber
directions, weighted by their volume fractions, was 7.98◦, which is comparable
to our simulation-based estimate of accuracy.

Since the true fiber directions are unknown in this case, we cannot be sure
which method is more accurate in practice. However, a clear practical benefit of
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(a) Two-shell data, Jeurissen et al. [5] (b) Two-shell data, our method

(c) Volume fraction maps and fiber directions estimated from a clinical DSI data set

Fig. 2. On two-shell clinical data, similar results were obtained using a state-of-the-art
approach (a) and ours (b), which is faster and can also be applied to DSI data, as
demonstrated in (c).

our method is its increased speed, and the fact that it can also be applied to
data that has multiple b values, but no shell structure, as the DSI clinical data,
for which results are shown in Fig. 2(c).

6 Conclusion

We introduced H-psd, a new positive definiteness constraint for spherical decon-
volution, and showed that it is more stringent than usual non-negativity. It can
be combined with all deconvolution methods, multi-tissue as well as the more
widely used single-shell single-tissue variant [14]. We showed that the H-psd con-
straint increases accuracy at small angles, and is easy to enforce using convex
cone programming libraries.

We also demonstrated that SHORE can be used as an extension of multi-
tissue deconvolution [5]. This allowed us to apply multi-tissue deconvolution to
DSI data, without sacrificing accuracy when working with data on shells.

Our method relies on the use of fourth-order tensors to describe fODFs.
However, it is clear from the results (and was observed previously in [13]) that
fourth-order is enough even for low angles and three-way crossings if we combine
it with low-rank tensor approximation.

In the future, we will apply the H-psd constraint in the context of adaptive
deconvolution [12] to improve per-voxel estimations of fiber response in patients
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with demyelinating disease. We expect that this will result in more accurate
maps of tissue properties, and more reliable tractography.
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