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ABSTRACT
We provide a report for the ACM SIGKDD community
about the 2008 Workshop on Algorithms for Modern Mas-
sive Data Sets (MMDS 2008), its origin in MMDS 2006, and
future directions for this interdisciplinary research area.

1. INTRODUCTION
The 2008 Workshop on Algorithms for Modern Massive Data
Sets (MMDS 2008) was sponsored by the NSF, DARPA,
LinkedIn, and Yahoo! and was held at Stanford Univer-
sity, June 25–28. The goals of MMDS 2008 were (1) to
explore novel techniques for modeling and analyzing mas-
sive, high-dimensional, and nonlinearly-structured scientific
and internet data sets; and (2) to bring together computer
scientists, statisticians, mathematicians, and data analysis
practitioners to promote cross-fertilization of ideas.

MMDS 2008 originally grew out of discussions about our
vision for the next-generation of algorithmic, mathemati-
cal, and statistical analysis methods for complex large-scale
data sets. These discussions occurred in the wake of MMDS
2006, which was originally motivated by the complemen-
tary perspectives brought by the numerical linear algebra
and theoretical computer science communities to matrix al-
gorithms in modern informatics applications [1]. As with
the original 2006 meeting, the MMDS 2008 program gener-
ated intense interdisciplinary interest: with 43 talks and 18
poster presentations from a wide spectrum of researchers in
modern large-scale data analysis, including both senior re-
searchers well-established as leaders in their respective fields
as well as junior researchers promising to become leaders in
this new interdisciplinary field, the program drew nearly 300
participants.

2. DIVERSE APPROACHES TO MODERN
DATA PROBLEMS

Graph and matrix problems were common topics for dis-
cussion, largely since they arise naturally in almost every
aspect of data mining, machine learning, and pattern recog-
nition. For example, a common way to model a large so-
cial or information network is with an interaction graph
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model, G = (V, E), in which nodes in the vertex set V repre-
sent “entities” and the edges (whether directed, undirected,
weighted or unweighted) in the edge set E represent “in-
teractions” between pairs of entities. Alternatively, these
and other data sets can be modeled as matrices, since an
m × n real-valued matrix A provides a natural structure
for encoding information about m objects, each of which is
described by n features. Due to their large size, their ex-
treme sparsity, and their complex and often adversarial noise
properties, data graphs and data matrices arising in modern
informatics applications present considerable challenges and
opportunities for interdisciplinary research. These algorith-
mic, statistical, and mathematical challenges were the focus
of MMDS 2008.

It is worth emphasizing the very different perspectives that
have historically been brought to such problems. For exam-
ple, a common view of the data in a database, in particu-
lar historically among computer scientists interested in data
mining and knowledge discovery, has been that the data are
an accounting or a record of everything that happened in a
particular setting. For example, the database might consist
of all the customer transactions over the course of a month,
or it might consist of all the friendship links among members
of a social networking site. From this perspective, the goal
is to tabulate and process the data at hand to find inter-
esting patterns, rules, and associations. An example of an
association rule is the proverbial “People who buy beer be-
tween 5 p.m. and 7 p.m. also buy diapers at the same time.”
The performance or quality of such a rule is judged by the
fraction of the database that satisfies the rule exactly, which
then boils down to the problem of finding frequent itemsets.
This is a computationally hard problem, and much algo-
rithmic work has been devoted to its exact or approximate
solution under different models of data access.

A very different view of the data, more common among
statisticians, is one of a particular random instantiation of
an underlying process describing unobserved patterns in the
world. In this case, the goal is to extract information about
the world from the noisy or uncertain data that is observed.
To achieve this, one might posit a model: data ∼ Fθ and
mean(data) = g(θ), where Fθ is a distribution that describes
the random variability of the data around the deterministic
model g(θ) of the data. Then, using this model, one would
proceed to analyze the data to make inferences about the
underlying processes and predictions about future observa-
tions. From this perspective, modeling the noise component
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or variability well is as important as modeling the mean
structure well, in large part since understanding the for-
mer is necessary for understanding the quality of predictions
made. With this approach, one can even make predictions
about events that have yet to be observed. For example, one
can assign a probability to the event that a given user at a
given web site will click on a given advertisement presented
at a given time of the day, even if this particular event does
not exist in the database.

The two perspectives need not be incompatible. For exam-
ple, statistical and probabilistic ideas are central to much
of the recent work on developing improved approximation
algorithms for matrix problems; otherwise intractable opti-
mization problems on graphs and networks yield to approx-
imation algorithms when assumptions are made about the
network participants; much recent work in machine learning
draws on ideas from both areas; and in boosting, a statisti-
cal technique that fits an additive model by minimizing an
objective function with a method such as gradient descent,
the computation parameter, i.e., the number of iterations,
also serves as a regularization parameter.

Given the diversity of possible perspectives, MMDS 2008
was organized loosely around six hour-long tutorials that
introduced participants to the major themes of the work-
shop.

3. LARGE-SCALE INFORMATICS: PROB-
LEMS, METHODS, AND MODELS

On the first day of the workshop, participants heard tutorials
by Christos Faloutsos of Carnegie Mellon University and
Edward Chang of Google Research, in which they presented
an overview of tools and applications in modern large-scale
data analysis.

Faloutsos began his tutorial on “Graph mining: laws, gener-
ators and tools” by motivating the problem of data analysis
on graphs. He described a wide range of applications in
which graphs arise naturally, and he reminded the audience
that large graphs that arise in modern informatics applica-
tions have structural properties that are very different from
traditional Erdős-Rényi random graphs. For example, due
to subtle correlations, statistics such as degree distributions
and eigenvalue distributions exhibit heavy-tailed behavior.

Although these structural properties have been studied ex-
tensively in recent years and have been used to develop
numerous well-publicized models, Faloutsos also described
empirically-observed properties that are not well-reproduced
by existing models. As an example, most models predict
that over time the graph should become sparser and the di-
ameter should grow as O(log N) or perhaps O(log log N),
where N is the number of nodes at the current time step,
but empirically it is often observed that the networks den-
sify over time and that their diameter shrinks. To explain
these phenomena, Faloutsos described a model based on
Kronecker products and also a model in which edges are
added via an iterative “forest fire” burning mechanism. With
appropriate choice of parameters, both models can be made
to reproduce a much wider range of static and dynamic prop-
erties than can previous generative models.

Building on this modeling foundation, Faloutsos spent much
of his talk describing several graph mining applications of

recent and ongoing interest: methods to find nodes that are
central to a group of individuals; applications of the Sin-
gular Value Decomposition and recently-developed tensor
methods to identifying anomalous patterns in time-evolving
graphs; modeling information cascades in the blogosphere as
virus propagation; and novel methods for fraud detection.

Edward Chang described other developments in web-scale
data analysis in his tutorial on “Mining large-scale social
networks: challenges and scalable solutions.” After review-
ing emerging applications—such as social network analysis
and personalized information retrieval—that have arisen as
we make the transition from Web 1.0 (links between pages
and documents) to Web 2.0 (links between documents, peo-
ple, and social platforms), Chang covered four applications
in detail: spectral clustering for network analysis, frequent
itemset mining, combinatorial collaborative filtering, and
parallel Support Vector Machines (SVMs) for personalized
search. In all these cases, he emphasized that the main per-
formance requirements were “scalability, scalability, scala-
bility.”

Modern informatics applications like web search afford easy
parallelization—e.g., the overall index can be partitioned
such that even a single query can use multiple processors.
Moreover, the peak performance of a machine is less impor-
tant than the price-performance ratio. In this environment,
scalability up to petabyte-sized data often means working in
a software framework like MapReduce or Hadoop that sup-
ports data-intensive distributed computations running on
large clusters of hundreds, thousands, or even hundreds of
thousands of commodity computers. This differs substan-
tially from the scalability issues that arise in traditional ap-
plications of interest in scientific computing. A recurrent
theme of Chang was that an algorithm that is expensive in
floating point cost but readily parallelizable is often a better
choice than one that is less expensive but non-parallelizable.

As an example, although SVMs are widely-used, largely due
to their empirical success and attractive theoretical foun-
dations, they suffer from well-known scalability problems in
both memory use and computational time. To address these
problems, Chang described a Parallel SVM algorithm. This
algorithm reduces memory requirements by performing a
row-based Incomplete Cholesky Factorization (ICF) and by
loading only essential data to each of the parallel machines;
and it reduces computation time by intelligently reordering
computational steps and by performing them on parallel ma-
chines. Chang noted that the traditional column-based ICF
is better for the single machine setting, but it cannot be
parallelized as well across many machines.

4. ALGORITHMIC APPROACHES TO NET-
WORKED DATA

Milena Mihail of the Georgia Institute of Technology de-
scribed algorithmic perspectives on developing better mod-
els for data in her tutorial “Models and algorithms for com-
plex networks.” She noted that in recent years a rich theory
of power law random graphs, i.e., graphs that are random
conditioned on a specified input power law degree distribu-
tion, has been developed. With the increasingly wide range
of large-scale social and information networks that are avail-
able, however, generative models that are structurally or
syntactically more flexible are increasingly necessary. Mi-
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hail described two such extensions: one in which semantics
on nodes is modeled by a feature vector and edges are added
between nodes based on their semantic proximity; and one
in which the phenomenon of associativity/disassociativity
is modeled by fixing the probability that nodes of a given
degree di tend to link to nodes of degree dj .

By introducing a small extension in the parameters of a gen-
erative model, of course, one can observe a large increase in
the observed properties of generated graphs. This obser-
vation raises interesting statistical questions about model
overfitting, and it argues for more refined and systematic
methods of model parameterization. This observation also
leads to new algorithmic questions that were the topic of
Mihail’s talk.

An algorithmic question of interest in the basic power law
random graph model is the following: given as input an
N-vector specifying a degree sequence, determine whether
there exists a graph with that degree sequence, and, if so,
efficiently generate one (perhaps approximately uniformly
randomly from the ensemble of such graphs). Such realiz-
ability problems have a long history in graph theory and
theoretical computer science. Since their solutions are in-
timately related to the theory of graph matchings, many
generalizations of the basic problem can be addressed in a
strict theoretical framework. For example, motivated by
associative/disassociative networks, Mihail described recent
progress on the Joint-Degree Matrix Realization Problem:
given a partition of the node set into classes of vertices of
the same degree, a vector specifying the degree of each class,
and a matrix specifying the number of edges between any
two classes, determine whether there exists such a graph,
and if so construct one. She also described extensions of this
basic problem to connected graphs, to finding minimum cost
realizations, and and to finding a random graph satisfying
those basic constraints.

5. THE GEOMETRIC PERSPECTIVE: QUAL-
ITATIVE ANALYSIS OF DATA

A very different perspective was provided by Gunnar Carls-
son of Stanford University, who gave an overview of geo-
metric and topological approaches to data analysis in his
tutorial “Topology and data.” The motivation underlying
these approaches is to provide insight into the data by im-
posing a geometry on it. Whereas in certain applications,
such as in physics, the studied phenomena support clean ex-
planatory theories which define exactly the metric to use to
measure the distance between pairs of data points, in most
MMDS applications this is not the case. For instance, the
Euclidean distance between DNA expression profiles in high-
throughput microarray experiments may or may not capture
a meaningful notion of distance between genes. Similarly,
although a natural geodesic distance is associated with any
graph, the sparsity and noise properties of social and infor-
mation networks means that this is not a particularly robust
notion of distance in practice.

Part of the problem is thus to define useful metrics—in
particular since applications such as clustering, classifica-
tion, and regression often depend sensitively on the choice of
metric—and two design goals have recently emerged. First,
don’t trust large distances—since distances are often con-
structed from a similarity measure, small distances reliably

represent similarity but large distances make little sense.
Second, trust small distances only a bit—after all, similarity
measurements are still very noisy. These ideas have formed
the basis for much of the work on Laplacian-based non-
linear dimensionality reduction, i.e., manifold-based, meth-
ods that are currently popular in harmonic analysis and ma-
chine learning. More generally, they suggest the design of
analysis tools that are robust to stretching and shrinking
of the underlying metric, particularly in applications such
as visualization in which qualitative properties, such as how
the data are organized on a large scale, are of interest.

Much of Carlsson’s tutorial was occupied by describing these
analysis tools and their application to natural image statis-
tics and data visualization. Homology is the crudest mea-
sure of topological properties, capturing information such as
the number of connected components, whether the data con-
tain holes of various dimensions, etc. Importantly, although
the computation of homology is not feasible for general topo-
logical spaces, in many cases the space can be modeled in
terms of simplicial complexes, in which case the computa-
tion of homology boils down to the linear algebraic compu-
tation of the Smith normal form of certain data-dependent
matrices. Carlsson also described persistent homology, an
extension of the basic idea in which parameters such as the
number of nearest neighbors, error parameters, etc., can be
varied. A “bar code signature” can then be associated with
the data set. Long segments in the bar code indicate the
presence of a homology class which persists over a long range
of parameters values. This can often be interpreted as corre-
sponding to large-scale geometric features in the data, while
shorter segments can be interpreted as noise.

6. STATISTICAL AND MACHINE LEARN-
ING PERSPECTIVES

Statistical and machine learning perspectives on MMDS were
the subject of a pair of tutorials by Jerome Friedman of
Stanford University and Michael Jordan of the University
of California at Berkeley. Given a set of measured values of
attributes of an object, x = (x1, x2, . . . , xn), the basic pre-
dictive or machine learning problem is to predict or estimate
the unknown value of another attribute y. The quantity y
is the “output” or “response” variable, and {x1, x2, . . . , xn}
are the “input” or “predictor” variables. In regression prob-
lems, y is a real number, while in classification problems, y is
a member of a discrete set of unorderable categorical values
(such as class labels). In either case, this can be viewed as a
function estimation problem—the prediction takes the form
of a function ŷ = F (x) that maps a point x in the space of
all joint values of the predictor variables to a point ŷ in the
space of response variables, and the goal is to produce an
F (·) that minimizes a loss criterion.

In his tutorial, “Fast sparse regression and classification,”
Friedman began with the common assumption of a linear
model, in which F (x) =

Pn

j=1
ajxj is modeled as a linear

combination of the n basis functions. Unless the number of
observations is much much larger than n, however, empiri-
cal estimates of the loss function exhibit high variance. To
make the estimates more regular, one typically considers a
constrained or penalized optimization problem

â(λ) = argmin
a
L̂(a) + λPγ(a),

where L̂(·) is the empirical loss and Pγ(·) is a penalty term.
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The choice of an appropriate value for the regularization
parameter λ is a classic model selection problem, for which
cross validation can be used. The choice for the penalty
depends on what is known or assumed about the problem
at hand. A common choice is Pγ(a) = ‖a‖γ

γ =
Pn

j=1
|aj |

γ .

This interpolates between the subset selection problem (γ =
0) and ridge regression (γ = 2) and includes the well-studied
lasso (γ = 1). For γ ≤ 1, sparse solutions (which are of
interest due to parsimony and interpretability) are obtained,
and for γ ≥ 1, the penalty is convex.

Although one could choose an optimal (λ, γ) by cross vali-
dation, this can be prohibitively expensive, even when the
loss and penalty are convex, due to the need to perform
computations at a large number of discretized pairs. In this
case, path seeking methods have been studied. Consider the
path of optimal solutions {â(λ) : 0 ≤ λ ≤ ∞}, which is a
one-dimensional curve in the parameter space R

n. If the
loss function is quadratic and the penalty function is piece-
wise linear, e.g., with the lasso, then the path of optimal
solutions is piecewise linear, and homotopy methods can be
used to generate the full path in time that is not much more
than that needed to fit a single model at a single parameter
value. Friedman described a generalized path seeking al-
gorithm, which solves this problem for a much wider range
of loss and penalty functions (including some non-convex
functions) very efficiently.

Jordan, in his tutorial “Kernel-based contrast functions for
sufficient dimension reduction,” considered the dimension-
ality reduction problem in a supervised learning setting.
Methods such as Principal Components Analysis, Johnson-
Lindenstrauss techniques, and recently-developed Laplacian-
based non-linear methods are often used, but their applica-
bility is limited since, e.g., the axes of maximal discrimina-
tion between two the classes may not align well with the axes
of maximum variance. Instead, one might hope that there
exists a low-dimensional subspace S of the input space X

which can be found efficiently and which retains the sta-
tistical relationship between X and the response space Y .
Conventional approaches to this problem of Sufficient Di-
mensionality Reduction (SDR) make strong modeling as-
sumptions about the distribution of the covariate X and/or
the response Y . Jordan considered a semiparametric for-
mulation, where the conditional distribution p(Y | X) is
treated nonparametrically and the goal is estimate the pa-
rameter S. He showed that this problem could be formu-
lated in terms of conditional independence and that it could
be evaluated in terms of operators on Reproducing Kernel
Hilbert Spaces (RKHSs).

Recall that claims about the independence between two ran-
dom variables can be reduced to claims about correlations
between them by considering transformations of the random
variables: X1 and X2 are independent if and only if

max
h1,h2∈H

Corr(h1(X1), h2(X2)) = 0

for a suitably rich function space H. If H is L2 and thus
contains the Fourier basis, this reduces to a well-known
fact about characteristic functions. More interesting from
a computational perspective—recall that by the “reproduc-
ing” property, function evaluation in a RKHS reduces to
an inner product—this also holds for suitably rich RKHSs.
This use of RKHS ideas to solve this SDR problem can-

not be viewed as a kernelization of an underlying linear al-
gorithm, as is typically the case when such ideas are used
(e.g., with SVMs) to provide basis expansions for regression
and classification. Instead, this is an example of how RKHS
ideas provide algorithmically efficient machinery to optimize
a much wider range of statistical functionals of interest.

7. CONCLUSIONS AND FUTURE DIREC-
TIONS

In addition to other talks on the theory of data algorithms,
machine learning and kernel methods, dimensionality re-
duction and graph partitioning methods, and co-clustering
and other matrix factorization methods, participants heard
about a wide variety of data applications, including movie
and product recommendations; predictive indexing for fast
web search; pathway analysis in biomolecular folding; func-
tional MRI, high-resolution terrain analysis, and galaxy clas-
sification; and other applications in computational geome-
try, computer graphics, computer vision, and manifold learn-
ing. (We even heard about using approximation algorithms
in a novel manner to probe the community structure of large
social and information networks to test the claim that such
data are even consistent with the manifold hypothesis—
they clearly are not.) In all these cases, scalability was a
central issue—motivating discussion of external memory al-
gorithms, novel computational paradigms like MapReduce,
and communication-efficient linear algebra algorithms. In-
terested readers are invited to visit the conference website,
http://mmds.stanford.edu, where the presentations from
all speakers can be found.

The feedback we received made it clear that MMDS has
struck a strong interdisciplinary chord. For example, nearly
every statistician commented on the desire for more statisti-
cians at the next MMDS; nearly every scientific computing
researcher told us they wanted more data-intensive scientific
computation at the next MMDS; nearly every practitioner
from an application domain wanted more applications at the
next MMDS; and nearly every theoretical computer scientist
said they wanted more of the same. There is a lot of interest
in MMDS as a developing interdisciplinary research area at
the interface between computer science, statistics, applied
mathematics, and scientific and internet data applications.
Keep an eye out for future MMDSs!
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