
Algorithms for structured matrix-vector product of
optimal bilinear complexity
Ke Ye

Computational and Applied Mathematics Initiative
Department of Statistics
University of Chicago

Email: kye@galton.uchicago.edu

Lek-Heng Lim
Computational and Applied Mathematics Initiative

Department of Statistics
University of Chicago

Email: lekheng@galton.uchicago.edu

Abstract—We present explicit algorithms for computing struc-
tured matrix-vector products that are optimal in the sense
of Strassen, i.e., using a provably minimum number of mul-
tiplications. These structures include Toeplitz/Hankel/circulant,
symmetric, Toeplitz-plus-Hankel, sparse, and multilevel struc-
tures. The last category include BTTB, BHHB, BCCB but also
any arbitrarily complicated nested structures built out of other
structures.

I. INTRODUCTION

Given a bilinear map β : Cm × Cn → Cp, the bilinear
complexity [9], [10] of β is the least number of multiplications
needed to evaluate β(x, y) for x ∈ Cm and y ∈ Cn.
This notion of bilinear complexity is the standard measure
of computational complexity for matrix inversion and matrix
multiplication [7], [6], [12], [13].

This article is an addendum to our work in [14] where we
proposed a generalization of the Cohn–Umans method [3],
[4] and used it to study the bilinear complexity of structured
matrix-vector product. Roughly speaking, we embedded the
structured matrices and vectors to be multiplied into an ap-
propriate algebra A in a way that allows us to ‘read off’ the
entries of the required product from the corresponding product
in A. We did not state our algorithms explicitly in [14] and the
purpose of the present work is to fill this gap. All algorithms
in this paper have been shown to be the fastest possible in
terms of bilinear complexity. The proofs may be found in [14]
and involve determining the tensor ranks of these structured
matrix-vector products.

Here is a list of structured matrices discussed in this article:
§II Circulant matrices.
§III Toeplitz/Hankel matrices.
§IV Symmetric matrices.
§V Toeplitz-plus-Hankel matrices.
§VI Sparse matrices.
§VII Multilevel structured matrices A1 ⊗ · · · ⊗ Ap where

each Ai is one of circulant, Toeplitz/Hankel, symmetric,
Toeplitz-plus-Hankel, or sparse matrices.

The algorithm for Toeplitz matrix is known [1] but those for
other structured matrices are new. In particular, the multilevel
structured matrices in §VII include arbitrarily complicated
nested structures, e.g., block BCCB matrices whose blocks are
Toeplitz-plus-Hankel, a 3-level structure.

We analyze the bilinear complexities of all algorithms in
§VIII. Readers should bear in mind that bilinear complexity
does not count scalar multiplications. For example, the bilinear
map β : C2 × C2 → C, β((a, b), (c, d)) = (2a + b)(3c −
d) has bilinear complexity one. More rigorously, the bilinear
complexity of β is the tensor rank of the structure tensor µβ ∈
C2 ⊗ C2 ⊗ C2 corresponding to β [2], [14].

II. CIRCULANT MATRIX

An n× n circulant matrix A = (aij) is a matrix with

aij = ai+p,j+p, 1 ≤ i, j, i+ p, j + p ≤ n,
a1j = an+2−j,1, 2 ≤ j ≤ n.

The circulant matrix represented by a = (a1, . . . , an) ∈ Cn is
one whose first row is a. It is well-known [5] that the circulant
matrix-vector product can be computed by Fourier transform.
We restate this algorithm for completeness. Let ωk = e2kπi/n,
k = 0, . . . , n− 1 and define the Fourier matrix

W =


1 1 · · · 1
1 ω1 · · · ωn−1

...
...

. . .
...

1 ωn−1
1 · · · ωn−1

n−1

 . (1)

Algorithm 1 Circulant matrix-vector product
1: Represent the circulant matrix A by a = (a1, a2, . . . , an)T

and the column vector by v = (v1, v2, . . . , vn)T.
2: Compute Wa and represent it by (ã1, . . . , ãn)T.
3: Compute nW−1v and represent it by (ṽ1, . . . , ṽn)T.
4: Compute z̃ = (ã1ṽ1, . . . , ãnṽn)T.
5: Compute z = Wz̃, which is the product of A and v.

III. TOEPLITZ/HANKEL MATRIX

An n× n Toeplitz matrix A = (aij) is a matrix with

aij = ai+p,j+p, 1 ≤ i, j, i+ p, j + p ≤ n.

We represent an n × n Toeplitz matrix A = (aij) by
(a1, a2, . . . , a2n−1) ∈ C2n−1

aij = aj−i+n.

2016 IEEE Information Theory Workshop (ITW)

978-1-5090-1090-5/16/$31.00 ©2016 IEEE

Every n × n Toeplitz matrix A may be regarded as a block
of some 2n × 2n circulant matrix C whose first row is
(an, . . . , a2n−1, b, a1, . . . , an−1) and b ∈ C is arbitrary. Using
this embedding, we obtain Algorithm 2 for Toeplitz matrix-
vector product [1], [14] .

Algorithm 2 Toeplitz matrix-vector product
1: Express the Toeplitz matrix A as (a1, . . . , a2n−1) and the

vector as v = (v1, . . . , vn)T.
2: Compute b = −

∑2n−1
i=1 ai.

3: Construct c = (an, . . . , a2n−1, b, a1, . . . , an−1) ∈ C2n.
4: Construct ṽ = (v1, . . . , vn, 0, . . . , 0)T ∈ C2n.
5: Compute the product z̃ = (z1, . . . , z2n)T of the circulant

matrix determined by c with ṽ by Algorithm 1.
6: z = (z1, . . . , zn)T is the product of A and v.

An n × n matrix H is called a Hankel matrix if JH is a
Toeplitz matrix where

J =


0 0 · · · 0 1
0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0
1 0 · · · 0 0

 . (2)

We represent an n × n Hankel matrix H = (hij) as
(h1, h2, . . . , h2n−1) ∈ C2n−1 where

hij = h2n+1−i−j , 1 ≤ i, j ≤ n.

Algorithm 3 computes the product of a Hankel matrix and a
column vector v.

Algorithm 3 Hankel matrix-vector product
1: Express T = (h1, h2, . . . , h2n−1).
2: Apply Algorithm 2 to the Toeplitz matrix represented by
T and v to obtain (z1, . . . , zn).

3: (zn, zn−1, . . . , z1) is the product of H and v.

IV. SYMMETRIC MATRIX

Algorithm 4 computes the product of a symmetric matrix
S = (sij) where sij = sji and a column vector v. We
represent a symmetric matrix s = (sij) as (s1, . . . , sN) ∈ CN
where N =

(
n+1

2

)
and the index of sk is

k = (i− 1)n−
(
i− 1

2

)
+ j, 1 ≤ i ≤ j ≤ n.

V. TOEPLITZ-PLUS-HANKEL MATRIX

An n×n Toeplitz-plus-Hankel matrix is a matrix which can
be expressed as the sum of an n × n Hankel matrix and an
n× n Toeplitz matrix. If X is an n× n Toeplitz-plus-Hankel
matrix and

X = H + T

Algorithm 4 Symmetric matrix-vector product
1: S is an n × n symmetric matrix. Set S1 = S. Set m =
dn/2e. Set v1 = v and z = 0.

2: for k = 1, . . . ,m do
3: Construct Hankel matrix Hk determined by first row

and last column of Sk.
4: Compute wk = Hkvk by Algorithm 3.
5: Update z = z + wk.
6: Construct Sk+1 by deleting first and last columns and

first and last rows of Sk −Hk.
7: Construct vk+1 by deleting first and last entry of vk.
8: end for
9: z = (z1, . . . , zn)T is the product of S and v.

for some Hankel matrix H and some Toeplitz matrix T , then
for any a ∈ C we have a decomposition of X into the sum of
a Hankel matrix H+aE and a Toeplitz matrix T −aE where
E is the n× n matrix with all entries equal to one.

Algorithm 5 Toeplitz-plus-Hankel matrix-vector product
1: Express X as H + T with Hankel matrix H and Toeplitz

matrix T .
2: Express T as (t1, . . . , t2n−1) and H as (h1, . . . , h2n−1).
3: Compute b = −

∑2n−1
j=1 tj .

4: Compute a ∈ C as

a =

∑n−1
j=0 ω

jtn+j + ωnb+
∑n−1
j=1 ω

n+jtj

2n

where ω = ekπi/n.
5: Update H = H + aE and T = T − aE.
6: Compute zH = Hv by Algorithm 3 and zT = Tv by

Algorithm 2, respectively.
7: Compute z = zH + zT , which is the product of X and v.

VI. SPARSE MATRIX

An n × n sparse matrix A = (aij) with sparsity pattern
Ω ⊆ {1, . . . , n} × {1, . . . , n} is one where

aij = 0 for all (i, j) ∈ Ω.

For example, an upper triangular matrix is a sparse matrix
with sparsity pattern Ω = {(i, j) : 1 ≤ i ≤ j ≤ n}. For
sparse matrices associated with Ω, the matrix-vector product
has optimal bilinear complexity #Ω realized by the usual
matrix-vector product algorithm [14].

VII. MULTILEVEL STRUCTURED MATRIX

Let A = (aij) ∈ Cn×n and B = (bij) ∈ Cm×m. The
Kronecker product [11] of A and B is defined as

A~B = (aijB) ∈ Cmn×mn,

i.e., A ~ B is an m × m block matrix whose (i, j)th block
is the n × n matrix aijB. We may iterate the definition to
obtain a p levels matrix A = A1 ~ · · · ~ Ap. In particular,
if A1, . . . , Ap are structured matrices (circulant, Toeplitz,

2016 IEEE Information Theory Workshop (ITW)

Hankel, symmetric and Toeplitz-plus-Hankel), then A is called
a p levels structured matrix.

Let X1 ⊆ Cn1×n1 , . . . , Xp ⊆ Cnp×np be subspaces of
structured matrices. Then X1 ~ · · ·~Xp ⊆ Cn1···np×n1···np is
the set of all p levels structured matrices A1 ~ · · ·~Ap where
A1 ∈ X1, . . . , Ap ∈ Xp.

Algorithms 6–11 are based on the following idea. Let βi :
Xi × Cni → Cni be the bilinear map defined by the matrix-
vector product for matrices in Xi. Assume that the bilinear
complexity of βi is ri. Then the structural tensor [14] µβi

∈
X∗i ⊗ (Cni)∗ ⊗ Cni of βi has a tensor decomposition

µβi
=

ri∑
j=1

uj ⊗ vj ⊗ wj .

The bilinear map β : (X1 ~ · · ·~Xp)×Cn1···np → Cn1···np ,
defined by the p levels structured matrix-vector product, has
structural tensor µβ = µβ1

⊗· · ·⊗µβp
. In [14] we showed that

if Xi is Toeplitz, Hankel, symmetric, or Toeplitz-plus-Hankel,
the bilinear complexity is equal to the dimension of Xi and we
obtain a machinery to decompose µβi explicitly. Essentially,
Algorithms 6–11 are obtained from the tensor decompositions
of structural tensors.

A. Illustrative example

As an example, let us consider the case where p = 2 and
A,B are 2×2 circulant matrices. This gives a block-circulant-
circulant-block or BCCB matrix. We set

A =

[
a b
b a

]
, B =

[
c d
d c

]
,

and

v = (x, y, z, w)T =

[
x
y

]
~

[
1
0

]
+

[
z
w

]
~

[
0
1

]
.

We want to compute the product of A~B and v. By definition
we have

A~B =

[
aB bB
bB aB

]
=


ac ad bc bd
ad ac bd bc
bc bd ac ad
bd bc ad ac

 ,
and

(A~B)v =


a(ξ1 + ξ2) + b(η1 + η2)
a(ξ1 − ξ2) + b(η1 − η2)
b(ξ1 + ξ2) + a(η1 + η2)
b(ξ1 − ξ2) + a(η1 − η2)

 ,
where

ξ1 =
1

2
((cx+ dy) + (dx+ cy)),

ξ2 =
1

2
((cx+ dy)− (dx+ cy)),

η1 =
1

2
((cz + dw) + (dz + cw)),

η2 =
1

2
((cz + dw)− (dz + cw)).

Observe that[
a(ξ1 + ξ2) + b(η1 + η2)
b(ξ1 + ξ2) + a(η1 + η2)

]
=

1

2

[
α+ β
α− β

]
,

where

α = (a+ b)[(ξ1 + ξ2) + (η1 + η2)]

= (a+ b)[(ξ1 + η1) + (ξ2 + η2)],

β = (a− b)[(ξ1 + ξ2)− (η1 + η2)]

= (a− b)[(ξ1 − η1) + (ξ2 − η2)].

Similarly, we have[
a(ξ1 − ξ2) + b(η1 − η2)
b(ξ1 − ξ2) + a(η1 − η2)

]
=

1

2

[
γ + τ
γ − τ

]
,

where

γ = (a+ b)[(ξ1 − ξ2) + (η1 − η2)]

= (a+ b)[(ξ1 + η1)− (ξ2 + η2)],

τ = (a− b)[(ξ1 − ξ2)− (η1 − η2)]

= (a− b)[(ξ1 − η1)− (ξ2 − η2)].

Lastly, we observe that

ξ1 + η1 =
1

2
(c+ d)[(x+ y) + (z + w)],

ξ1 − η1 =
1

2
(c+ d)[(x+ y)− (z + w)],

ξ2 + η2 =
1

2
(c− d)[(x− y) + (z − w)],

ξ2 − η2 =
1

2
(c− d)[(x− y)− (z − w)].

By above computations, we see that one may compute (A ~
B)v using four multiplications, i.e., it is sufficient to compute

w11 = (a+ b)(c+ d)[(x+ y) + (z + w)],

w12 = (a+ b)(c− d)[(x− y) + (z − w)],

w21 = (a− b)(c+ d)[(x+ y)− (z + w)],

w22 = (a− b)(c− d)[(x− y)− (z − w)].

Note that since the entries of A ~ B are given as inputs,
evaluating terms like (a+ b)(c+ d) = ac+ ad+ bc+ bd does
not cost any multiplication (as we already have ac, ad, bc, bd
as inputs).

B. General case

We now generalize the above calculations to obtain an
algorithm for p levels structured matrix-vector product. In
order to treat all cases at one go, our presentation in this
section is slightly more abstract. Given a p levels structured
matrix B ∈ X1 ~ · · ·~Xp and a vector v of appropriate size,
our algorithm, when applied to B and v, takes the form:

(B, v)
(ϕ,ψ)−−−→ (b′, v′)

m−→ m(b′, v′)
ϑ−→ Bv,

where ϕ is a linear map sending B to a vector b′, ψ is a linear
map sending v to a vector v′, m is pointwise multiplication,

2016 IEEE Information Theory Workshop (ITW)

and ϑ is another linear map sending m(b′, v′) to Bv. ϕ, ψ,
and ϑ depend only on the structure of B (i.e., on X1, . . . , Xp)
but not on the values of B and v. For any given structure,
we can represent the linear maps ϕ, ψ, and ϑ concretely as
matrices.

We will present the algorithms for p levels structured
matrix-vector product inductively, by calling the corresponding
p − 1 levels algorithms. Also, they will be built upon Algo-
rithms 2, 3, 4, and 5 for the relevant structured matrix-vector
product.

Suppose we have algorithms for p − 1 levels structured
matrix-vector product, i.e., we may evaluate the linear maps
ϕ, ψ, and ϑ for any p− 1 levels structured matrix. Given a p
levels structured matrix A1 ~ · · · ~ Ap and a column vector
v of size N =

∏p
i=1 ni, we write A1 ~ · · · ~ Ap as A ~ B

where A = A1 and B = A2 ~ · · ·~Ap. Set N1 to be N/n1.
Let A be a circulant matrix. Let ωk = e2kπi/n, k =

0, 1, . . . , n−1 be the nth roots of unity and let W = (ωjk)n−1
j,k=0

be the Fourier matrix in (1). We have Algorithm 6.

Algorithm 6 p levels circulant matrix-vector product
1: Express A by a column vector a = (a1, . . . , an1)T and

express v by a column vector

v = (v1,1, . . . , v1,N1 , v2,1, . . . , v2,N1 , . . . ,

vn1,1, . . . , vn1,N1
)T.

2: Express ϕ as (ϕ1, . . . , ϕr)
T where ϕj is a linear functional

on X2 ~ · · ·~Xp and r =
∏p
i=2 dim(Xi).

3: Express ψ as (ψ1, . . . , ψr) where ψj is a linear functional
on CN1 .

4: Compute ã = Wa and denote it by (ã1, . . . , ãn1)T.
5: Denote vi = (vi,1, . . . , vi,N1)T, i = 1, . . . , n1.
6: for s = 1, . . . , n1 do
7: for t = 1, . . . , r do
8: Compute

wst = ãsϕt(B)

n1∑
k=1

ωs−1
k−1ψt(vk).

9: end for
10: end for
11: Represent (wst) as a column vector

w = (w11, . . . , w1,r, w21, . . . , w2,r, . . . ,

wn1,1, . . . , wn1,r)
T.

12: Compute (W ~ ϑ)w, which is the product (A~B)v.

If we apply Algorithm 6 to the case where A,B are
2 × 2 circulant matrices, we obtain w11, w12, w21, w22 as in
Section VII-A. To compute the product of A ~ B and v, we
express A as (a, b)T, B as (c, d)T, and v as (x, y, z, w)T.
Hence v1 = (x, y)T and v2 = (z, w)T. By Algorithm 1 the
linear map ϕ = (ϕ1, ϕ2)T is given by ϕ1((α, β)T) = α + β
and ϕ2((α, β)T) = α − β, and ψ is the map given by
ψ1((α, β)T) = α+β and ψ2((α, β)T) = α−β, where (α, β)T

is any column vector of size two. Lastly, the linear map ϑ is
given by left multiplication by

[
1 1
1 −1

]
.

Let A be a Toeplitz matrix. As before, there exists a
circulant matrix C of the form

C =

[
A A′

A′ A

]
,

and

(C ~B)

[
v
0

]
=

[
(A~B)v
(A′ ~B)v

]
.

Hence to compute (A ~ B)v, it suffices to compute (C ~
B) [v0] and this can be done using Algorithm 6. We obtain
Algorithm 7.

Algorithm 7 p levels Toeplitz matrix-vector product
1: Express A as a vector a = (a1, . . . , a2n−1) and v as

(v1, . . . , vN)T.
2: Compute b = −

∑2n1−1
i=1 ai.

3: Construct c = (an, . . . , a2n1−1, b, a1, . . . , an1−1) ∈ C2n1

representing a 2n1 × 2n1 circulant matrix C.
4: Construct ṽ = (v1, . . . , vN , 0, . . . , 0) ∈ C2N .
5: Compute z̃ = (C ~B)ṽ by Algorithm 6 and express z̃ as

(z1, . . . , z2N)T.
6: (z1, . . . , zN)T is the product of (A~B) and v.

Now for square Hankel matrices A and B we observe that

JA⊗B = (J ⊗ I)(A⊗B),

where J is the matrix in (2). Algorithm 8 follows.

Algorithm 8 p levels Hankel matrix-vector product
1: Compute the Z = (JA⊗B)v by Algorithm 7.
2: Compute z = (J ⊗ I)Z and z is (A⊗B)v.

The algorithms for p levels symmetric matrix (Algorithm 9),
p levels Toeplitz-plus-Hankel matrix (Algorithm 10), p levels
sparse matrix (Algorithm 11) are obtained via similar consid-
erations.

Algorithm 9 p levels symmetric matrix-vector product
1: A is an n1×n1 symmetric matrix. Compute m = dn1/2e.

Set v1 = v and z = 0 ∈ CN .
2: for k = 1, . . . ,m do
3: Construct Hk determined by first row and last column

of Ak.
4: Compute wk = (Hk ~B)vk by Algorithm 8.
5: Update z = z + wk.
6: Construct Ak+1 by deleting first and last columns and

first and last rows of Ak −Hk.
7: Construct vk+1 by deleting first N1 and last N1 entries

of vk.
8: end for
9: z = (z1, . . . , zN)T is the product of S and v.

2016 IEEE Information Theory Workshop (ITW)

Algorithm 10 p levels Toeplitz-plus-Hankel matrix-vector
product

1: Express A as H + T with Hankel matrix H and Toeplitz
matrix T .

2: Express T as (t1, . . . , t2n1−1) and H as (h1, . . . , h2n1−1).
3: Compute b = −

∑2n1−1
j=1 tj .

4: Find a ∈ C such that

a =

∑n1−1
j=0 ωj1tn1+j + ωn1

1 b+
∑n1−1
j=1 ωn1+j

1 tj

2n1

where ω1 = ekπi/n1 .
5: Update H = H + aE and T = T − aE.
6: Compute zH = (H ~ B)v by Algorithm 8 and zT =

(T ~B)v by Algorithm 7, respectively.
7: Compute z = zH + zT which is the product of A and v.

Algorithm 11 p levels sparse matrix-vector product
1: Express A by its entries A = (aij).
2: Express v by a column vector

v = (v1,1, . . . , v1,N1 , v2,1, . . . , v2,N1 , . . . ,

vn1,1, . . . , vn1,N1)T.

3: Express ϕ as (ϕ1, . . . , ϕr)
T where ϕj is a linear functional

on X2 ~ · · ·~Xp and r =
∏p
i=2 dim(Xi).

4: Express ψ as (ψ1, . . . , ψr) where ψj is a linear functional
on CN1 .

5: Denote vi = (vi1, . . . , vi,N1
)T, i = 1, . . . , n1.

6: for s = 1, . . . , n1 do
7: for t = 1, . . . , r do
8: Compute

ws,t = ϕt(B)
∑

(k,s)6∈Ω

aksψt(vk)

9: end for
10: end for
11: Compute

(zij) = (I ~ ϑ)(wst).

12: (z1,1, . . . , z1,n1
, z2,1, . . . , z2,n1

, . . . , zN1,1, . . . , zN1,n1
)T

is (A~B)v.

VIII. BILINEAR COMPLEXITY

As we have shown in [14], all 11 algorithms presented in
this article are of optimal bilinear complexity, i.e., requires a
minimum number of multiplications. We give the multiplica-
tion counts below.

(i) Algorithm 1 for n × n circulant matrix-vector product
costs n multiplications (from the computation of z̃;
note that the other multiplications in the algorithm are
scalar multiplications and do not count towards bilinear
complexity).

(ii) Algorithms 2 and 3 for n × n Toeplitz/Hankel matrix-
vector products each costs 2n− 1 multiplications (from

the computation of z̃; by our special choice of b we saved
one multiplication).

(iii) Algorithm 4 for n× n symmetric matrix-vector product
costs

(
n+1

2

)
multiplications (each wk costs 2[n− 2(k −

1)] − 1 multiplications and so the total number of
multiplications is

(
n+1

2

)
).

(iv) An N×N p levels structured matrix-vector product costs∏p
i=1 dimXi multiplications. Let r =

∏p
i=2 dim(Xi).

(v) Algorithm 6 costs n1r multiplications (each wst costs
one multiplication; note that computation of the co-
efficient ãsϕt(B) does not cost any multiplication as
ãsϕt(B) is a linear combination of the entries of A~B).

(vi) Algorithms 7 and Algorithm 8 each costs (2n1 − 1)r
multiplications.

(vii) Algorithm 9 costs
(
n+1

2

)
r multiplications.

(viii) Algorithm 10 costs (4n− 3)r multiplications.
(ix) Algorithm 11 costs #Ω× r multiplications.

ACKNOWLEDGMENT

The authors thank Nikos Pitsianis and Xiaobai Sun for
helpful discussions. LHL and KY are supported by AFOSR
FA9550-13-1-0133, DARPA D15AP00109, NSF IIS 1546413,
DMS 1209136, and DMS 1057064. In addition, KY’s work is
also partially supported by NSF CCF 1017760.

REFERENCES

[1] D. Bini and M. Capovani, “Tensor rank and border rank of band Toeplitz
matrices”, SIAM J. Comput., 16 (1987), no. 2, pp. 252-258.

[2] P. Bürgisser, M. Clausen, and M. A. Shokrollahi, Algebraic Complexity
Theory, Grundlehren der Mathematischen Wissenschaften, 315, Springer-
Verlag, Berlin, 1997.

[3] H. Cohn, R. Kleinberg, B. Szegedy, and C. Umans, “Group-theoretic
algorithms for matrix multiplication,” Proc. IEEE Symp. Found. Comput.
Sci. (FOCS), 46 (2005), pp. 379–388.

[4] H. Cohn and C. Umans, “A group-theoretic approach to fast matrix
multiplication,” , Proc. IEEE Symp. Found. Comput. Sci. (FOCS), 44
(2003), pp. 438–449.

[5] G. Golub and C. Van Loan, Matrix Computations, 4th Ed., John Hopkins
University Press, Baltimore, MD, 2013.

[6] F. Le Gall, “Powers of tensors and fast matrix multiplication,” Proc.
Internat. Symp. Symbolic Algebr. Comput. (ISSAC), 39 (2014), pp. 296–
303.

[7] V. Strassen, “Gaussian elimination is not optimal,” Numer. Math., 13
(1969), pp. 354–356.

[8] V. Strassen, “Rank and optimal computation of generic tensors,” Linear
Algebra Appl., 52/53 (1983), pp. 645–685.

[9] V. Strassen, “Relative bilinear complexity and matrix multiplication,” J.
Reine Angew. Math., 375/376 (1987), pp. 406–443.

[10] V. Strassen, “Vermeidung von Divisionen,” J. Reine Angew. Math., 264
(1973), pp. 184–202.

[11] C. F. Van Loan, “The ubiquitous Kronecker product,” J. Comput. Appl.
Math., 123 (2000), no. 1–2, pp. 85–100.

[12] V. V. Williams, “Multiplying matrices in O(n2.373) time,” preprint,
(2014), http://theory.stanford.edu/∼virgi/matrixmult-f.pdf.

[13] S. Winograd, “Some bilinear forms whose multiplicative complexity
depends on the field of constants,” Math. Systems Theory, 10 (1976/77),
no. 2, pp. 169–180.

[14] K. Ye and L.-H. Lim, “Fast structured matrix computations: tensor rank
and Cohn–Umans method”, preprint, (2016), http://arxiv.org/abs/1601.
00292.

2016 IEEE Information Theory Workshop (ITW)

