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Innocent looking problem

Problem (Minimal rank-1 matrix subspace)

Let A1, . . . ,Al ∈ Rm×n. Find smallest r such that there exist rank-1
matrices u1v>1 , . . . ,urv>r with

A1, . . . ,Al ∈ span{u1v
>
1 , . . . ,urv

>
r }.

NP-complete over Fq, NP-hard over Q [Håstad; 90].

Slight extension: NP-hard over R and C [L & Hillar; 09].

Convex relaxation along the lines of compressive sensing?

‖ · ‖1 ≈ ‖ · ‖0, ‖ · ‖∗ ≈ rank .

Ky Fan/nuclear/Schatten/trace norm,

‖A‖∗ =
∑rank(A)

i=1
σi (A).

[Fazel, Hindi, Boyd; 01], [Recht, Fazel, Parrilo; 09], [Candès, Recht;
09], [Zhu, So, Ye; 09], [Toh, Yun; 09].
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Tensors as hypermatrices

Up to choice of bases on U,V ,W , a 3-tensor A ∈ U ⊗ V ⊗W may be
represented as a hypermatrix

A = JaijkKl ,m,ni ,j ,k=1 ∈ Rl×m×n

where dim(U) = l , dim(V ) = m, dim(W ) = n if

1 we give it coordinates;

2 we ignore covariance and contravariance.

Henceforth, tensor = hypermatrix.

Scalar = 0-tensor, vector = 1-tensor, matrix = 2-tensor.

Cubical 3-tensor JaijkK ∈ Rn×n×n is symmetric if

aijk = aikj = ajik = ajki = akij = akji .

Set of symmetric 3-tensors denoted S3(R).
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Examples

Higher order derivatives of real-valued multivariate functions:

D(p)f (x) =

s
∂pf

∂xj1∂xj2 · · · ∂xjp

{n

j1,...,jp=1

.

grad f (x) ∈ Rn, Hess f (x) ∈ Rn×n, . . . , D(p)f (x) ∈ Rn×···×n.

Moments of a vector-valued random variable x = (x1, . . . , xn):

Sp(x) =
q

E (xj1xj2 · · · xjp )
yn

j1,...,jp=1
.

Cumulants of a vector-valued random variable x = (x1, . . . , xn):

Kp(x) =

u

v
X

A1t···tAq={j1,...,jp}

(−1)q−1(q − 1)!E

„ Q
j∈A1

xj

«
· · ·E

„ Q
j∈Aq

xj

«}

~
n

j1,...,jp=1

.
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Blaming the math
Wired: Gaussian copulas for CDOs.

NYT: normal market in VaR.

January 4, 2009

Risk Mismanagement

By JOE NOCERA

THERE AREN’T MANY widely told anecdotes about the current financial crisis, at least not yet, but there’s
one that made the rounds in 2007, back when the big investment banks were first starting to write down
billions of dollars in mortgage-backed derivatives and other so-called toxic securities. This was well before
Bear Stearns collapsed, before Fannie Mae and Freddie Mac were taken over by the federal government,
before Lehman fell and Merrill Lynch was sold and A.I.G. saved, before the $700 billion bailout bill was
rushed into law. Before, that is, it became obvious that the risks taken by the largest banks and investment
firms in the United States — and, indeed, in much of the Western world — were so excessive and foolhardy
that they threatened to bring down the financial system itself. On the contrary: this was back when the
major investment firms were still assuring investors that all was well, these little speed bumps
notwithstanding — assurances based, in part, on their fantastically complex mathematical models for
measuring the risk in their various portfolios.

There are many such models, but by far the most widely used is called VaR — Value at Risk. Built around
statistical ideas and probability theories that have been around for centuries, VaR was developed and
popularized in the early 1990s by a handful of scientists and mathematicians — “quants,” they’re called in
the business — who went to work for JPMorgan. VaR’s great appeal, and its great selling point to people
who do not happen to be quants, is that it expresses risk as a single number, a dollar figure, no less.

VaR isn’t one model but rather a group of related models that share a mathematical framework. In its most
common form, it measures the boundaries of risk in a portfolio over short durations, assuming a “normal”
market. For instance, if you have $50 million of weekly VaR, that means that over the course of the next
week, there is a 99 percent chance that your portfolio won’t lose more than $50 million. That portfolio could
consist of equities, bonds, derivatives or all of the above; one reason VaR became so popular is that it is the
only commonly used risk measure that can be applied to just about any asset class. And it takes into account
a head-spinning variety of variables, including diversification, leverage and volatility, that make up the kind
of market risk that traders and firms face every day.

Another reason VaR is so appealing is that it can measure both individual risks — the amount of risk
contained in a single trader’s portfolio, for instance — and firmwide risk, which it does by combining the
VaRs of a given firm’s trading desks and coming up with a net number. Top executives usually know their
firm’s daily VaR within minutes of the market’s close.
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Why not Gaussian

Log characteristic function

log E(exp(i〈t, x〉)) =
∞∑
|α|=1

i |α|κα(x)
tα

α!
.

Gaussian assumption equivalent to quadratic approximation:

∞ = 2.

If x is multivariate Gaussian, then

log E(exp(i〈t, x〉)) = i〈E(x), t〉+
1

2
t> Cov(x)t.

K1(x) mean (vector), K2(x) variance (matrix), K3(x) skewness
(3-tensor), K4(x) kurtosis (4-tensor),. . . .

Non-Gaussian data: Not enough to look at just mean and
covariance.
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Why not copulas

Nassim Taleb: “Anything that relies on correlation is charlatanism.”

Even if marginals normal, dependence might not be.
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For heavy tail phenomena, important to examine tensor-valued
quantities like kurtosis.
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Why not VaR

Paul Wilmott: “The relationship between two assets can never be
captured by a single scalar quantity.”

Multivariate f : Rn → R

f (x) = a0 + a>1 x + x>A2x +A3(x, x, x) + · · ·+Ak(x, . . . , x) + · · · ,

Hooke’s law in 1D: x extension, F force, k spring constant,

F = −kx .

Hooke’s law in 3D: x = (x1, x2, x3), elasticity tensor C ∈ R3×3×3×3,
stress Σ ∈ R3×3, strain Γ ∈ R3×3

σij =
∑3

k,l=1
cijklγkl .
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Numerical linear algebra

F = R or C. A ∈ Fm×n, b ∈ Fm, and r ≤ min{m, n}.

Rank and numerical rank Determine rank(A).

Linear system of equations Determine if Ax = b has a solution and if so
determine a solution x ∈ Fn.

Linear least squares problem Determine an x ∈ Fn that minimizes
‖Ax− b‖2.

Spectral norm Determine the value of
‖A‖2,2 := max‖x‖2=1‖Ax‖2 = σmax(A).

Eigenvalue problem If m = n, determine λ ∈ F and non-zero x ∈ Fn with
Ax = λx.

Singular value problem Determine σ ∈ F and non-zero x ∈ Fn, y ∈ Fm

with Ax = σy, A>y = σx.

Low rank approximation Determine Ar ∈ Fm×n with rank(Ar ) ≤ r and
‖A− Ar‖F = minrank(B)≤r‖A− B‖F .
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Numerical multilinear algebra?

Computing the spectral norm of a 3-tensor:

sup
x,y,z 6=0

|A(x, y, z)|
‖x‖2‖y‖2‖z‖2

.

Computing the spectral norm of a symmeric 3-tensor:

sup
x6=0

|S(x, x, x)|
‖x‖32

.

Computing a best rank-1 approximation to a tensor:

min
x,y,z
‖A − x⊗ y ⊗ z‖F .

Computing a best rank-1 approximation to a symmetric tensor:

min
x
‖S − x⊗ x⊗ x‖F .
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Numerical multilinear algebra?

Determine if a given value is a singular value of a 3-tensor

crit
x,y,z 6=0

A(x, y, z)

‖x‖3‖y‖3‖z‖3
.

Determine if a given value is an eigenvalue of a symmetric 3-tensor

crit
x6=0

S(x, x, x)

‖x‖33
.

Solving a system of bilinear equations in the exact sense

A(x, y, I ) = b

or approximating it in the least-squares sense

min
x,y
‖A(x, y, I )− b‖2.

Shorthand:

A(x, y, z) =
∑l ,m,n

i ,j ,k=1
aijkxiyjzjk , A(x, y, I ) =

∑l ,m

i ,j=1
aijkxiyj .

L.H. Lim (Berkeley) Most tensor problems are NP hard August 25, 2009 11 / 21



Tensor rank = Innocent looking roblem

Segre outer product is u⊗ v ⊗w := JuivjwkKl ,m,ni ,j ,k=1.

A decomposable tensor is one that can be expressed as u⊗ v ⊗w.

Definition (Hitchcock, 1927)

Let A ∈ Rl×m×n. Tensor rank is defined as

rank⊗(A) := min
{

r
∣∣ A =

∑r

i=1
σiui ⊗ vi ⊗wi

}
.

U ⊗ V ⊗W ' Hom(U,V ⊗W ).

Write A = [A1, . . . ,Al ] where A1, . . . ,Al ∈ Rm×n. Then

rank⊗(A) = min
{

r
∣∣ A1, . . . ,Al ∈ span{u1v

>
1 , . . . ,urv

>
r }
}
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Best low rank approximation of a matrix

Given A ∈ Rm×n. Want

argminrank(B)≤r‖A− B‖.

More precisely, find σi ,ui , vi , i = 1, . . . , r , that minimizes

‖A − σ1u1 ⊗ v1 − σ2u2 ⊗ v2 − · · · − σrur ⊗ vr‖.

Theorem (Eckart–Young)

Let A = UΣV> =
∑rank(A)

i=1 σiuiv
>
i be singular value decomposition. For

r ≤ rank(A), let

Ar :=
∑r

i=1
σiuiv

>
i .

Then
‖A− Ar‖F = minrank(B)≤r‖A− B‖F .

No such thing for tensors of order 3 or higher.
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Best low-rank approximation of a tensor

Given A ∈ Rl×m×n, find σi ,ui , vi ,wi , minimizing

‖A − σ1u1 ⊗ v1 ⊗w1 − σ2u2 ⊗ v2 ⊗w2 − · · · − σrur ⊗ vr ⊗wr‖.

Surprise: In general, existence of solution guaranteed only if r = 1.

Theorem (de Silva-L)

Let k ≥ 3 and d1, . . . , dk ≥ 2. For any s such that

2 ≤ s ≤ min{d1, . . . , dk},

there exists A ∈ Rd1×···×dk with rank⊗(A) = s such that A has no best
rank-r approximation for some r < s. The result is independent of the
choice of norms.

Symmetric variant: A ∈ S(Rn), find λi , vi minimizing

‖A − λ1v1 ⊗ v1 ⊗ v1 − λ2v2 ⊗ v2 ⊗ v2 − · · · − λrvr ⊗ vr ⊗ vr‖.

Also ill-behaved [Comon, Golub, L, Mourrain; 08].
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Best low-rank approximation of a tensor

Explanation: Set of tensors (resp. symmetric tensors) of rank (resp.
symmetric rank) ≤ r is not closed unless r = 1.

Another well behaved case: If σi ,ui , vi ,wi constrained to
nonnegative orthant, then a solution always exist [L & Comon; 09].

Nonnegative tensor approximations: General non-linear
programming algorithms, cf. [Friedlander & Hatz; 08] and many
others.

On-going work with Kojima and Toh: SDP algorithm for convex
relaxation of well-behaved cases.

Best rank-1 approximation of a symmetric tensor also NP-hard [L &
Hillar; 09]

min
x
‖S − x⊗ x⊗ x‖F .
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Variational approach to eigenvalues/vectors

S ∈ Rm×n symmetric.

Eigenvalues and eigenvectors are critical values and critical points of

x>Sx/‖x‖22.

Equivalently, critical values/points of x>Sx constrained to unit sphere.

Lagrangian:
L(x, λ) = x>Sx− λ(‖x‖22 − 1).

Vanishing of ∇L at critical (xc , λc) ∈ Rn × R yields familiar

Sxc = λcxc .
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Eigenvalues/vectors of a tensor

Extends to tensors [L; 05].

For x = [x1, . . . , xn]> ∈ Rn, write xp := [xp
1 , . . . , x

p
n ]>.

Define the ‘`p-norm’ ‖x‖p = (xp
1 + · · ·+ xp

n )1/p.

Define eigenvalues/vectors of S ∈ Sp(Rn) as critical values/points of
the multilinear Rayleigh quotient

S(x, . . . , x)/‖x‖pp.

Lagrangian
L(x, λ) := S(x, . . . , x)− λ(‖x‖pp − 1).

At a critical point
S(In, x, . . . , x) = λxp−1.
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Some observations

If S is symmetric,

S(In, x, x, . . . , x) = S(x, In, x, . . . , x) = · · · = S(x, x, . . . , x, In).

Defined in [Qi; 05] and [L; 05] independently.

Related to rank-1 approximation:

min
x
‖S − λx⊗ x⊗ x‖F

attained when
λ = max

‖x‖=1
〈S, x⊗ x⊗ x〉.

For p = 3, λ is an eigenvalue of S iff

x>(Si − λEi )x = 0, i = 1, . . . , n,

for some non-zero x. Here Si = [sijk ]nj ,k=1 and Ei = eie
>
i .
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Graph coloring as polynomial system

Found in various forms [Bayer; 82], [Lovász; 94], [de Loera; 95]. Form
below from [L & Hillar; 09].

Lemma

Let G be a graph. The 3n + |E | polynomials in 2n + 1 indeterminates{
xiyi − z2, yiz − x2

i , xiz − y2
i , i = 1, . . . , n,

x2
i + xixj + x2

i , {i , j} ∈ E ,

has a common nontrivial complex solution if and only if the graph G is
3-colorable.
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Tensor eigenvalue is NP-hard

Problem (SymmQuadFeas)

Let S = JsijkK ∈ S3(Rn), i.e. sijk = sikj = sjik = sjki = skij = skji . Let
Gi (x) = x>Six for i = 1, . . . , n be the associated n homogeneous, real
quadratic forms. Determine if the system of equations {Gi (x) = ci}ni=1 has
a nontrivial real solution 0 6= x ∈ Rn.

Theorem (L & Hillar; 09)

Graph coloring is polynomial reducible to SymmQuadFeas.

Corollary

Given symmetric tensor S ∈ S3(Rn).

1 Given λ ∈ R. NP hard to check if λ is eigenvalue of S.

2 NP hard to find a best rank-1 approximation λx⊗ x⊗ x to S.
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Caveat on complexity theory

Different notions of NP-hardness:
I Cook-Karp-Levin (traditional);
I Blum-Shub-Smale;
I Valiant.

Real versus bit complexity
I Real complexity: number of field operations required to determine

feasibility as a function of n.
I Bit complexity: if matrices A has rational entries, number of bit

operations necessary as a function of the number of bits required to
specify all the aijk .

I E.g. multiply two integers of size N, i.e. log N bits: real complexity is
O(1), bit complexity is O(log N log log N).
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