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objectives

give a taste of algebraic geometry

with minimum prerequisites

provide pointers for a more serious study
not intended to be a formal introduction

tailored specially for this audience:

e assumes familiarity with linear algebra, matrix analysis
e maybe even some operator theory, differential geometry
e but less comfortable with (abstract) algebra

promise: we shall see lots of matrices and linear algebra



Overview




why algebraic geometry

¢ possibly the most potent tool in modern mathematics
¢ applications to other areas of mathematics
Fermat’s last theorem
soliton solutions of KdV
many more ..., but not so surprising
e applications to other areas outside of mathematics
phylogenetic invariants
chemical reaction networks
mirror symmetry
Markov bases
sum-of-squares polynomial optimization
geometric complexity theory
Goppa code
elliptic curve cryptosystem
pole placement
learning Gaussian mixtures
e why should folks in linear algebra/matrix theory care?



solves long standing conjectures

A, B € C™" Hermitian, I,J,K C {1,...,n},

ZKEK A el = Ziel A= ZjeJ A(B)

holds iff Schubert cycle sk is component of s, - s,
[Klyachko, 1998], [Knutson-Tao, 1999]

no approximate algorithm for 2 x 2 matrix product
in fewer than 7 multiplications [Landsberg, 2006]

e involve Schubert and secant respectively
o for now, = affine variety = zero loci of polynomials

{(x1,...,xn) € C": Fj(x1,...,Xxp) =0forallj e J}

Fi € C[xq,. .., xn], J arbitrary index set



view familiar objects in new light

solutions to linear equation
{xe C": Ax =Db}

where Ac C™" b e C™
rank-r matrices

{X e C™":rank(X) < r}
rank-1 matrices
{(XeC™n: X=uv"}
rank-1 symmetric matrices
{(XeC™n. X =w'}
n-dimensional subspaces in C"

{X € C™" : rank(X) = n}/ GLn(C)



gain new insights

rank-r matrices
lines through r points on {X € P™" : rank(X) = 1}
singular matrices
{X e P™":rank(X) = 1}¥ = {X € P™" . det(X) = 0}
vector spaces of matrices of low rank
set of k-planes in {X € P™*" : rank(X) < r}

projective n-space: P" = (C"t1\{0})/~ with equivalence
relation (xo, ..., Xn) ~ (AXo, ..., AXp) for A € C*



encouraging observation

if you know linear algebra/matrix theory, you
have seen many examples in algebraic geometry

more such examples

you have already encountered quite a bit of
algebraic geometry



zero loci of matrices

2 x 3 rank-1 Hankel matrices

e oy 3. Xo X1 Xe|\ _
{[xo.x1.x2.x3]eIP’ .rank<[x1 . X3D_1}

2 x d rank-1 Hankel matrices

[Xo:X1:~-:Xd]GIP>d:rank<[XO S Xd1]>:1}
X1 X2 -+ Xg—1 Xd
(d —k+1) x (k+ 1) rank-1 Hankel matrices
Xo X1 Xo - Xk
Xy Xp oo Xk
[Xo: X :---:xg)€P:rank | | X2 o M) | =
feeeee e e Xy
Xd—k =0 Xd—1 ‘;(d1



algebraic groups

e elliptic curve: y? = (x — a)(x — b)(x — ¢),

X—a 0 y
E={(x,y)eC?:det|| © 1 Jbto+x| | =0
y Z(b+c)—x —}(b—c)?

E is abelian variety, i.e., variety that is abelian group
generalization: algebraic groups
multiplication/inversion defined locally by rational functions

two most important classes:

abelian varieties
linear algebraic groups

examples:
GLy(F) = {X € F™" . det(X) # 0}
SLy(F) ={X e F™" . det(X) = 1}
PGL,(F) = GLA(F)/{\: X € F*}



linear algebraic groups

char(F) # 2
g symmetric nondegenerate bilinear

On(F, q) = {X € GLy(F) : g(Xv, Xw) = q(v,w)}
g symmetric nondegenerate bilinear
SOn(F, q) = {X € SLa(F) : q(Xv, XW) = q(v, W)}
g skew-symmetric nondegenerate bilinear
Sp2n(F, ) = {X € SLa(F) : q(Xv, Xw) = q(v,w)}
q(v,w) = v'w, get Oy(F), SO,(F), Spo,(F),

PO (IF) = On(F)/{£/}, PSOgn(FF) = SOz (FF)/{+£/}



comes in different flavors

varieties over C

semialgebraic sets & varieties over R,
e.g. hyperbolic cone, A - 0, b € R”,

{xeR": x"Ax < (b"x)?, b"x > 0}

convex sets with algebraic
structure, e.g. spectrahedron, Ag, ..., A, € S™M,

{Ag+ X1A1 + -+ xpAp = 0: x € R"}

varieties over (R U {oo}, min, +),
e.g. tropical linear space, tropical polytope, tropical
eigenspace, tropical Grassmannian
diophantine geometry (over Q, Qp, Fq, Fg((1)), Z,
etc), noncommutative algebraic geometry, etc



going beyond matrices

provides groundwork to go beyond linear algebra and matrices
fZV1X-~-><Vd—>W,

f(V1,...,OéUk+ﬁWk,...,Vd):Ozf(V1,...,Uk,...,Vd)
+ BF(V1, .. Wk, ..., Vg)

(aij) c (Cm><n7 (aijk) c Cl><m><n7 (aijkl) c (Cl><m><n><p’ .
a'x, Ax, x" Ax, x" Ay, to
n n n n
f(x) = a+Z b,'X,'—i-Z CiiXiXj+ Z d,'ij,'Xij-i- Z CjjiI Xi Xj X X+ - -
i=1 ij=1 i.j,k=1 i.j,k,1=1

family of vector spaces (later)



advertisement
L.-H. Lim, Lectures on Tensors and Hypermatrices

tensor, multilinear functions, hypermatrices, tensor fields,
covariance & contravariance, symmetric hypermatrices &
homogeneous polynomials, skew-symmetric hypermatrices &
exterior forms, hypermatrices with partial skew-symmetry/
symmetry & Schur functors, Dirac & Einstein notations

tensor rank, multilinear rank & multilinear nullity,
rank-retaining decompositions, border rank, generic & typical
rank, maximal rank, nonexistence of canonical forms,
symmetric rank, nonnegative rank, Waring rank, Segre,
Veronese, & Segre-Veronese varieties, secant varieties

symmetric eigenvalues & eigenvectors,
eigenvalues & eigenvectors, singular values & singular
vectors, nonnegative hypermatrices, Perron-Frobenius
theorem, positive seimidefinite & Gram hypermatrices

spectral norm, nuclear norm,
Holder p-norms, geometric hyperdeterminant, combinatorial
hyperdeterminant, tensor products of other objects: modules,
Hilbert space, Banach space, matrices, operators,
representations, operator spaces, computational complexity



advertisement

phylogenetic invariants
fluorescence spectroscopy, matrix product state DMRG
computational complexity, quantum information theory

self-concordance, higher-order optimality conditions,
polynomial optimization

elasticity, piezoelectricity, X-ray crystallography

quantum mechanics (state space of multiple quantum
systems), statistical mechanics (Yang-Baxter equations),
particle physics (quark states), relativity (Einstein equation)

antenna array processing, blind source separation,
CDMA communication

multivariate moments and cumulants, sparse recovery and
matrix completion
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Affine Varieties
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basic and not-so-basic objects

subsets of C" cut out by polynomials

subsets of P cut out by homogeneous
polynomials

open subsets of projective varieties
affine varieties glued together
affine varieties with ‘non-closed points’ added
affine schemes glued together
schemes C algebraic spaces C Deligne—Mumford
stacks C algebraic stacks C stacks

but to a first-order approximation,
algebraic geometry is the study of algebraic varieties

just like differential geometry is, to a first-order approximation,
the study of differential manifolds



what is an algebraic variety

objects locally resembling Euclidean spaces
objects locally resembling affine varieties

or:
open subsets glued together
affine varieties glued together
differences:
» machinery for gluing things
usually charts/atlases/transition maps
usually

2 dimension
glue together subsets of same dimension
can have different dimensions
neatest tool for gluing things — works for Riemann
surfaces, manifolds, algebraic varieties, schemes, etc



what is an affine variety

e zero loci of polynomials, i.e., common zeros of a collection
of complex polynomials in n variables {F;};c,,

{(x1,...,x2) € C": Fi(xq,...,Xy) =0forall j € J}

J arbitrary index set, can be uncountable

e notation: V({Fj}jecy) or V(Fy, ..., Fp) if finite

e caution: actually these are just Zariski closed subsets of
C". the of affine variety will come later

e may define manifolds as subsets of R” but unwise; want
affine varieties to be independent of embedding in C" too

e simplest examples

@ =V(1)
{(at,...,an)} =V(x1 — ay,...,Xn — an)
V(ao + aix1 + - + anXn)

V(F)

C" = V(0)



more affine varieties

Ve +y2 = 22) = {




more affine varieties

V(x? + y? — Z2 ax + by + ¢2)

hyperbola

-2

V(y? —x3+x—a)fora=0,0.1,0.2,0.3,0.4,05



earlier examples revisited

solutions to linear equation
{xeC": Ax=b} = V({apyxi+ - -+ainXn—bi}i=1,..m)
rank-r matrices
{X € C™":rank(X) < r} = V({all (r+1)x(r+1) minors})
determinant-1 matrices
SL,(C) = {X e C™":det(X) =1} = V(det —1)
e in algebraic geometry, we identify C™*" = C™"

e why did we say GL,(C) = {X € C"™" : det(X) # 0} is an
affine variety?



non-examples

assume Euclidean/norm topology, following not affine varieties:
B.(x)={xeC": x| <e}
Be[x] = {x € C": x| < ¢}
Un(C) ={X e C™: X*X =1}
GLy(C) = {X € C™" : det(X) # 0}
C* = C\{0}, C*\{(0,0)}
S D B.(x) forsomee >0
{(x,y)eC?:y=¢"}
e GL,(C) and C* affine varieties via actual definition
e complex conjugation is not an algebraic operation
e inner product (x,y) = >"7_, x;,; not polynomial
e every affine variety is closed in Euclidean topology
e converse almost never true
¢ need another topology: Zariski



