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Current affairs

Question

What lesson in multilinear algebra did we learn from the current global
economic/financial crisis?
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Current affairs

Question

What lesson in multilinear algebra did we learn from the current global
economic/financial crisis?

@ One answer: it's important to look beyond the quadratic term.

e Taylor approximation: multivariate f(x,...,x,) approximated as

f(x)~ ap +a; x +x' Apx + Az(x,x,X) 4+ - 4+ Ag(X, ..., x) + - -

a € R,a; € R", Ay € R™" A3 ¢ R0,
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@ One answer: it's important to look beyond the quadratic term.

e Taylor approximation: multivariate f(x,...,x,) approximated as

f(x)~ ap+a; x+x' Aox+ Az(x, %, %) + - -- + Ag(x,...,x) + - -

a € Rya; e R", Ay € R™M A3 € RMMxn

@ Numerical linear algebra: d = 2.
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Current affairs

Question

What lesson in multilinear algebra did we learn from the current global
economic/financial crisis?

@ One answer: it's important to look beyond the quadratic term.

e Taylor approximation: multivariate f(x,...,x,) approximated as

f(x)~ ap+a; x+x' Aox+ Az(x, %, %) + - -- + Ag(x,...,x) + - -

a € Rya; e R", Ay € R™M A3 € RMMxn
@ Numerical linear algebra: d = 2.

@ Numerical multilinear algebra: d > 2.
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January 4, 2009

Risk Mismanagement

By JOE NOCERA

‘The story that I have to tell is marked all the way through by a persistent tension between those who assert
that the best decisions are based on quantification and numbers, determined by the patterns of the past,
and those who base their decisions on more subjective degrees of belief about the uncertain future. Thisis a
controversy that has never been resolved.’

— FROM THE INTRODUCTION TO “AGAINST THE GODS: THE REMARKABLE STORY OF RISK,” BY
PETER L. BERNSTEIN

THERE AREN'T MANY widely told anecdotes about the current financial crisis, at least not yet, but there’s
one that made the rounds in 2007, back when the big investment banks were first starting to write down
billions of dollars in mortgage-backed derivatives and other so-called toxic securities. This was well before
Bear Stearns collapsed, before Fannie Mae and Freddie Mac were taken over by the federal government,
before Lehman fell and Merrill Lynch was sold and A.1.G. saved, before the $700 billion bailout bill was
rushed into law. Before, that is, it became obvious that the risks taken by the largest banks and investment
firms in the United States — and, indeed, in much of the Western world — were so excessive and foolhardy
that they threatened to bring down the financial system itself. On the contrary: this was back when the
major investment firms were still assuring investors that all was well, these little speed bumps
notwithstanding — assurances based, in part, on their fantastically complex mathematical models for
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Risk managers use VaR to quantify their firm’s risk positions to their board. In the late 1990s, as the use of
derivatives was exploding, the Securities and Exchange Commission ruled that firms had to include a
quantitative disclosure of market risks in their financial statements for the convenience of investors, and
VaR became the main tool for doing so. Around the same time, an important international rule-making
body, the Basel Committee on Banking Supervision, went even further to validate VaR by saying that firms
and banks could rely on their own internal VaR calculations to set their capital requirements. So long as
their VaR was reasonably low, the amount of money they had to set aside to cover risks that might go bad
could also be low.

Given the calamity that has since occurred, there has been a great deal of talk, even in quant circles, that
this widespread institutional reliance on VaR was a terrible mistake. At the very least, the risks that VaR
measured did not include the biggest risk of all: the possibility of a financial meltdown. “Risk modeling
didn’t help as much as it should have,” says Aaron Brown, a former risk manager at Morgan Stanley who
now works at AQR, a big quant-oriented hedge fund. A risk consultant named Marc Groz says, “VaR is a
very limited tool.” David Einhorn, who founded Greenlight Capital, a prominent hedge fund, wrote not long
ago that VaR was “relatively useless as a risk-management tool and potentially catastrophic when its use
creates a false sense of security among senior managers and watchdogs. This is like an air bag that works all
the time, except when you have a car accident.” Nassim Nicholas Taleb, the best-selling author of “The
Black Swan,” has crusaded against VaR for more than a decade. He calls it, flatly, “a fraud.”

How then do we account for that story that made the rounds in the summer of 2007? It concerns Goldman
Sachs, the one Wall Street firm that was not, at that time, taking a hit for billions of dollars of suddenly
devalued mortgage-backed securities. Reporters wanted to understand how Goldman had somehow
sidestepped the disaster that had befallen everyone else. What they discovered was that in December 2006,
Goldman’s various indicators, including VaR and other risk models, began suggesting that something was
wrong. Not hugely wrong, mind you, but wrong enough to warrant a closer look.

“We look at the P.& L. of our businesses every day,” said Goldman Sachs’ chief financial officer, David
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It's not every day that an options trader becomes famous by writing a book, but that's what Taleb did, first
with “Fooled by Randomness,” which was published in 2001 and became an immediate cult classic on Wall
Street, and more recently with “The Black Swan: The Impact of the Highly Improbable,” which came out in
2007 and landed on a number of best-seller lists. He also went from being primarily an options trader to
what he always really wanted to be: a public intellectual. When I made the mistake of asking him one day
whether he was an adjunct professor, he quickly corrected me. “I'm the Distinguished Professor of Risk
Engineering at N.Y.U.,” he responded. “It's the highest title they give in that department.” Humility is not
among his virtues. On his Web site he has a link that reads, “Quotes from ‘The Black Swan’ that the
imbeciles did not want to hear.”

“How many of you took statistics at Columbia?” he asked as he began his lecture. Most of the hands in the
room shot up. “You wasted your money,” he sniffed. Behind him was a slide of Mickey Mouse that he had
put up on the screen, he said, because it represented “Mickey Mouse probabilities.” That pretty much sums
up his view of business-school statistics and probability courses.

Taleb’s ideas can be difficult to follow, in part because he uses the language of academic statisticians; words
like “Gaussian,” “kurtosis” and “variance” roll off his tongue. But it’s also because he speaks in a kind of
brusque shorthand, acting as if any fool should be able to follow his train of thought, which he can’t be
bothered to fully explain.

“This is a Stan O’'Neal trade,” he said, referring to the former chief executive of Merrill Lynch. He clicked to
a slide that showed a trade that made slow, steady profits — and then quickly spiraled downward for a giant,
brutal loss.

“Why do people measure risks against events that took place in 1987?" he asked, referring to Black Monday,
the October day when the U.S. market lost more than 20 percent of its value and has been used ever since as
the worst-case scenario in many risk models. “Why is that a benchmark? | call it future-blindness.

“If you have a pilot flying a plane who doesn’t understand there can be storms, what is going to happen?” he
asked. “He is not going to have a magnificent flight. Any small error is going to crash a plane. This is why
the crisis that happened was predictable.”
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Univariate cumulants

Mean, variance, skewness and kurtosis describe the shape of a univariate
distribution.

(+) Positively Skewed

Distribution {(+} Leptokurtic

(0} Mesokurtic
{Normalj

(-) Platykurtic

(-} Negatively Skewed
Distribution
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Covariance matrices

The covariance matrix partly describes the dependence structure of a
multivariate distribution.

e PCA
@ Gaussian graphical models

@ Optimization—bilinear form computes variance

But if the variables are not multivariate Gaussian, not the whole story.
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Even if marginals normal, dependence might not be

1000 Simulated Clayton(3)-Dependent N(0,1) Values

o Bk N W A~ O

X2 ~N(0,1)

X1 ~N(0,1)

A
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Covariance matrix analogs: multivariate cumulants

@ The cumulant tensors are the multivariate analog of skewness and
kurtosis.

@ They describe higher order dependence among random variables.
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Recap: tensors as hypermatrices

Up to choice of bases on U, V, W, atensor Ac U® V ® W may be
represented as a hypermatrix

_ I,m,n Ixmxn
A= [[aijk]]i,j,kzl eR

where dim(U) = I,dim(V) = m,dim(W) = n if
@ we give it coordinates;

@ we ignore covariance and contravariance.

Henceforth, tensor = hypermatrix.
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Recap: multilinear matrix multiplication

@ Matrices can be multiplied on left and right: A € R™*" X € RP*™,
Y € R9*",

C=(X,Y) A= XAYT € RP*9,
Cap = Zi,j’:l xa,-yﬁja,-j.

@ 3-tensors can be multiplied on three sides: A € R*™xn X ¢ RP*/
Y e RI*™M Z € R™*",

C=(X,Y,Z) - AecRPXI*r
I,m,n
Caﬁ»y = Zi,j,kZl xa,-ygjzvka,-jk.

@ Correspond to change-of-bases transformations for tensors.

@ Define ‘right’ (covariant) multiplication by
(X,Y,2) - A=A-(XT, YT, Z").

L.-H. Lim (ICM Lecture) Numerical Multilinear Algebra Il January 5-7, 2009 12 / 46



Recap: symmetric tensors

Cubical tensor [aji] € R"*™*" is symmetric if

djjk = dikj = djik = djki = Akij = Akji-

For order p, invariant under all permutations o € &, on indices.

SP(IR™) denotes set of all order-p symmetric tensors.

Symmetric multilinear matrix multiplication C = (X, X, X) - A where

I,m;n
C = E XoiXBi X~k Ak -
afy Pjk=1" Bj%vk4ijk
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Examples of symmetric tensors

@ Higher order derivatives of real-valued multivariate functions.

@ Moments of a vector-valued random variable x = (x1,...,xp):
n
SP(X) = [[E(XJlsz e ij)]]jhm’jpzl'

e Cumulants of a random vector x = (xi, ..., Xp):

fcp(x)=|, > o e( 1) e Hx)N

. . jeA
A A=t o R PR
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Cumulants

@ In terms of log characteristic and cumulant generating functions,

oP
Kojywjp(X) = 60t log E(exp((t,x))
p
oP

t=0

= (-1)P — log E(exp(i(t, x))

oy, --- 9t

t=0
@ In terms of Edgeworth expansion,
og E(explit:) = 3 110 (), log E(exp({t,x)) = Zm()g
a=(ai,...,ap) is a multi-index, t&* = t[" -+ t3", al = aq! - -l
@ For each x, Kp(x) = [rj...j,(x)] € SP(R") is a symmetric tensor.
o [Fisher, Wishart; 1932]
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Measures useful properties

e For univariate x, the cumulants Ky(x) for d =1,2,3,4 are

>

>
>
>

expectation x; = E(x),
variance kj; = o2,
skewness n,-,-,-/nf}ﬂ, and
kurtosis Ii,’,’,‘,’/l'il%-.

@ The tensor versions are the multivariate generalizations of ;.

@ They provide a natural measure of non-Gaussianity.
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Properties of cumulants

Multilinearity: If x is a R"-valued random variable and A € R™*"
Ko(Ax) = (A, ..., A) - Kp(x).
Additivity: If x1, ..., X, are mutually independent of yi, ..., yk, then
Kp(x1+y1,- Xk +yi) = Kp(xa, . xk) +Kp(yr, - -+, Yk)-

Independence: If | and J partition {ji,...,jp} so that x; and x, are
independent, then

/@J-I...J-p(x) =0.

Support: There are no distributions where

#0 3<p<n,
Kp(x){:() p>n
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Examples of cumulants

Univariate: Kp(x) for p=1,2,3,4 are mean, variance, skewness,
kurtosis (unnormalized)

Discrete: x ~ Poi(\), Kp(x) = A for all p.

Continuous: x ~ U([0,1]), Kp(x) = Bp/p where B, = pth Bernoulli
number.

Nonexistent: x ~ t(3), Kp(x) does not exist for all p > 3.
Multivariate: C1(x) = E(x) and K2(x) = Cov(x).
Discrete: x ~ Mult(n,q),

_ or t t,
Rjrip(X) = N g log(que™™ + - + qre’™™)

Continuous: x ~ N(u, X), Kp(x) = 0 for all p > 3.

tr,...,tx=0
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Estimation of cumulants

e How do we estimate K,(x) given multiple observations of x?

@ Central and non-central moments are

1 1
S -\n A n
m——fE Xt — X S——*E X etc.
n n t(t )a n n ¢ to

@ Cumulant estimator Iap(x) for p=1,2,3,4 given by

A N 1A
Ri mj = =5i
A _ n Ao 1 . l/\-/\-
Rij = iy = 55 — 55%)
2
~ _ n A n _ 1 i/\_,\_/\
Rik = D=z Mik = Gy ik — 5 (88 + &3 + 385) + 5 883]

Rike = g (0 + 1) e — (n—1)(m,,mkz+m,km,e+m,em,k)]
)Si

= W[(n + 1)3jke — “2(5i8jke + 8i8ike + Sk8jc + SeSik)

n
~ =1 (38ke + 3iSje + Sie8k) + (§jk ~+ Sje + Ske)
+§j2(§ik + S0 + 8ke) + 80 (85 + Sie + i) + 87 (85 + S + 8)

6 AnA A
— 558i85,58].
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In terms of matrix multiplication

Data often presented as Y € R™*", e.g. gene X microarray, text x
document, person X image, user X movie, webpage x webpage etc.

“And so we now have eigengenes, eigenarrays and eigenexpression in the world of
transcriptomics, eigenproteins and eigenprofiles in proteomics, eigenpathways in
metabolomics, and eigenSNPs in genetics. There are also eigenimages and
eigenfaces in image analysis, and eigenpatterns in seismology. In fact, if you put any
word you like after eigen- into a Google query box and hit return, | guarantee a

result. Yes, even eigenresult and eigenGoogle!”
— Terry Speed, IMS Bulletin, April 2008

Mean centered, otherwise y = x — E(x).
’61()’) =0.

Ka(y) = 23YYT =25V, Y) o
K3(y) = gy (Y- YY) - Zoxoxan:

Tnxnxn = [6;] € S*(R") is the ‘Kronecker delta tensor’, i.e. 6% = 1
if i =j =k and d; = 0 otherwise.
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Factor analysis

@ Linear generative model
y=As+e

noise € € R™, factor loadings A € R™*", hidden factors s € R’,

observed data y € R™.

@ Do not know A, s, €, but need to recover s and sometimes A from
multiple observations of y.

e Time series of observations, get matrices Y = [y1,...,¥n],
S=1Is1,...,8q), E=[e1,...,€p], and

Y =AS+E.

Factor analysis: Recover A and S from Y by a low-rank matrix
approximation Y ~ AS
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Principal and independent components analysis

Principal components analysis: s Gaussian,

Ka(y) = QMQ"T = (Q, Q) - A,

Az =~ K2(s) diagonal matrix, Q € O(n, r), [Pearson; 1901].

Independent components analysis: s statistically independent entries,
Gaussian

Ko(y) =(Q,...,Q)- Ny, p=2,3,...,

A, = K,(s) diagonal tensor, @ € O(n, r), [Comon; 1994].
What if

@ s not Gaussian, e.g. power-law distributed data in social networks.
@ s not independent, e.g. functional components in neuroimaging.

@ £ not white noise, e.g. idiosyncratic factors in financial modelling.
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Principal cumulant components analysis
@ Note that if € = 0, then
Koly) = Kp(Qs) = (Q, ..., Q) - Kp(s).

@ In general, want principal components that account for variation in all
cumulants simultaneously

Mingeo(n.). coese(r) D @pllKp(¥) = (@, Q) Gl

o C, ~ K,(s) not necessarily diagonal.
@ Appears intractable: optimization over infinite-dimensional manifold

nrxH SP(R").

@ Surprising relaxation: optimization over a single Grassmannian
Gr(n, r) of dimension r(n—r),

maxgecr(nn Y, @lKp(¥) - (Q.-- QI

@ In practice co = 3 or 4.
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Recap: tensor ranks
e Matrix rank. A € R™*"
rank(A) = dim(spang{Ae1,...,Aen})  (column rank)
= dim(spang{Aie,...,Ame})  (row rank)
=min{r|A=Y"_ uv} (outer product rank).

o Multilinear rank. A € R"™*™*" rankg(A) = (r(A), n(A), r3(A)),

ri(A) = dim(spang{Aiee, - - -, Ales})
ra(A) = dim(spang{Aeie, - - -, Aeme })
r3(A) = dim(spang{Aee1, - - -, Aeen})
e Outer product rank. A € R/xmxn,
rankg(A) = min{r | A=3"7_ju; ® v; ® w;}
whereu®@vew: = [[Ui‘/jWk]]f':JTLn:r
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Recap: matrix EVD and SVD

@ Rank revealing decompositions.

e Symmetric eigenvalue decomposition of A € S?(R"),
r
A=VAVT =37 Ao,

where rank(A) = r, V € O(n) eigenvectors, A eigenvalues.

e Singular value decomposition of A € R™*",
A=UsVT =37 suiev,

where rank(A) = r, U € O(m) left singular vectors, V € O(n) right
singular vectors, X singular values.

e Ditto for nonnegative matrix decomposition.
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Recap: one plausible EVD and SVD for hypermatrices

@ Rank revealing decompositions associated with the outer product
rank.

o Symmetric outer product decomposition of A € S3(R"),
r
A= Zi:l AV @ V; @ V;

where ranks(A) = r, v; unit vector, A\; € R.

e Outer product decomposition of A € R/*m*",
r
A= Zizlaiui RV @ W,
where rankg(A) = r, u; € R v; € R™ w; € R” unit vectors, o; € R.

o Ditto for nonnegative outer product decomposition.
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Recap: another plausible EVD and SVD for hypermatrices

@ Rank revealing decompositions associated with the multilinear rank.

e Singular value decomposition of A € R/*m*",
A=(U,V,W)-C

where rankg(A) = (r1, 2, 13), U € R™*1, vV € R™*2 W € R*5
have orthonormal columns and C € Rt x"n2%’s,

e Symmetric eigenvalue decomposition of A € S3(R"),
A=(U,U,U)-C

where rankg(A) = (r, r,r), U € R"™" has orthonormal columns and
C € S3(R").
@ Ditto for nonnegative multilinear decomposition.
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Outer product approximation is ill-behaved

@ Approximation of a homogeneous polynomial by a sum of powers of
linear forms (e.g. Independent Components Analysis).

o Let x,y € R™ be linearly independent. Define for n € N,
p
A,:=n [x + y] — nx®P
n
@ Define
A=xQy® Qy+y@x@ - Qy+: - +yQy®- - Qx

@ Then ranks(A,) < 2, ranks(A) > p, and

lim A, = A.

n—oo

@ See [Comon, Golub, L, Mourrain; 08] for details.
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Happens to operators too

@ Approximation of an operator by a sum of Kronecker product of
lower-dimensional operators (e.g. Numerical Operator Calculus).

@ For linearly independent operators P;, Q; : V; — W;, i =1,2,3, let
D:-VioVor V;— W ® W) ® Ws be

D=PQdQB+QUQP;+Q® @ P;.

o If finite-dimensional, then ‘®" may be taken to be Kronecker product
of matrices.

@ Forne N,
1 1 1
sznFﬁnﬂ4®Pﬁ+#¥P4%+nQ4—Mﬁ@%@%.

@ Then
lim D, =1D.

n—oo
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Some geometric notions

@ Secants of Veronese in SP(R") — not closed, not irreducible, difficult
to study.

@ Symmetric subspace variety in SP(R") — closed, irreducible, easy to
study.

o Stiefel manifold O(n, r): set of n x r real matrices with orthonormal
columns. O(n, n) = O(n), usual orthogonal group.

e Grassman manifold Gr(n, r): set of equivalence classes of O(n, r)
under left multiplication by O(n).

e Parameterization of SP(R") via
Gr(n, r) x SP(R") — SP(R™).
@ More generally

6.0 < T, ) ~ T
p=1 p1
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From Stieffel to Grassmann
e Given A € SP(R"), some r < n, want

minXEO(n,r), CeSP(RN) HA - (Xv s 7X) ’ CHFv

Unlike approximation by secants of Veronese, subspace approximation
problem always has an globally optimal solution.
@ Equivalent to

maxxco(nn (X, ..., XT) - AllF = maxxco(mn A (X, ..., X)|F.
@ Problem defined on a Grassmannian since
[A-(X,... . X)lF =4 (XQ,..., XQ)|F,

for any Q € O(r). Only the subspaces spanned by X matters.
Equivalent to

MaxxeGr(n,r) ||-’4 ’ (Xv ce 7X)||F :

@ Once we have optimal X, € Gr(n, r), may obtain C, € SP(R") up to
O(n)-equivalence,
C.=(X!,....x")- A
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Coordinate-cycling heuristics

o Alternating Least Squares (i.e. Gauss-Seidel) is commonly used for
minimizing
W(X,Y.2) = A (XY, 2)|7

for A € R/*™*n cycling between X, Y, Z and solving a least squares
problem at each iteration.

e What if A € S3(R") and
O(X) = A (X, X, X)|3?
@ Present approach: disregard symmetry of A, solve W(X, Y, Z), set

upon final iteration.

@ Better: L-BFGS on Grassmannian.
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Newton /quasi-Newton on a Grassmannian

o Objective ® : Gr(n,r) — R, &(X) = ||A- (X, X, X)||z.
e Tx tangent space at X € Gr(n,r)

R™SAeTx <« A'X=0

@ Compute Grassmann gradient Vo € Tx.
@ Compute Hessian or update Hessian approximation

H:AeTx - HA € Tx.

© At X € Gr(n,r), solve
HA = -Vo

for search direction A.
© Update iterate X: Move along geodesic from X in the direction given
by A.
o [Arias, Edelman, Smith; 1999], [Eldén, Savas; 2008], [Savas, L.;
2008].
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BFGS on Grassmannian

The BFGS update

Hisks) Hi  yry)

Hi+1 = Hi —
s, Hisk YL Yk

where

Sk = Xk+1 — Xk = Pk,
Yk = ka-i-l — ka.

On Grassmannian the vectors are defined on different points belonging to
different tangent spaces.
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Different ways of parallel transporting vectors

X € Gr(n,r), A1, Ap € Tx and X(t) geodesic path along A;
o Parallel transport using global coordinates
Az(t) = TAl(t)Az

we have also
AlZXJ_Dl and AzZXLD2

where X, basis for Tx. Let X(t), be basis for Tx(y).

o Parallel transport using local coordinates

Ag(t) = X(t)J_D2.
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Parallel transport in local coordinates

All transported tangent vectors have the same coordinate representation in
the basis X(t) at all points on the path X(t).

Plus: No need to transport the gradient or the Hessian.
Minus: Need to compute X(t) .
In global coordinate we compute
© Tiy1 2 sk =ty Ta,(tk)Pk
© Tyi13yk = Vi1 — Ta, (te) Vi
o Ta,(ti)Hx T&:(tk) t Tk — T

Hisks, Hi  ykyj
Hi+1 = Hi — . .

T T
S, Hiksk Yy Yk
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BFGS

Compact representation of BFGS in Euclidean space:

-7 T o T
Hi = Ho + [Sk HoY«] [Rk (Dt Yy HoYioR, R ] [ > ]

“1 T
where
Sk =[s0s---sSk-1],
Yk — [yO: o 7yk—1] )
Dy = diag |sg Yo, - - -751——1Yk—1] ,
SJYO 5@1 SQ—FYk—l

0 sjy1 -+ S;Yk-1
Ry = . ! ' .

0 0 s| iYk-1
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L-BFGS

Limited memory BFGS [Byrd et al; 1994]. Replace Hy by ~yx/ and keep the
m most resent s; and yj,

R (D +vY,)YIRY —RT1T S)
Hie = + [Sk v Y] [ v (D« _Z}k_lk KR Ok w#ﬁj
k

where

Sk = [Skems -+, Sk-1] ,
Y= Yk—ms---s¥Yk-1],

. T T
Dk = dlag Sk—mY¥Yk—m>--- ask—lyk—l] )
T T T
Si_mYk—m _?_k_mYk—m—&—l Tt _?_k_mYk—l
R 0 Sk_mi1Yk—m+1l ' S pmi1Yk—1
k = . i )
T
0 0 s 1Yk
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L-BFGS on the Grassmannian

@ In each iteration, parallel transport vectors in Sk and Y) to Ty, ie.

perform B B

where T is the transport matrix.

@ No need to modify Ry or Dy
(u,v) = (Tu, Tv)

where u,v € Ty and Tu, Tv e Tyg.

@ Hy nonsingular, Hessian is singular. No problem T, at x, is invariant
subspace of Hy, ie. if v € Ty then Hyv € Ty.

@ [Savas, L.; 2008]
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Convergence

@ Compares favorably with Alternating Least Squares.
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Higher order eigenfaces

Principal cumulant subspaces supplement varimax subspace from PCA.
Take face recognition for example, eigenfaces (p = 2) becomes
skewfaces (p = 3) and kurtofaces (p = 4).

o Eigenfaces: given image x pixel matrix A € R™*" with centered
columns where m < n.

@ Eigenvectors of pixel x pixel covariance matrix ngixel € S?(R") are
the eigenfaces.

@ For efficiency, compute image x image covariance matrix
K528 € S2(R™) instead.

e SVDA=UZVT gives both implicitly,
K8 = L(AT AT) - hopyem = LATA= LVAVT,

1
Icgixel _ %(A,A) Y p— %AAT — %UAUT.

. ixel .
@ Orthonormal columns of U, eigenvectors of nk’5™, are the eigenfaces.
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Computing image and pixel skewness

@ Want to implicitly compute ngixel € S3(R"), third cumulant tensor of
the pixels (huge).

@ Just need projector [1 onto the subspace of skewfaces that best
explain Kg'xel.

o Let A=UZVT, UecO(n,m), XecR™™ VecO(m).
KgiXEI =2 (A A A) mxmxm
=L(U,U,0)- (Z,5,5)- (VI,VT V) Toimum
Kiamage = (AT AT AT) nxnxn
= H(V’ V? V) : (27272) (UT UT UT) nxnxn

@ ZTnxnxn = [0ji] € S3(R") is the ‘Kronecker delta tensor’, i.e. dj =1
iff i = j = k and dj = 0 otherwise.
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Computing skewmax projection

o Define A € S3(R™) by
A = (Za Za Z) : (VT7 VT7 VT) 'Zm><m><m

e Want @ € O(m, s) and core tensor C € S3(R®) not necessarily
diagonal, so that A = (Q, Q, Q) - C and thus

Kgixel ~ E(U7 U7 U) : (Q7 Q7 Q) : C - %(UQa UQ7 UQ) . C
@ Solve
MiNQeo(m,s), ces3(rs) A — (Q, Q, Q) - C|I¢

e 1= UQ € O(n,s) is our orthonormal-column projection matrix onto
the 'skewmax’ subspace.

e Caveat: Q only determined up to O(s)-equivalence. Not a problem if
we are just interested in the associated subspace or its projector.
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Combining eigen-, skew-, and kurtofaces

Combine information from multiple cumulants:

@ Same procedure for the kurtosis tensor (a little more complicated).

@ Say we keep the first r eigenfaces (columns of U), s skewfaces, and t
kurtofaces. Their span is our optimal subspace.

@ These three subspaces may overlap; orthogonalize the resulting
r+ s+ t column vectors to get a final projector.

This gives an orthonormal projector basis W for the column space of A; its

o first r vectors best explain the pixel covariance Kgixel € S?(R™),

@ next s vectors, with Wj.,, best explain the pixel skewness
Ko e S3(Rn)

@ last t vectors, with Wi., s, best explain pixel kurtosis ICZixeI € S*(R").
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