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Abstract
Weshow that two important quantities from twodisparate areas of complexity theory—
Strassen’s exponent of matrix multiplication ω and Grothendieck’s constant KG —
are different measures of size for the same underlying object: the matrix multiplication
tensor, i.e., the 3-tensor or bilinear operatorμl,m,n : Fl×m ×F

m×n → F
l×n , (A, B) �→

AB defined bymatrix-matrix product overF = R orC. It is well-known that Strassen’s
exponent of matrix multiplication is the greatest lower bound on (the log of) the tensor
rank of μl,m,n . We will show that Grothendieck’s constant is the least upper bound
on a tensor norm of μl,m,n , taken over all l, m, n ∈ N. Aside from relating the two
celebrated quantities, this insight allows us to rewrite Grothendieck’s inequality as a
norm inequality

‖μl,m,n‖1,2,∞ = max
X ,Y ,M �=0

|tr(X MY )|
‖X‖1,2‖Y‖2,∞‖M‖∞,1

� KG .

We prove that Grothendieck’s inequality is unique in the sense that if we generalize
the (1, 2,∞)-norm to arbitrary p, q, r ∈ [1,∞],

‖μl,m,n‖p,q,r = max
X ,Y ,M �=0

|tr(X MY )|
‖X‖p,q‖Y‖q,r‖M‖r ,p

,

then (p, q, r) = (1, 2,∞) is, up to cyclic permutations, the only choice for which
‖μl,m,n‖p,q,r is uniformly bounded by a constant independent of l, m, n.
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1 Introduction

Fifty years ago in this journal, Volker Strassen [46] announced an astounding result—
the product of a pair of 2×2matrices may be obtained with just sevenmultiplications:

[
a1 a2
a3 a4

] [
b1 b2
b3 b4

]

=
[

a1b1 + a2b2 β + γ + (a1 + a2 − a3 − a4)b4
α + γ + a4(b2 + b3 − b1 − b4) α + β + γ

]
,

where α = (a3 − a1)(b3 − b4), β = (a3 + a4)(b3 − b1), γ = a1b1 + (a3 + a4 −
a1)(b1+b4−b3). Applied recursively, this gives an algorithm for forming the product
of a pair of n × n matrices with just O(nlog2 7) multiplications, as opposed to O(n3)

using the usual formula for matrix-matrix product. In addition, Strassen also showed
that: (i) the number of additions may be bounded by a constant times the number
of multiplications; (ii) matrix inversion may be achieved with the same complexity
as matrix multiplication. In short, if there is an algorithm that forms matrix product
in O(nω) multiplication, then it yields an O(nω) algorithm that would solve n linear
equations inn unknowns,which is by far themost ubiquitous problem in all of scientific
and engineering computing. The smallest possible ω became known as the exponent
of matrix multiplication.

Strassen’s pioneering work on of complexity of matrix inversion, or equivalently,
matrix multiplication, [46–49] captured the interests of numerical analysts and theo-
retical computer scientists alike. It launched a new field: A systematic study of this and
other related problems has blossomed into what is now often called algebraic compu-
tational complexity [10]. The value of ω was gradually lowered over the years. Some
milestones include the Coppersmith–Winograd [12] bound O(n2.375477) that resisted
progress for more than two decades until Vassilevska-Williams’s improvement [51]
to O(n2.3728642); the current record, due to Le Gall [36], is O(n2.3728639). Strassen
showed [47] that the best possible ω is in fact given by

ω = inf
n∈N logn

(
rank(μn,n,n)

)
,

where μn,n,n is the Strassen matrix multiplication tensor—the 3-tensor in (Fn×n)∗ ⊗
(Fn×n)∗ ⊗ F

n×n associated with matrix-matrix product, i.e., the bilinear operator

F
n×n × F

n×n → F
n×n, (A, B) �→ AB,

where F is any field but we will assume F = R or C throughout this article.
Those unfamiliar with multilinear algebra [35] may regard the 3-tensor μn,n,n and

the bilinear operator as the same object. If we choose a basis onFn×n (or three different
bases, one on each copy of Fn×n), then μn,n,n may be represented as a 3-dimensional
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hypermatrix in Fn2×n2×n2 . Over any F-vector spaces U, V,W, one may define tensor
rank [26] for 3-tensors τ ∈ U ⊗ V ⊗ W by

rank(τ ) = min
{

r : τ =
∑r

i=1
ui ⊗ vi ⊗ wi

}
.

In fact, Strassen showed that the tensor rank of a 3-tensorμβ ∈ U
∗⊗V

∗⊗W associated
with a bilinear operator β : U × V → W gives the least number of multiplications
required to compute β. The value of ω is in general dependent on the choice of F, as
tensor rank is well-known to be field dependent [37]; we will write ωF when we need
to emphasize this.

A world apart from Strassen’s work on fast matrix multiplication/inversion is the
Grothendieck inequality, originally established to relate fundamental norms on tensor
products ofBanach spaces [21]. TheGrothendieck constant KG is the smallest constant
such that for every l, m, n ∈ N and every matrix M = (Mi j ) ∈ F

m×n ,

max‖xi ‖=‖y j ‖=1

∣∣∣∣
m∑

i=1

n∑
j=1

Mi j 〈xi , y j 〉
∣∣∣∣ � KG max|εi |=|δ j |=1

∣∣∣∣
m∑

i=1

n∑
j=1

Mi jεiδ j

∣∣∣∣ (1)

where the maximum on the left is taken over all xi , y j ∈ F
l of unit 2-norm, and the

maximum on the right is taken over all εi , δ j ∈ F of unit absolute value (so over R,
εi = ±1 and δ j = ±1; over C, εi = eiθi and δ j = eiφ j ). The value on the left side
of (1) is the same for all l � m + n and as such some authors restrict themselves to
l = m + n.

The existence of such a constant independent of l, m and n was discovered by
Alexandre Grothendieck in 1953. Alternative proofs via factorization of linear opera-
tors, geometry of Banach spaces, absolutely p-summing operators, etc, may be found
in [28,38,40,41] and references therein. In particular, the formulation in (1) was due
to Lindenstrauss and Pełczyński [38]. Like ω, KG is also dependent on the choice of F
(we proffer an explanation in Sect. 1.2); we will write KF

G when we need to emphasize
this. Henceforth we will assume that F = R or C.

The inequality (1) has found applications in numerous areas, including Banach
space theory, C∗ algebra, harmonic analysis, operator theory, quantum mechanics,
and most recently, computer science. In theoretical computer science, Grothendieck’s
inequality has notably appeared in studies of unique games conjecture [29–31,42,43]
and SDP relaxations of NP-hard combinatorial problems [2–5,11]. In quantum infor-
mation theory, Grothendieck’s inequality arises unexpectedly in Bell inequalities
[17,24,50] and in XOR games [7–9], among several other areas; Grothendieck con-
stants of specific orders, e.g., KC

G (3) and KC

G (4), also play important roles in quantum
information theory [1,15,25]. The inequality has even been applied to some rather sur-
prising areas, e.g., to communication complexity [39,44,45] and to privacy-preserving
data analysis [16].

Although the Grothendieck constant appears in numerous mathematical statements
and has many equivalent interpretations in physics and computer science, its exact
value remains unknown and estimating increasingly sharper bounds for KF

G has been
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a major undertaking. The current best known bounds are KR

G ∈ [1.676, 1.782], estab-
lished in [13] (lower) and [33] (upper); and KC

G ∈ (1.338, 1.404], established in [14]
(lower) and [22] (upper). A major recent breakthrough [6] established that Krivine’s
upper bound π/

(
2 log(1 + √

2)
) ≈ 1.782 for KR

G is not sharp. There have also been
efforts in approximating Grothendieck’s constants of specific orders, e.g., see [15,25]
for recent results on KC

G (3) and KC

G (4), defined below in (5).

1.1 Strassen’s exponent and Grothendieck’s constant

What exactly is Strassen’s exponent ω? The discussion in the previous page shows
that it is the greatest lower bound for the (log of the) tensor rank of the Strassen matrix
multiplication tensor:

logn

(
rank(μn,n,n)

)
� ω for all n ∈ N. (2)

What exactly is Grothendieck’s constant KG? We will show that it is the least
upper bound for the tensor (1, 2,∞)-norm (see (6) below) of the Strassen matrix
multiplication tensor:

‖μl,m,n‖1,2,∞ � KG for all l, m, n ∈ N. (3)

If we desire a greater parallel to (2), we may drop l and m in (3)—there is no loss of
generality in assuming that l = 2n and m = n, i.e., KG is also the least upper bound
so that

‖μ2n,n,n‖1,2,∞ � KG for all n ∈ N. (4)

In other words, ω and KG are just different measures of size: rank and norm respec-
tively, for the same underlying object, Strassen’s matrix multiplication tensor μl,m,n .
Note that both ω and KG are universal constants—uniform bounds independent of the
dimension n in (2) and (4).

In addition, the Grothendieck constant of order l ∈ N, a popular notion in quantum
information theory (e.g., [1,15,25]), is given by a simple variation, namely, the least
upper bound KG(l) in

‖μl,m,n‖1,2,∞ � KG(l) for all m, n ∈ N. (5)

We will define the (1, 2,∞)-norm for an arbitrary 3-tensor formally in Sect. 4 but
at this point it suffices to know its value for μl,m,n , namely,

‖μl,m,n‖1,2,∞ = max
X ,Y ,M �=0

|tr(X MY )|
‖X‖1,2‖Y‖2,∞‖M‖∞,1

(6)

where X ∈ F
l×m , M ∈ F

m×n , Y ∈ F
n×l , and ‖M‖p,q := maxx �=0‖Mx‖q/‖x‖p

denotes the matrix (p, q)-norm.
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1.2 Grothendieck’s inequality is unique

The inequality (3) is in fact justGrothendieck’s inequality, aswewill see later in Sect. 3.
The characterizations of ω and KG in (2) and (3) hold over both R and C although
their values are field dependent. Incidentally the fact that Grothendieck’s constant is
essentially a tensor norm immediately explains why it is field dependent—because,
like tensor rank, tensor norms are also field dependent [19].

An advantage of the formulation in (3) is that we obtain a natural family of (p, q, r)-
norms on μl,m,n given by

‖μl,m,n‖p,q,r := max
X ,Y ,M �=0

|tr(X MY )|
‖X‖p,q‖Y‖q,r‖M‖r ,p

for any triple 1 � p, q, r � ∞. This family of norms will serve as a platform for
us to better comprehend Grothendieck’s constant and Grothendieck’s inequality. The
study of the general (p, q, r)-case shows why the (1, 2,∞)-case is extraordinary.
We will deduce a generalization of Grothendieck’s inequality and show that the case
(p, q, r) = (1, 2,∞), i.e., Grothendieck’s inequality, is the only one up to trivial cyclic
permutations1 where there is a universal upper bound, i.e., Grothendieck’s constant,
that holds for all l, m, n ∈ N.

Theorem 1 (Grothendieck–Hölder inequality) Let 1 � p, q, r � ∞ and l, m, n ∈ N.
Then

1

l |1/q−1/2| · m|1/p−1/2| · n|1/r−1/2| � ‖μl,m,n‖p,q,r � KF

G · l |1/q−1/2| · m1−1/p · n1/r .

When p = 1, q = 2, and r = ∞, the upper bound gives Grothendieck’s inequality
(1).

Theorem 2 (Uniqueness of Grothendieck’s inequality) Let 1 � p, q, r � ∞ and
l, m, n ∈ N. Then ‖μl,m,n‖p,q,r is uniformly bounded for all l, m, n ∈ N if and only
if

(p, q, r) ∈ {(1, 2,∞), (∞, 1, 2), (2,∞, 1)}.
Theorem 1 follows from Theorems 4 and 5. Theorem 2 is just Theorem 6.

2 Strassenmatrix multiplication tensor

An important observation, straightforward for those acquaintedwith tensors [34,35,37]
but perhaps less so for those accustomed to viewing them as “multiway arrays,” is that
the bilinear operator

β ∈ F
l×m × F

m×n → F
l×n, (X , Y ) �→ XY , (7)

1 This is unavoidable as (p, q, r)-norms of μl,m,n are invariant under cyclic permutations of p, q, r . See
Lemma 1(i).

123



910 S. Friedland et al.

and the trilinear functional

τ : Fl×m × F
m×n × F

n×l → F, (X , Y , Z) �→ tr(XY Z), (8)

are given by2 the same 3-tensor in

(Fl×m)∗ ⊗ (Fm×n)∗ ⊗ F
l×n ∼= (Fl×m)∗ ⊗ (Fm×n)∗ ⊗ (Fn×l)∗.

In other words, as 3-tensors, there is no difference between the product of twomatrices
and the trace of product of three matrices.

To see this, let Ei j ∈ F
m×n denote the matrix with 1 in its (i, j)th entry and zeros

everywhere else, so that {Ei j : i = 1, . . . , m; j = 1, . . . , n} is the standard basis for
F

m×n . Its dual basis for the dual space of linear functionals

(Fm×n)∗ := {ϕ : Fm×n → F : ϕ(αX + βY ) = αϕ(X) + βϕ(Y )}

is then given by {εi j : i = 1, . . . , m; j = 1, . . . , n}where εi j : Fm×n → F, X �→ xi j ,
is the linear functional that takes an m × n matrix to its (i, j)th entry. Now choose the
standard inner product on Fm×n , i.e., 〈X , Y 〉 = tr(X TY ). Then εi j (X) = 〈Ei j , X〉 for
all X ∈ F

m×n , which allows us to identify (Fm×n)∗ with F
n×m and linear functional

εi j ∈ (Fm×n)∗ with the matrix E ji ∈ F
n×m .

It remains to observe that the usual formula for matrix-matrix product gives

β(X , Y ) =
∑l,n

i,k=1

⎛
⎝ m∑

j=1

xi j y jk

⎞
⎠ Eik

=
l,n∑

i,k=1

(∑m

j=1
εi j (X)ε jk(Y )

)
Eik

=
∑l,n

i,k=1

(∑m

j=1
(εi j ⊗ ε jk)(X , Y )

)
Eik

=
(∑l,m,n

i, j,k=1
εi j ⊗ ε jk ⊗ Eik

)
(X , Y )

for all X ∈ F
l×m , Y ∈ F

m×n , and therefore

β =
∑l,m,n

i, j,k=1
εi j ⊗ ε jk ⊗ Eik ∈ (Fl×m)∗ ⊗ (Fm×n)∗ ⊗ F

l×n . (9)

2 To be more precise, by the universal property of tensor products [35, Chapter XVI, §1], β induces a linear
map β∗ : Fl×m ⊗ F

m×n → F
l×n and τ induces a linear map τ∗ : Fl×m ⊗ F

m×n ⊗ F
n×l → F, i.e.,

β∗ ∈ (Fl×m )∗ ⊗ (Fm×n)∗ ⊗ F
l×n and τ∗ ∈ (Fl×m )∗ ⊗ (Fm×n)∗ ⊗ (Fn×l )∗. We identify β, τ with the

linear maps β∗, τ∗ they induce.
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A similar simple calculation,

τ(X , Y , Z) =
∑l,m,n

i, j,k=1
xi j y jk zki

=
∑l,m,n

i, j,k=1
εi j (X)ε jk(Y )εki (Z)

=
∑l,m,n

i, j,k=1
(εi j ⊗ ε jk ⊗ εki )(X , Y , Z)

=
(∑l,m,n

i, j,k=1
εi j ⊗ ε jk ⊗ εki

)
(X , Y , Z)

for all X ∈ F
l×m , Y ∈ F

m×n , Z ∈ F
n×l , and therefore

τ =
∑l,m,n

i, j,k=1
εi j ⊗ ε jk ⊗ εki ∈ (Fl×m)∗ ⊗ (Fm×n)∗ ⊗ (Fn×l)∗. (10)

By our identification, (Fm×n)∗ = F
n×m and εki = Eik . So we see from (9) and

(10) that indeed β = τ as 3-tensors. We denote this tensor by μl,m,n . This has been
variously called the Strassen matrix multiplication tensor or the structure tensor for
matrix-matrix product [10,34,37,52].

3 Grothendieck’s constant and Strassen’s tensor

Let l, m, n be positive integers and let M = (Mi j ) ∈ F
m×n . Let x1, . . . , xm and

y1, . . . , yn ∈ F
l be vectors of unit 2-norm. We will regard x1, . . . , xm as columns of

a matrix X ∈ F
l×m and yT

1, . . . , yT
n as rows of a matrix Y ∈ F

n×l .
Recall that for any p � 1 with Hölder conjugate p∗, i.e., 1/p +1/p∗ = 1, we have

‖X‖1,p := max
z �=0

‖Xz‖p

‖z‖1 = max
i=1,...,m

‖xi‖p,

‖Y‖p,∞ := max
z �=0

‖Y z‖∞
‖z‖p

= max
i=1,...,n

‖yi‖p∗ ,
(11)

and

‖M‖∞,1 := max
z �=0

‖Mz‖1
‖z‖∞

= max|δ j |=1

∑m

i=1

∣∣∣∑n

j=1
Mi jδ j

∣∣∣
= max|εi |=1, |δ j |=1

∣∣∣∑m

i=1

∑n

j=1
Mi jεiδ j

∣∣∣ ,

which may be further simplified for F = R as

‖M‖∞,1 = max
εi =±1, δ j =±1

∣∣∣∑m

i=1

∑n

j=1
Mi jεiδ j

∣∣∣ = max
ε,δ∈{±1}n

|εTMδ|. (12)
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We refer the reader to [19] for a proof that

‖τ‖1,2,∞ := max
X ,Y ,M �=0

|τ(X , M, Y )|
‖X‖1,2‖Y‖2,∞‖M‖∞,1

(13)

defines a norm for any tensor τ ∈ (Fl×m)∗⊗(Fm×n)∗⊗(Fn×l)∗, regarded as a trilinear
functional.

Theorem 3 Grothendieck’s inequality (1) may be stated as

max
X ,Y ,M �=0

|tr(X MY )|
‖X‖1,2‖Y‖2,∞‖M‖∞,1

� KF

G, (14)

or more succinctly as
‖μl,m,n‖1,2,∞ � KF

G, (15)

where μl,m,n is the Strassen matrix multiplication tensor for the product of l × m and
m × n matrices, i.e.,

μl,m,n =
l∑

i=1

m∑
j=1

n∑
k=1

εi j ⊗ ε jk ⊗ εki ∈ (Fl×m)∗ ⊗ (Fm×n)∗ ⊗ (Fn×l)∗. (16)

Proof We first make the observation that the maximum over ‖xi‖2 = 1, ‖y j‖2 = 1
in (1) is equivalent to a maximum over ‖xi‖2 � 1, ‖y j‖2 � 1 because the latter
maximum is attained at the boundary [20, Lemma 2.2]. Also, by (11) with p = 2,
‖X‖1,2 = ‖Y‖2,∞ = 1 is equivalent to ‖xi‖2 � 1, ‖y j‖2 � 1 for all i = 1, . . . , m,
j = 1, . . . , n. Since

∑m

i=1

∑n

j=1
Mi j 〈xi , y j 〉 =

{
tr(X MY ) if F = R,

tr(X MY ) if F = C,

we see that Grothendieck’s inequality (1) may be stated as

max
X ,Y ,M �=0

|tr(X MY )|
‖X‖1,2‖Y‖2,∞‖M‖∞,1

� KF

G,

when F = R and as

max
X ,Y ,M �=0

|tr(X MY )|
‖X‖1,2‖Y‖2,∞‖M‖∞,1

� KF

G,
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when F = C. However, as matrix (p, q)-norms are invariant under complex conjuga-
tion,

max
X ,Y ,M �=0

|tr(X MY )|
‖X‖1,2‖Y‖2,∞‖M‖∞,1

= max
X ,Y ,M �=0

|tr(X MY )|
‖X‖1,2‖Y‖2,∞‖M‖∞,1

= max
X ,Y ,M �=0

|tr(X MY )|
‖X‖1,2‖Y‖2,∞‖M‖∞,1

.

Hence (14) in fact gives Grothendieck’s inequality for both F = R and C. By our
discussion in Sect. 2 and our norm in (13), (14) is just (15). ��

This allows us to define Grothendieck’s constant in terms of tensor norms: For
F = R or C,

KF

G = sup
l,m,n∈N

‖μl,m,n‖1,2,∞. (17)

Since ‖μl,m,n‖1,2,∞ = ‖μm+n,m,n‖1,2,∞ for all l � m + n,

KF

G = sup
m,n∈N

‖μm+n,m,n‖1,2,∞ = sup
n∈N

‖μ2n,n,n‖1,2,∞.

In addition, the Grothendieck constant of order l ∈ N [1,15,25] may be defined as

KF

G(l) = sup
m,n∈N

‖μl,m,n‖1,2,∞.

4 Grothendieck–Hölder inequality

The norm in (13) admits a natural generalization to arbitrary p, q, r ∈ [1,∞] as

‖τ‖p,q,r := max
X ,Y ,M �=0

|τ(X , M, Y )|
‖X‖p,q‖Y‖q,r‖M‖r ,p

defined for any τ ∈ (Fl×m)∗ ⊗ (Fm×n)∗ ⊗ (Fn×l)∗, regarded as a trilinear functional

τ : Fl×m × F
m×n × F

n×l → F.

In this article, we will only be interested in τ = μl,m,n , the Strassen tensor. We first
state some simple observations that will be useful later.

Lemma 1 Let p, q, r ∈ [1,∞]. Then the (p, q, r)-norm of μl,m,n

(i) is invariant under cyclic permutation of p, q, r ,

‖μl,m,n‖p,q,r = ‖μl,m,n‖r ,p,q = ‖μl,m,n‖q,r ,p;
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(ii) transforms under Hölder conjugation as

‖μl,m,n‖p,q,r = ‖μl,m,n‖r∗,q∗,p∗ .

Recall that p∗ is the Hölder conjugate of p, i.e., 1/p + 1/p∗ = 1.

Proof Since the numerator tr(X MY ) = tr(MY X) = tr(Y X M) and the denominator
is the product ‖X‖p,q‖M‖r ,p‖Y‖q,r , cyclic permutations of (p, q), (r , p), (q, r) leave
the quotient and thus the maximum

‖μl,m,n‖p,q,r = max
X ,Y ,M �=0

|tr(X MY )|
‖X‖p,q‖M‖r ,p‖Y‖q,r

invariant. Now just observe that the cyclic permutations

(p, q), (r , p), (q, r) → (q, r), (p, q), (r , p) → (r , p), (q, r), (p, q)

correspond to the following permutations

(p, q, r) → (q, r , p) → (r , p, q).

Let XH denote the conjugate transpose of X . Since ‖X‖p,q = ‖XH‖q∗,p∗ and
|tr(X MY )| = |tr(Y HMHXH)|, we have

|tr(X MY )|
‖X‖p,q‖Y‖q,r‖M‖r ,p

= |tr(Y HMHXH)|
‖Y H‖r∗,q∗‖XH‖q∗,p∗‖MH‖p∗,r∗

.

Taking maximum over all nonzero X , Y , M yields the required equality. Note that the
proof works over both R and C. ��
A straightforward application of Hölder’s inequality yields an upper bound for
‖μl,m,n‖p,q,r .

Theorem 4 Let p, q, r ∈ [1,∞] and l, m, n ∈ N. For any nonzero matrices X ∈
F

l×m, Y ∈ F
n×l and M ∈ F

m×n, the following inequality is sharp:

| tr(X MY )|
‖X‖p,q‖Y‖q,r‖M‖r ,p

� | tr(X MY )|
‖X‖1,2‖Y‖2,∞‖M‖∞,1

· l |1/q−1/2| · m1−1/p · n1/r . (18)

Furthermore, we have a generalization of Grothendieck’s inequality:

‖μl,m,n‖p,q,r = max
X ,Y ,M �=0

| tr(X MY )|
‖X‖p,q‖Y‖q,r‖M‖r ,p

� KF

G · l |1/q−1/2| · m1−1/p · n1/r . (19)
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Proof First let 1 � q � 2. Hölder’s inequality gives ‖x‖q � l1/q−1/2‖x‖2; taken
together with the fact that ‖x‖p � ‖x‖q whenever q � p, we get

‖X‖1,2 � ‖X‖1,q � ‖X‖p,q , ‖Y‖2,∞ � ‖Y‖2,r � l1/q−1/2‖Y‖q,r . (20)

The same argument also gives ‖M‖∞,p � ‖M‖∞,1 � m1−1/p‖M‖∞,p for 1 � p �
∞ and thus

‖M‖∞,1 � m1−1/p‖M‖∞,p � n1/r · m1−1/p‖M‖r ,p. (21)

The inequality (18) then follows from (20) and (21). To see that it is sharp, we use the
following m × n rank-one matrices:

Em,n :=

⎡
⎢⎢⎢⎣
1 0 . . . 0
0 0 . . . 0
...

...
...

0 0 . . . 0

⎤
⎥⎥⎥⎦ , Cm,n :=

⎡
⎢⎢⎢⎣
1 0 . . . 0
1 0 . . . 0
...

...
...

1 0 . . . 0

⎤
⎥⎥⎥⎦ ,

Rm,n :=

⎡
⎢⎢⎢⎣
1 1 . . . 1
0 0 . . . 0
...

...
...

0 0 . . . 0

⎤
⎥⎥⎥⎦ , Jm,n :=

⎡
⎢⎢⎢⎣
1 1 . . . 1
1 1 . . . 1
...

...
...

1 1 . . . 1

⎤
⎥⎥⎥⎦ .

It is easy to check that

‖El,m‖p,q = 1, ‖Rn,l‖q,r = l1−1/q , ‖Jm,n‖r ,p = m1/p · n1−1/r ,

‖El,m‖1,2 = 1, ‖Rn,l‖2,∞ = l1/2, ‖Jm,n‖∞,1 = mn.

Since (18) becomes an equality when X = El,m , Y = Rn,l , and M = Jm,n , it is sharp
for 1 � q � 2.

Next let 2 < q � ∞. Similarly, we have

l1/q−1/2‖X‖1,2 � ‖X‖1,q � ‖X‖p,q and ‖Y‖2,∞ � ‖Y‖2,r � ‖Y‖q,r ,

which together with (21) give us (18). In this case the sharpness follows from selecting
X = Cl,m , Y = En,l , M = Jm,n , and noting that

‖Cl,m‖p,q = l1/q , ‖Cl,m‖1,2 = l1/2, ‖En,l‖q,r = 1, ‖En,l‖2,∞ = 1.

The inequality (19) follows from takingmaximumover nonzero X , M, Y and supre-
mum over l, m, n. When (p, q, r) = (1, 2,∞), it yields Grothendieck’s inequality
(14). ��

The upper bound in (19) depends on l, m, n except when (p, q, r) is (1, 2,∞)

or a cyclic permutation (by Lemma 1(i)). An immediate question is whether a uni-

123



916 S. Friedland et al.

form bound independent of l, m, n might perhaps also exist for some other values of
(p, q, r), i.e.,

K p,q,r := sup
l,m,n∈N

‖μl,m,n‖p,q,r < ∞? (22)

In Sect. 5, we will see that K p,q,r = ∞ for all

(p, q, r) /∈ {(1, 2,∞), (∞, 1, 2), (2,∞, 1)}.

Nevertheless, we stress that while the (1, 2,∞)-norm is unique up to cyclic per-
mutation among the (p, q, r)-norms in (13) for uniformly bounding μl,m,n over all
l, m, n ∈ N, there are other tensor norms with this property. For example, we may
consider the tensor spectral norm [19] of μl,m,n ,

‖μl,m,n‖σ := max
X ,Y ,M �=0

|tr(X MY )|
‖X‖F‖Y‖F‖M‖F

where the norm on X , Y , M is the matrix Frobenius (i.e., Hilbert–Schmidt) norm. In
this case,

‖μl,m,n‖σ = 1, for all l, m, n ∈ N, (23)

since, by Cauchy–Schwartz and the submultiplicativity of the Frobenius norm,

|tr(X MY )| � ‖X‖F‖MY‖F � ‖M‖F‖X‖F‖Y‖F ,

and equality is attained by choosing M, X , Y with 1 in the (1, 1)th entry and 0 every-
where else.

We will use (23) to obtain lower bounds on ‖μl,m,n‖p,q,r below. The inequalities
(19) and (24) will collectively be referred to as the Grothendieck–Hölder inequality.

Theorem 5 Let p, q, r ∈ [1,∞] and l, m, n ∈ N. Then

1

l |1/q−1/2| · m|1/p−1/2| · n|1/r−1/2| � ‖μl,m,n‖p,q,r . (24)

Proof For n ∈ N and p, q ∈ [1,∞], let

cp,q(n) := nmax{0,1/p−1/q}.

Then for any M ∈ F
m×n , the following sharp inequality holds [32, Theorem 4.3],

‖M‖p,q � cq,2(m)c2,p(n)‖M‖F .

It follows that

‖X‖p,q � cq,2(l)c2,p(m)‖X‖F , ‖Y‖q,r � cr ,2(n)c2,q(l)‖Y‖F ,

‖M‖r ,p � cp,2(m)c2,r (n)‖M‖F ,
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and for any tensor τ ∈ (Fl×m)∗ ⊗ (Fm×n)∗ ⊗ (Fn×l)∗, we have

‖τ‖σ � ‖τ‖p,q,r · l |1/q−1/2| · m|1/p−1/2| · n|1/r−1/2|.

Plugging in τ = μl,m,n and using (23), we obtain (24). ��
A practical implication of (22) is that if

(p, q) and (q, r) ∈ {(1, 1), (2, 2), (∞,∞), (1, q), (q,∞)}, (25)

then ‖X‖p,q and ‖Y‖q,r can be computed in polynomial time (to arbitrary precision)
and

max
X ,Y �=0

|tr(X MY )|
‖X‖p,q‖Y‖q,r

� K p,q,r‖M‖r ,p

in principle gives a polynomial-time approximation of ‖M‖r ,p, which is NP-hard [23]
if (r , p) is not one of the special cases in (25). Unfortunately, we now know that as
K p,q,r = ∞ in all other cases, this only works when (p, q, r) = (1, 2,∞), (∞, 1, 2),
or (2,∞, 1), all three are equivalent to Grothendieck’s inequality.

5 The Grothendieck inequality is unique

We show that (p, q, r) = (1, 2,∞) is, up to a cyclic permutation, the only case for
which (22) holds. We will first rule out a large number of cases with the following
proposition.

Proposition 1 Let p, q, r ∈ [1,∞]. If there exists a finite constant K p,q,r > 0 such
that ‖μl,m,n‖p,q,r � K p,q,r for all l, m, n ∈ N, then

min(p, q, r) = 1 and max(p, q, r) = ∞.

Proof Let Im,n ∈ F
m×n be the matrix obtained by appending zero rows or columns to

the identity matrix3 In or Im ,

Im,n :=
{

[In, 0m−n]T if m � n,

[Im, 0n−m] if m < n.

Then its matrix (p, q)-norm is

‖Im,n‖p,q =
{
min{m, n}1/q−1/p if p � q,

1 if p < q.
(26)

3 Note that In,n = In . For consistency, we will always use the latter notation when it is a square matrix.
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This follows from an easy calculation using Hölder inequality: For m � n,

‖Im,n‖p,q = max
z �=0

‖Im,nz‖q

‖z‖p
= max

z �=0

‖z‖q

‖z‖p
=

{
n1/q−1/p if p � q,

1 if p < q,

and for m < n,

‖Im,n‖p,q = max
z �=0

‖Im,nz‖q

‖z‖p
= max

z �=0

‖zm‖q

‖z‖p
= max

zm �=0

‖zm‖q

‖zm‖p

=
{

m1/q−1/p if p � q,

1 if p < q,

where zm = [z1, . . . , zm] ∈ F
m is the vector comprising the first m entries of z.

Set X = Il,m , Y = In,l , and M = Im,n . Then tr(X MY ) = min{l, m, n}, and by
(26), we obtain

|tr(X MY )|
‖X‖p,q‖Y‖q,r‖M‖r ,p

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

min{l, m, n}min{m, n}1/r−1/p if p � q � r ,

min{l, m, n}min{l, n}1/q−1/r min{m, n}1/r−1/p if p � r � q,

min{l, m, n}min{l, m}1/p−1/q min{m, n}1/r−1/p if q � p � r ,

min{l, m, n}min{l, m}1/p−1/q if q � r � p,

min{l, m, n}min{l, n}1/q−1/r if r � p � q,

min{l, m, n}min{l, m}1/p−1/q min{l, n}1/q−1/r if r � q � p.

Suppose l = 2n, m = n and p � q � r , then

lim
n→∞

|tr(X MY )|
‖X‖p,q‖Y‖q,r‖M‖r ,p

= lim
n→∞ n1/r−1/p+1 = ∞

unless p = 1 and r = ∞. Repeating the argument for all possible permutations of
(p, q, r) and taking advantage of Lemma 1(i), we conclude that min(p, q, r) = 1 and
max(p, q, r) = ∞ is necessary for the uniform boundedness of ‖μl,m,m‖p,q,r . ��

We will next eliminate the remaining possibilities. Recall that an n × n Hadamard
matrix Hn ∈ R

n×n is one with entries ±1 such that H T
n Hn = nIn [27, Section 2.1].

The simplest example is H2 = [
1 1
1 −1

]
. It is still unknown if n × n Hadamard matrices

exist for every n = 4m, m ∈ N, but it is well-known that the Kronecker product of H2
with itself k times gives a 2k × 2k Hadamard matrix for any k ∈ N. The bottom line
for us is that there exist Hadamard matrices of arbitrarily large dimensions, a fact that
we use in our proof below whenever we take n → ∞ with Hadamard matrices.
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Theorem 6 (Uniqueness of Grothendieck’s inequality) Let 1 � p, q, r � ∞ and
l, m, n ∈ N. Then ‖μl,m,n‖p,q,r is uniformly bounded for all l, m, n ∈ N if and only
if

(p, q, r) ∈ {(1, 2,∞), (∞, 1, 2), (2,∞, 1)}.

Proof We will see that it suffices to take l = m = n throughout this proof. By
Lemma 1(i) and Proposition 1, we may assume that p = 1 and either q = ∞ or
r = ∞. We will show that tr(X MY ) is unbounded for judiciously chosen n × n real
matrices X , M , and Y as n → ∞.

Case I: (1, q,∞), 1 � q � ∞. Suppose 2 < q � ∞. Let X0 = n−1/qΔ for some
arbitrary Δ = (δi j ) ∈ {±1}n×n and let Y0 = In . Then ‖X0‖1,q = n−1/q‖Δ‖1,q = 1
and ‖Y0‖q,∞ = ‖In‖q,∞ = 1 by (11). For any M = (Mi j ) ∈ R

n×n ,

max‖X‖1,q , ‖Y‖q,∞�1
|tr(X MY )| � |tr(X0MY0)| = n−1/q |tr(ΔM)|

= n−1/q
∣∣∣∑n

i, j=1
δi j Mi j

∣∣∣.
SinceΔ ∈ {±1}n×n is arbitrary, we will choose δi j so that δi j Mi j is nonnegative. Thus

max‖X‖1,q , ‖Y‖q,∞�1
|tr(X MY )| � n−1/q

∑n

i, j=1
|Mi j |. (27)

Let Hn ∈ {±1}n×n be a Hadamard matrix. So Hn H T
n = nIn and all singular values of

Hn are
√

n [18]. Therefore, by (12),

‖Hn‖∞,1 = max
ε,δ∈{±1}n

|εTHnδ| � σmax(Hn)‖ε‖2‖δ‖2 = n3/2. (28)

Let M = n−3/2Hn . Then ‖M‖∞,1 � 1 and by (27),

max‖X‖1,q , ‖Y‖q,∞, ‖M‖∞,1�1
|tr(X MY )| � n−1/q × n−3/2 × n2 = n1/2−1/q → ∞

as n → ∞.
Suppose 1 � q < 2. Since the Hölder conjugates are r∗ = 1, 2 < q∗ � ∞, and

p∗ = ∞, by Lemma 1(ii), this reduces to the case we just treated.

Case II: (1,∞, r), 1 � r � ∞. For r = ∞, we have (1,∞,∞), which is same
as the q = ∞ case in Case I. For r = 1, we have (1,∞, 1), but by Lemma 1(i), this
is equivalent to (1, 1,∞), which is same as the q = 1 case in Case I. So we may
assume 1 < r < ∞.

Suppose 1 < r < 2. Let M = n1/r−1 In and Y = n−3/2Hn where Hn ∈ {±1}n×n

is a Hadamard matrix. Then ‖M‖r ,1 = n1/r−1‖In‖r ,1 = 1 by (26), and ‖Y‖∞,r �
‖Y‖∞,1 = n−3/2‖Hn‖∞,1 � 1 by (28).We choose X ∈ {±1}n×n such that tr(X Hn) =
n2 and thus tr(XY ) = n−1/2. Clearly ‖X‖1,∞ = 1 by (11). Hence
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tr(X MY ) = n1/r−1 tr(XY ) = n1/r−1/2 → ∞

as n → ∞.
Suppose 2 < r < ∞. Since the Hölder conjugates are 1 < r∗ < 2, q∗ = 1,

and p∗ = ∞, by Lemma 1(ii) , this is equivalent to the case (r∗, 1,∞). Now by
Lemma 1(i), this is in turn equivalent to the case (1,∞, r∗) with 1 < r∗ < 2, which
is the case we just treated.

Suppose r = 2. Let Y = n−1Hn where Hn ∈ {±1}n×n is again a Hadamard matrix.
Then

‖Hn‖∞,2 = max
x∈{±1}n

‖Hn x‖2 � σmax(Hn)
√

n = n.

So ‖Y‖∞,2 � 1. Let M = n−1/2 In . Then ‖M‖2,1 = 1 by (26). Let X ∈ {±1}n×n be
such that tr(X Hn) = n2 and thus tr(XY ) = n. Clearly ‖X‖1,∞ = 1 by (11). We have

tr(X MY ) = n−1/2 tr(XY ) = n1/2 → ∞

as n → ∞. ��

6 Conclusion

We hope our characterization of Grothendieck’s constant as a norm of the central
object in the study of fast matrix multiplications would spur interactions between the
two areas and perhaps even facilitate the determination of its exact value. Knowing
that Grothendieck’s inequality is a unique instance within a family of natural norm
inequalities may help us better understand its ubiquity and utility.
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