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Abstract
TheGrassmannian of affine subspaces is a natural generalization of both the Euclidean
space, points being 0-dimensional affine subspaces, and the usualGrassmannian, linear
subspaces being special cases of affine subspaces. We show that, like the Grassman-
nian, the affine Grassmannian has rich geometrical and topological properties: It has
the structure of a homogeneous space, a differential manifold, an algebraic variety,
a vector bundle, a classifying space, among many more structures; furthermore, it
affords an analogue of Schubert calculus and its (co)homology and homotopy groups
may be readily determined. On the other hand, like the Euclidean space, the affine
Grassmannian serves as a concrete computational platform on which various dis-
tances, metrics, probability densities may be explicitly defined and computed via
numerical linear algebra. Moreover, many standard problems in machine learning
and statistics—linear regression, errors-in-variables regression, principal components
analysis, support vector machines, or more generally any problem that seeks lin-
ear relations among variables that either best represent them or separate them into
components—may be naturally formulated as problems on the affine Grassmannian.

Keywords Affine Grassmannian · Affine subspaces · Schubert calculus · homotopy
and (co)homology · Probability densities · Distances and metrics · Multivariate data
analysis

Mathematics Subject Classification 14M15 · 22F30 · 46T12 · 53C30 · 57R22 · 62H10

1 Introduction

The Grassmannian of affine subspaces, denoted Graff(k, n), is an analogue of the
usual Grassmannian Gr(k, n). Just as Gr(k, n) parameterizes k-dimensional linear
subspaces inR

n , Graff(k, n) parameterizes k-dimensional affine subspaces inR
n , i.e.,
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A+bwhere the k-dimensional linear subspaceA ⊆ R
n is translated by a displacement

vector b ∈ R
n .

To the best of our knowledge, the Grassmannian of affine subspaces was first
described in an elegant little volume [21] based on Gian-Carlo Rota’s 1986 ‘Lezioni
Lincee’ lectures at the Scuola Normale Superiore. The treatment in [21, pp. 86–87]
was somewhat cursory as Graff(k, n) played only an auxiliary role in Rota’s lec-
tures (on geometric probability). Aside from another equally brief mention in [29,
Section 9.1.3], we are unaware of any other discussion. Compared to its universally
known cousin Gr(k, n), it is fair to say that Graff(k, n) has received next to no atten-
tion. The goal of our article is to fill this gap. We will show that the Grassmannian
of affine subspaces has rich algebraic, geometric, and topological properties; more-
over, it is an important object that could rival the usual Grassmannian in practical
applicability, serving as a computational and modeling platform for problems in sta-
tistical estimation and pattern recognition. We start by showing that Graff(k, n) may
be viewed from several perspectives, and in more than a dozen ways:

Algebra: as collections of (i) Minkowski sums of sets, (ii) cosets in an additive
group, (iii) n × (k + 1) matrices;
Differential geometry: as a (iv) smooth manifold, (v) homogeneous space,
(vi) Riemannian manifold, (vii) base space of the compact and noncompact affine
Stiefel manifolds regarded as principal bundles;
Algebraic geometry: as a (viii) irreducible nonsingular algebraic variety, (ix)
Zariski open dense subset of the Grassmannian, (x) real affine variety of projection
matrices;
Algebraic topology: as a (xi) vector bundle, (xii) classifying space.

Graff(k, n) may also be regarded, in an appropriate sense, as the complement of
Gr(k + 1, n) in Gr(k + 1, n + 1), or, in a different sense, as the moduli space of k-
dimensional affine subspaces in R

n . Moreover one may readily define, calculate, and
compute various objects on Graff(k, n) of either theoretical or practical interests:

Schubert calculus: affine (a) flags, (b) Schubert varieties, (c) Schubert cycles;
Algebraic topology: (d) homotopy, (e) homology, (f) cohomology;
Metric geometry: (g) distances, (h) geodesic, (i) metrics;
Probability: (j) uniform, (k) von Mises–Fisher, (l) Langevin–Gaussian distribu-
tions.

The main reason for our optimism that Graff(k, n) may be no less important than
Gr(k, n) in applications is the observation that common problems in multivariate data
analysis and machine learning are naturally optimization problems over Graff(k, n):

Statistics: (1) linear regression, (2) error-in-variables regression, (3) principal
component analysis, (4) support vector machines.

In retrospect this is no surprise, many statistical estimation problems involve a search
for linear relations among variables and are therefore ultimately a problem of finding
one or more affine subspaces that either best represent a given data set (regression) or
best separate it into two or more components (classification).

In a companion article [26], we showed that in practical terms, optimization prob-
lems over Graff(k, n) are no different from optimization problems over R

n , which is
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of course just Graff(0, n). More precisely, we showed that, like the Euclidean space
R
n , Graff(k, n) serves the role of a concrete computational platform on which tan-

gent spaces, Riemannian metric, exponential maps, parallel transports, gradients and
Hessians of real-valued functions, optimization algorithms such as steepest descent,
conjugate gradient, Newton methods, may all be efficiently computed using only stan-
dard numerical linear algebra.

For brevity, we will use the term affine Grassmannian when referring to the Grass-
mannian of affine subspaces from this point onwards. The term is now used far more
commonly to refer to another very different object1 [3,13,24], but in this article, it will
always be used in the sense of Definition 1. To resolve the conflicting nomenclature,
an alternative might be to christen the Grassmannian of affine subspaces the Rota
Grassmannian.

Unless otherwise noted, the results in this article have not appeared before elsewhere
to the best of our knowledge, although some of them are certainly routine for the
experts. It is inevitable that there is some slight overlap with our companion article
[26], which shares notations and terminologies; but aside from a small number of
direct quotes that are clearly labeled as such, any related results are always stated in
different light and given different proofs so that each provides its own value. We have
written our article in the hope that it would be read by applied and computational
mathematicians, statisticians, and engineers—in an effort to improve its accessibility,
we have provided more basic details than is customary.

2 Basic terminologies

We remind the reader of some basic terminologies. We will always work over R and
our ambient vector space is R

n unless specified otherwise. We adopt the convention
that all vectors in R

n are regarded as column vectors. Row vectors will be denoted
with a transpose, i.e., as xT where x is a column vector. When enclosed by parenthe-
ses, a vector denoted (x1, . . . , xn) ∈ R

n would mean a column vector with entries
x1, . . . , xn ∈ R. We let In denote the n × n identity matrix.

A k-plane is a k-dimensional linear subspace and a k-flat is a k-dimensional affine
subspace. A k-frame is an ordered basis of a k-plane, and we will regard it as an
n × k matrix whose columns a1, . . . , ak are the basis vectors. A flag is a strictly
increasing sequence of nested linear subspaces, A0 ⊆ A1 ⊆ A2 ⊆ · · · . A flag is said
to be complete if dimAk = k, finite if k = 0, 1, . . . , n, and infinite if k ∈ N ∪ {0}.
Throughout this article, a blackboard bold letter A will always denote a subspace and
the corresponding normal letter A will then denote a matrix whose column vectors
a1, . . . , ak form a basis (often but not necessarily orthonormal) of A. We write im(A)

for the image of a matrix A ∈ R
n×k and span S for the linear span of a set S ⊆ R

n .
So A = im(A) = span{a1, . . . , ak}.

We write Gr(k, n) for the Grassmannian of k-planes in R
n , V(k, n) for the Stiefel

manifold of orthonormal k-frames, and O(n) := V(n, n) for the orthogonal group.

1 In certain areas of algebraic geometry and representation theory, notably Langland’s program, the term
‘affine Grassmannian’ widely refers to a functor associated with an algebraic group, which is completely
unrelated to the sense in which it is used in this article.
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We may regard V(k, n) as a homogeneous space,

V(k, n) ∼= O(n)/O(n − k), (2.1)

or more concretely as the set of n × k matrices with orthonormal columns. There is a
right action of the orthogonal group O(k) on V(k, n): For Q ∈ O(k) and A ∈ V(k, n),
the action yields AQ ∈ V(k, n) and the resulting homogeneous space is Gr(k, n), i.e.,

Gr(k, n) ∼= V(k, n)/O(k) ∼= O(n)/
(
O(n − k) × O(k)

)
. (2.2)

So A ∈ Gr(k, n) may be identified with the equivalence class of its orthonormal k-
frames {AQ ∈ V(k, n) : Q ∈ O(k)}. Note that im(AQ) = im(A) for Q ∈ O(k).
Readers unfamiliar with these notions may refer to [1,12] for a very accessible intro-
duction.

There is also a purely algebraic counterpart to the last paragraph, useful for gen-
eralizing to k-planes in a vector space that may not have an inner product (e.g., over
fields of nonzero characteristics).We follow the terminologies and notations in [2, Sec-
tion 2]. The noncompact Stiefel manifold of k-frames, denoted St(k, n), may either
be regarded as the manifold of n × k matrices with full rank or as the homogeneous
space

St(k, n) ∼= GL(n)/R(n − k), (2.3)

where

R(n − k) :=
{[

Ik A
0 B

]
∈ GL(n) : A ∈ R

k×(n−k), B ∈ GL(n − k)

}
.

There is a right action of the general linear group GL(k) on St(k, n): For X ∈ GL(k)
and A ∈ St(k, n), the action yields AX ∈ St(k, n) and the resulting homogeneous
space is Gr(k, n), i.e.,

Gr(k, n) ∼= St(k, n)/GL(k) ∼= GL(n)/
(
R(n − k) × GL(k)

)
. (2.4)

So A ∈ Gr(k, n) may be identified with the equivalence class of its k-frames {AX ∈
St(k, n) : X ∈ GL(k)}. Note that im(AX) = im(A) for X ∈ GL(k). The reader would
see that orthogonality has been avoided in this paragraph.

For easy reference, we summarize the notations introduced in Sects. 2, 3, and 4 in
Table 1.

3 Algebra of the affine Grassmannian

We will begin by discussing the set-theoretic and algebraic properties of the affine
Grassmannian and introducing its two infinite-dimensional counterparts.We start with
a formal definition of our main object of study, the (finite-dimensional) affine Grass-
mannian, using the same notations as in [26].
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Table 1 List of Lie groups and homogeneous spaces that appear in this article

Object Dimension Quotient

O(n) Orthogonal group
(n
2
)

E(n) Euclidean group
(n+1

2
)

GL(n) General linear group n2

GA(n) General affine group n(n + 1)

R(n − k)
{[ Ik ∗

0 ∗
] ∈ GL(n)

}
n(n − k)

V(k, n) Stiefel manifold k(2n − k − 1)/2 O(n)/O(n − k)

St(k, n) Noncompact Stiefel manifold kn GL(n)/R(n − k)

Vaff(k, n) Affine Stiefel manifold (k + 1)(2n − k)/2 E(n)/O(n − k)

Staff(k, n) Noncompact affine Stiefel manifold (k + 1)n GA(n)/R(n − k)

Gr(k, n) Grassmannian k(n − k) V(k, n)/O(k)

Graff(k, n) Affine Grassmannian (k + 1)(n − k) Vaff(k, n)/E(k)

Definition 1 (AffineGrassmannian) Let k ≤ n be positive integers. TheGrassmannian
of k-dimensional affine subspaces in R

n or Grassmannian of k-flats in R
n , denoted

by Graff(k, n), is the set of all k-dimensional affine subspaces of R
n . For an abstract

vector space V, we write Graffk(V) for the set of k-flats in V.

This set-theoretic definition hardly reveals anything about the rich algebra, geometry,
and topology of the affine Grassmannian, which we will examine over this and the
next few sections.

We denote a k-dimensional affine subspace as A + b ∈ Graff(k, n) where A ∈
Gr(k, n) is a k-dimensional linear subspace and b ∈ R

n is the displacement of A from
the origin. If A = [a1, . . . , ak] ∈ R

n×k is a basis of A, then

A + b := {λ1a1 + · · · + λkak + b ∈ R
n : λ1, . . . , λk ∈ R}. (3.1)

The notationA+bmay be taken tomean (i) theMinkowski sum of the setsA and {b} in
the Euclidean space R

n , (ii) a coset of the subgroup A in the additive group R
n , or (iii)

a coset of the subspace A in the vector space R
n . The dimension of A+b is defined to

be the dimension of the vector space A. As one would expect of a coset representative,
the displacement vector b is not unique: For any a ∈ A, we have A+b = A+ (a+b).
We introduce a simple map that will be important later: the deaffine map

τ : Graff(k, n) → Gr(k, n), A + b 	→ A (3.2)

takes any affine subspace to its corresponding linear subspace.
Let A + b ∈ Graff(k, n). By our notational convention, im(A) = A and therefore

thematrix [A, b] ∈ R
n×(k+1) determines the affine subspaceA+b andwewill call this

its affine coordinates. If in addition,we have A ∈ V(k, n), i.e., an orthonormal basis for
A, andwe choose b0 ∈ R

n to be orthogonal toAwith im(A)+b0 = A+b, thenwe call
[A, b0] ∈ V(k, n)×R

n an orthogonal affine coordinates ofA+b. Note that ATA = Ik ,
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ATb0 = 0, and two orthogonal affine coordinates [A, b0], [A′, b′
0] ∈ R

n×(k+1) of the
same affine subspaceA+bmust have that A′ = AQ for some Q ∈ O(k) and b′

0 = b0.
We will also need to discuss the cases where k = ∞ and n = ∞ as they will be

important in Sects. 7 and 8. For each k ∈ N, the infinite flag {0} ⊆ R ⊆ R
2 ⊆ · · ·

induces a directed system

· · · ⊆ Graff(k, n) ⊆ Graff(k, n + 1) ⊆ · · · , (3.3)

and taking direct limit gives

Graff(k,∞) := lim−→Graff(k, n),

which we will call the infinite Grassmannian of k-dimensional affine linear subspaces
or infinite affine Grassmannian for short. This parameterizes k-dimensional flats inR

n

for all n ≥ k and is the affine analogue of the infinite or Sato Grassmannian Gr(k,∞)

[32].
To be more precise, the direct limit above is taken in the directed system given

by the natural inclusions ιn : Graff(k, n) → Graff(k, n + 1) for n ≥ k. If A + b ∈
Graff(k, n) has affine coordinates [A, b] ∈ R

n×(k+1), then ιn(A + b) = A
′ + b′

where A
′ = im

[
A
0

]
, b′ = [

b
0

]
, i.e., A

′ + b′ ∈ Graff(k, n + 1) has affine coordinates[
A b
0 0

] ∈ R
(n+1)×(k+1). Readers unfamiliar with direct limits may simply identify

[A, b] with [ A b
0 0

]
and thereby regard

Graff(k, n) ⊆ Graff(k, n + 1) and Graff(k,∞) =
⋃∞

n=k
Graff(k, n).

It is straightforward to verify that the deaffine map τ : Graff(k, n) → Gr(k, n) is
compatible with the directed systems {Graff(k, n)}∞n=k and {Gr(k, n)}∞n=k , i.e., the
following diagram commutes:

· · · Graff(k, n) Graff(k, n + 1) · · ·

· · · Gr(k, n) Gr(k, n + 1) · · ·
τ

ιn

τ τ τ (3.4)

Note that one advantage afforded by Graff(k,∞) is that one may discuss a k-
dimensional affine subspace without reference to an ambient space (although strictly
speaking, points in Graff(k,∞) are k-flats in R

∞ := lim−→ R
n). The doubly infinite

affine Grassmannian, which parameterizes affine subspaces of all dimensions, may
then be defined as the disjoint union

Graff(∞,∞) :=
∐∞

k=1
Graff(k,∞).

This is the affine analogue of Gr(∞,∞), the doubly infinite Grassmannian of linear
subspaces of all dimensions, defined in [41, Section 5].
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For the affine Grassmannian, two groups will play the roles that O(n) and GL(n)

play for the Grassmannian in Sect. 2. We defer the discussion to Sect. 4 but will
introduce the relevant algebra here. The group of orthogonal affine transformations
or orthogonal affine group, denoted E(n), is the set O(n) × R

n endowed with group
operation

(Q1, c1)(Q2, c2) = (Q1Q2, c1 + Q1c2).

In other words, it is a semidirect product: E(n) = O(n) �ϑ R
n where ϑ : O(n) →

Aut(Rn) = GL(n) as inclusion. The group of affine transformations or general affine
group, denoted GA(n), is the set GL(n) × R

n endowed with group operation

(X1, c1)(X2, c2) = (X1X2, c1 + X1c2).

In other words, it is a semidirect product: GA(n) = GL(n) �ι R
n where ι : GL(n) →

Aut(Rn) = GL(n) is the identity map. GA(n) acts on R
n naturally via

(X , c) · v = Xv + c, (X , c) ∈ GA(n), v ∈ R
n .

Clearly E(n) is a subgroup of GA(n) and therefore inherits this group action. We note
that E(n) has wide-ranging applications in engineering [11].

4 Differential geometry of the affine Grassmannian

The affine Grassmannian has rich geometric properties. We start by showing that it
is a noncompact smooth manifold and then show that it is also homogeneous and
Riemannian.

Before we begin, we note that while our description in Definition 1 is purely
set-theoretic, Graff(k, n) inherits a topology fromGr(k, n) as follows: An open neigh-
borhood of a point X + y ∈ Graff(k, n) is defined to beU + y whereU ⊆ Gr(k, n) is
an open neighborhood of the point X ∈ Gr(k, n); this system of open neighborhoods
generates a topology on Graff(k, n).

Proposition 1 Graff(k, n) is a noncompact smooth manifold with

dimGraff(k, n) = (n − k)(k + 1).

Proof Let A + b ∈ Graff(k, n) be represented by affine coordinates [A, b0] =
[a1, a2, . . . , ak, b0] ∈ R

n×(k+1), where b0 is chosen so that b − b0 ∈ A. We will
show that there is a local chart around A + b with smooth transition functions. We
may assume that A ∈ R

n×k , which has rank k, has a nonzero k × k leading principal
minor. Indeed, any T ∈ GL(n) determines an automorphism X + y 	→ TX + T y on
Graff(k, n), and we may choose T such that the k × k leading principal minor of T A
is nonzero. IfU is a local chart for TA+Tb, then T−1U is a local chart for A+b. Let
U be the set of all X+ y ∈ Graff(k, n) whose affine coordinates [X , y0] have nonzero
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k × k leading principal minors. Then U is an open subset of Graff(k, n) containing
A + b. Each X + y ∈ U has unique affine coordinates [X̂ , ŷ] ∈ R

n×(k+1) of the form

[X̂ , ŷ] =

⎡

⎢⎢⎢
⎢⎢
⎣

1 0 ··· 0 0
0 1 ··· 0 0
...

...
. . .

...
...

0 0 ··· 1 0
x̂k+1,1 x̂k+1,2 ··· x̂k+1,k ŷk+1

...
...

. . .
...

...
x̂n,1 x̂n,2 ··· x̂n,k ŷn

⎤

⎥⎥⎥
⎥⎥
⎦

.

It is routine to verify that ϕ : U → R
(n−k)(k+1),X+y 	→ [X̂ , ŷ], is a homeomorphism

and thus gives a local chart for U . We may likewise define other local charts by the
nonvanishing of other k × k minors and verify that the transition functions ϕ1 ◦ ϕ−1

2
are smooth for any two such local charts ϕi : Ui → R

(n−k)(k+1), i = 1, 2. To see
the noncompactness, take a sequence in Graff(k, n) represented in orthogonal affine
coordinates by [A,mb] with m ∈ N, A = [a1, . . . , ak] ∈ V(k, n), and 0 �= b ∈ R

n

such that ATb = 0; observe that it has no convergent subsequence. ��
The manifold structure in Proposition 1 is identical to the one obtained in [26, Theo-
rem 2.2]—the local chart (U , ϕ) around X+ y ∈ Graff(k, n) constructed above is the
preimage of a local chart (V , ψ) around Y = j(X + y) ∈ Gr(k + 1, n + 1), where j
is the embedding in (5.1).

The affine Stiefel manifold is defined to be the product manifold Vaff(k, n) :=
V(k, n) × R

n . It is a homogeneous space because of the following analogue of (2.1),

Vaff(k, n) ∼= E(n)/O(n − k)

where E(n) is the orthogonal affine group E(n) introduced at the end of Sect. 3. We
have the following characterizations of Graff(k, n) as quotients of E(n).

Proposition 2 Graff(k, n) is a homogeneous Riemannian manifold. In fact, we have
the following analogue of (2.2),

Graff(k, n) ∼= Vaff(k, n)/E(k) ∼= E(n)/
(
O(n − k) × E(k)

)
.

Furthermore, Vaff(k, n) is a principal E(k)-bundle over Graff(k, n).

Proof Since Graff(k, n) can be identified with an open subset of Gr(k + 1, n+ 1), the
Riemannian metric ge on Gr(k + 1, n + 1) induces a metric on Graff(k, n). Equipped
with this induced metric, Graff(k, n) is a Riemannian manifold. The group E(n) acts
on Graff(k, n) by (Q, c) · (A + b) = Q · A + Qb + c, where (Q, c) ∈ E(n) =
O(n) × R

n , A + b ∈ Graff(k, n), and Q · A := im(QA). It is easy to see that
E(n) acts on Graff(k, n) transitively and so Graff(k, n) ∼= E(n)/StabA+b

(
E(n)

)
,

where StabA+b
(
E(n)

)
is the stabilizer of any fixed affine linear subspace A + b ∈

Graff(k, n) in E(n). Now StabA+b
(
E(n)

)
consists of two types of actions. The first

action is the affine action inside the plane A, which is E(k), while the second action
is the rotation around the orthogonal complement of A, which is O(n − k). Hence
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we obtain StabA+b
(
E(n)

) ∼= O(n − k) × E(k), and the representation of Graff(k, n)

as a homogeneous Riemannian manifold follows. Clearly, Vaff(k, n) is a principal
E(k)-bundle over Vaff(k, n)/E(k) ∼= Graff(k, n). ��

Let τv : Vaff(k, n) = V(k, n) × R
n → V(k, n) be the projection. For any k ≤ n,

τv commutes with the deaffine map τ in (3.2):

Vaff(k, n) V(k, n)

Graff(k, n) Gr(k, n)

τv

πa π

τ

(4.1)

where we view Graff(k, n), Gr(k, n), Vaff(k, n), V(k, n) as homogeneous spaces.
One may define V(k,∞), the Stiefel manifold of orthogonal k-frames in R

∞, as the
direct limit of the inclusions ιn : V(k, n) → V(k, n + 1), Q 	→ [ Q

0

]
, and its affine

counterpart as Vaff(k,∞) := V(k,∞) × R
∞, the infinite affine Stiefel manifold.

Taking direct limit of (4.1), we obtain

Vaff(k,∞) V(k,∞)

Graff(k,∞) Gr(k,∞)

τv

πa π

τ

(4.2)

The objects in (4.2) are all Hilbert manifolds although we will not use this fact.
From a computational perspective, one would prefer to work with orthogonal

objects like V(k, n) and O(k) rather than affine objects like Vaff(k, n) and E(k).
Roughly speaking, this is largely because orthogonal transformations preserve norm
and do not magnify rounding errors during computations. With this in mind, we will
seek to characterize the affine Grassmannian as an orbit space of the orthogonal group
in a Stiefel manifold.

LetA+b ∈ Graff(k, n). Its orthogonal affine coordinates are [A, b0] ∈ V(k, n)×R
n

where ATb0 = 0, i.e., b0 is orthogonal to the columns of A. However, as b0 is in general
not of unit norm,wemay not regard [A, b0] as an element ofV(k+1, n). The following
variant2 is a convenient system of coordinates for computations [26] and for defining
various distances on Graff(k, n) in Sect. 8.

Definition 2 Let A + b ∈ Graff(k, n) and [A, b0] ∈ R
n×(k+1) be its orthogonal affine

coordinates, i.e., ATA = Ik and ATb0 = 0. The matrix of Stiefel coordinates for A+b
is the (n + 1) × (k + 1) matrix with orthonormal columns,

YA+b :=
[
A b0/

√
1 + ‖b0‖2

0 1/
√
1 + ‖b0‖2

]

∈ V(k + 1, n + 1).

Two orthogonal affine coordinates [A, b0], [A′, b′
0] of A + b give two corresponding

matrices of Stiefel coordinates YA+b, Y ′
A+b. By the remark after our definition of

2 Definition 2 has appeared in [26, Definition 3.1]. We reproduce it here for the reader’s easy reference.
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orthogonal affine coordinates, A = A′Q′ for some Q′ ∈ O(k) and b0 = b′
0. Hence

YA+b =
[
A b0/

√
1 + ‖b0‖2

0 1/
√
1 + ‖b0‖2

]

=
[
A′ b′

0/
√
1 + ‖b′

0‖2
0 1/

√
1 + ‖b′

0‖2
] [

Q′ 0
0 1

]
= Y ′

A+bQ (4.3)

where Q := [
Q′ 0
0 1

] ∈ O(k + 1). Hence two different matrices of Stiefel coordinates
for the same affine subspace differ by an orthogonal transformation.

There is also an affine counterpart to the last paragraph of Sect. 2 that allows us
to provide an analogue of Proposition 2 without reference to orthogonality, useful for
studying the affine Grassmannian over a vector space without an inner product. The
noncompact affine Stiefel manifold Staff(k, n) may be defined in several ways:

Staff(k, n) = GA(n)/R(n − k) = (GL(n)/R(n − k)
)× R

n = St(k, n) × R
n,

where GA(n) is the general affine group in Sect. 3 and St(k, n) the noncompact Stiefel
manifold in Sect. 2.

Proposition 3

(i) Dimensions of the compact and noncompact affine Stiefel manifolds are

dimVaff(k, n) = 1

2
(2n − k)(k + 1), dim Staff(k, n) = n(k + 1).

(ii) Whether as topological spaces, differential manifolds, or algebraic varieties, we
have

Graff(k, n) ∼= Staff(k, n)/GA(k) ∼= GA(n)/
(
R(n − k) × GA(k)

)
,

i.e., the isomorphism is a homeomorphism, diffeomorphism, and biregular map.
(iii) Staff(k, n) is a principal GA(k)-bundle over Graff(k, n).

Proof The inclusion E(n) ↪→ GA(n) as a subgroup naturally induces the commutative
diagram:

E(n) GA(n)

Vaff(k, n) = E(n)/O(n − k) Staff(k, n) = GA(n)/R(n − k)

Graff(k, n) = Vaff(k, n)/E(k) Staff(k, n)/GA(k)

Gr(k, n) GL(n)/
(
R(n − k) × GL(k)

)

πa πs

j

τ τs

∼=

(4.4)

where πa and τ are as in (4.1), πs is the quotient map, and τs is similarly defined
as τ . The bottom isomorphism is (2.4), which is simultaneously an isomorphism of
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topological spaces, differential manifolds, and algebraic varieties. (i) follows from the
quotient space structures:

dim Vaff(k, n) = dim E(n) − dimO(n − k) =
[(

n

2

)
+ n

]
−
(
n − k

2

)

= (k + 1)(2n − k)

2
,

dim Staff(k, n) = dimGA(n) − dim R(n − k) = (n2 + n) − n(n − k) = n(k + 1).

For (ii), it suffices to show that the restriction

j |τ−1(A) : τ−1(A) → τ−1
s (A)

is an isomorphism for every A ∈ Gr(k, n), but this follows from the bottom iso-
morphism. (iii) follows from (ii) as Staff(k, n) is a principal GA(k)-bundle on
Staff(k, n)/GA(k) ∼= Graff(k, n). ��

5 Algebraic geometry of the affine Grassmannian

We now turn to the algebraic geometric aspects, characterizing Graff(k, n) as (i) an
irreducible nonsingular algebraic variety, (ii) a Zariski open dense subset of Gr(k +
1, n + 1), and (iii) a real affine algebraic variety of projection matrices. In addition,
just as Gr(k, n) is a moduli space of k-dimensional linear subspaces inR

n , Graff(k, n)

is a moduli space of k-dimensional affine subspaces in R
n , although we have nothing

to add beyond this observation. In Sect. 6, we will discuss affine Schubert varieties,
an analogue of Schubert varieties, in Graff(k, n).

That Graff(k, n) may be regarded as a Zariski dense subset of Gr(k + 1, n+ 1) is a
noteworthy point. It is the key to our optimization algorithms in [26]. Also, it imme-
diately implies that any probability densities [10] defined on the usual Grassmannian
may be adapted to the affine Grassmannian, a fact that we will rely on in Sect. 9.

Theorem 1

(i) Graff(k, n) is an algebraic variety that is irreducible and nonsingular.
(ii) Graff(k, n) may be embedded as a Zariski open subset of Gr(k + 1, n + 1),

j : Graff(k, n) → Gr(k + 1, n + 1), A + b 	→ im(A ∪ {b + en+1}), (5.1)

where en+1 = (0, . . . , 0, 1) ∈ R
n+1. The image is open and dense in both the

Zariski and manifold topologies.
(iii) Gr(k + 1, n + 1) may be regarded as the disjoint union of Gr(k + 1, n) and

Graff(k, n); more precisely,

Gr(k + 1, n + 1) = X ∪ Xc, X ∼= Graff(k, n), Xc ∼= Gr(k + 1, n).
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Fig. 1 Here our linear subspace A is the x-axis. It is displaced by b along the y-axis to the affine subspace
A + b. The embedding j : Graff(k, n) → Gr(k + 1, n + 1) takes A + b to the smallest 2-plane containing
A and b + e3, where e3 is a unit vector along the z-axis

Proof Substituting ‘smooth’ with ‘regular’ and ‘differential manifold’ by ‘algebraic
variety’ in the proof of Proposition 1, we see that Graff(k, n) is a nonsingular algebraic
variety. We use ‘algebraic variety’ here in the sense of an abstract algebraic variety,
i.e., Graff(k, n) is obtained by gluing together affine open subsets.

The embedding j takes k-flats inR
n to (k+1)-planes inR

n+1, i.e.,Rn ⊇ A+b 	→
span(A∪{b+en+1}) ⊆ R

n+1. ItmapsR
n onto En := span{e1, . . . , en} ⊆ R

n+1 where
e1, . . . , en, en+1 are the standard basis vectors of R

n+1. Linear subspaces A ⊆ R
n are

then mapped to j(A) ⊆ En . Clearly j is an embedding, illustrated in Fig. 1 for the
case k = 1, n = 3.

We set X := j
(
Graff(k, n)

) ⊆ Gr(k + 1, n + 1) and set Xc to be the set-theoretic
complement of X in Gr(k + 1, n + 1). By (ii), X ∼= Graff(k, n). By the definition of
Xc, a (k+1)-planeB ∈ Gr(k+1, n+1) is in Xc if and only ifB ⊆ En , which is to say
that Xc = Grk+1(En) ∼= Gr(k + 1, n). We easily see that X is Zariski open because
its complement Xc, comprising (k + 1)-planes in En , is clearly Zariski closed. Since
Gr(k + 1, n + 1) is irreducible as an algebraic variety, its Zariski open subset X must
also be irreducible, and thus so is Graff(k, n). ��

Henceforth we will identify

R
n ≡ {(x1, . . . , xn, 0) ∈ R

n+1 : x1, . . . , xn ∈ R} (5.2)

to obtain a complete flag

{0} ⊆ R
1 ⊆ R

2 ⊆ · · · ⊆ R
n ⊆ R

n+1 ⊆ · · · ,

which was essentially what we did in the proof of Theorem 1. With such an identifi-
cation, our choice of en+1 in the embedding j in (5.1) is the most natural one.
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It is often desirable to uniquely represent elements of Graff(k, n) as actual matrices
instead of equivalence classes of matrices like the affine, orthogonal affine, and Stiefel
coordinate representations in Sects. 3 and 4. For example, we will see that this is
the case when we discuss probability distributions on Graff(k, n) in Sect. 9. The
Grassmannian has a well-known representation [29, Example 1.2.20] as the set of
rank-k orthogonal projection3 matrices, or, equivalently, the set of trace-k idempotent
symmetric matrices:

Gr(k, n) ∼= {P ∈ R
n×n : PT = P2 = P, tr(P) = k}. (5.3)

Note that rank(P) = tr(P) for an orthogonal projection matrix P . A straightforward
affine analogue of (5.3) for Graff(k, n) is the following.

Proposition 4 Graff(k, n) is a real affine algebraic variety given by

Graff(k, n) ∼= {[P, b] ∈ R
n×(n+1) : PT = P2 = P, tr(P) = k, Pb = 0}. (5.4)

Proof LetA+b ∈ Graff(k, n) have orthogonal affine coordinates [A, b0] ∈ R
n×(k+1).

Recall that if A is an orthonormal basis for the subspace A, then AAT is the orthogonal
projection onto A. It is straightforward to check that the map A + b 	→ [AAT, b0] is
independent of the choice of orthogonal affine coordinates and is bijective. ��

We will call the matrix [P, b] ∈ R
n×(n+1) projection affine coordinates for A +

b. From a practical standpoint, we would like to represent points in Graff(k, n) as
orthogonal projection matrices; one reason is that such a coordinate system facilitates
optimization algorithms on Graff(k, n) (see [26]); another is that certain probability
densities can be naturally expressed in such a coordinate system (see Sect. 9). Since
[P, b] is not an orthogonal projection matrix, we introduce the following variant.4

Definition 3 Let A + b ∈ Graff(k, n) and [P, b] ∈ R
n×(n+1) be its projection affine

coordinates. Thematrix of projection coordinates forA+b is the orthogonal projection
matrix

PA+b :=
[
P + bbT/(‖b‖2 + 1) b/(‖b‖2 + 1)

bT/(‖b|2 + 1) 1/(‖b‖2 + 1)

]
∈ R

(n+1)×(n+1).

Alternatively, in terms of orthogonal affine coordinates [A, b0] ∈ R
n×(k+1),

PA+b =
[
AAT + b0bT

0/(‖b0‖2 + 1) b0/(‖b0‖2 + 1)
bT
0/(‖b0|2 + 1) 1/(‖b0‖2 + 1)

]
∈ R

(n+1)×(n+1).

It is easy to check that PA+b is indeed an orthogonal projection matrix, i.e., P2
A+b =

PA+b = PT
A+b. Unlike Stiefel coordinates, projection coordinates of a given affine

subspace are unique.

3 A projection matrix satisfies P2 = P and an orthogonal projection matrix is in addition symmetric, i.e.,
PT = P . Despite its name, an orthogonal projection matrix P is not an orthogonal matrix unless P is an
identity matrix.
4 Definition 3 has appeared in [26, Definition 3.4]. We reproduce it here for the reader’s easy reference.
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6 Schubert calculus on the affine Grassmannian

We will show that basic aspects of Schubert calculus on the Grassmannian [22] could
be readily extended to an “affine Schubert calculus” on the affine Grassmannian, with
affine analogues of flags, Schubert varieties, Schubert cycles [33]. As is the case for
(co)homology of the Grassmannian, the materials in this section will be important for
our (co)homology calculations in Sect. 7.2; what is perhaps more surprising is that
our study of distances between affine subspaces of different dimensions in Sect. 8.3
will also rely on affine Schubert varieties.

In this paragraph, we briefly review some basic terminologies and facts in Schubert
calculus for the reader’s easy reference. The Schubert variety of a flag A1 ⊆ · · · ⊆ Ak

in R
n is a subvariety of Gr(k, n) defined by


(A1, . . . , Ak) := {B ∈ Gr(k, n) : dim(B ∩ A j ) ≥ j, j = 1, . . . , k}.

It is a standard fact [22, Proposition 4] that


(A1, . . . , Ak) ∼= 
(B1, . . . , Bk) if dimA j = dimB j , j = 1, . . . , k. (6.1)

So when the choice of the flag is unimportant, we may take it to be R
d1 ⊆ · · · ⊆ R

dk

and denote the corresponding Schubert variety by
(d1, . . . , dk). The ‘∼=’ in (6.1)may
be taken to be either homeomorphism of topological spaces or biregular isomorphism
of algebraic varieties, but it cannot in general be replaced by ‘=’ — two different
flags of the same dimensions determine different varieties in Gr(k, n). The following
properties [9,19,28,30] of Schubert varieties are also well known.
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Facts 2

(i) The dimension of a Schubert variety is given by

dim
(d1, . . . , dk) =
k∑

j=1

d j − 1

2
k(k + 1).

(ii) The cycles determined by Schubert varieties of dimension i form a basis for the
i th homology group Hi (Gr(k, n), Z2) and cohomology group Hi (Gr(k, n), Z2),
which are isomorphic and

Hi (Gr(k, n), Z2) � Hi (Gr(k, n), Z2) � Z
ri
2 ,

where ri is the number of Schubert varieties of dimension i , which equals the
number of partitions of the integer i into at most k parts, each not exceeding
n − k. Here Z2 := Z/2Z.

(iii) The collection of Schubert varieties in Gr(k, n) over all flags of length k in R
n

gives a cell decomposition5 for Gr(k, n).

Wewill now introduce an affine analogue of the Schubert variety in the affineGrass-
mannian using an affine flag, i.e., an increasing sequence of nested affine subspaces.

Definition 4 Let A1 + b1 ⊆ · · · ⊆ Ak + bk be an affine flag in R
n . The corresponding

affine Schubert variety is a subvariety of Graff(k, n) defined by

�(A1 + b1, . . . , Ak + bk) := {B + c ∈ Graff(k, n) :
dim
(
(B + c) ∩ (A j + b j )

) ≥ j, j = 1, . . . , k}.

We first show that the affine flag may always be chosen so that b1 = · · · = bk .

Lemma 1 For any affine flag A1 + b1 ⊆ · · · ⊆ Ak + bk, there exists a displacement
vector b ∈ R

n such that A j + b j = A j + b, j = 1, . . . , k. Thus every affine Schubert
variety is of the form �(A1 + b, . . . , Ak + b).

Proof Let −b be any element in A1 + b1. By definition, −b ∈ A j + b j , j = 1, . . . , k.
So b j ∈ A j + b. Therefore A j + b j = A j + b, j = 1, . . . , k. ��
With Lemma 1, it is straightforward to derive an analogue of (6.1).

Proposition 5 For any two affine flags A1 + b ⊆ · · · ⊆ Ak + b and B1 + c ⊆ · · · ⊆
Bk + c where dimA j = d j = dimB j , j = 1, . . . , k, we have

�(A1 + b, . . . , Ak + b) ∼= �(B1 + c, . . . , Bk + c),

and so we may write �(d1, . . . , dk) when the specific affine flag is unimportant.

5 A cell decomposition of a topological space X is a partition of X into a disjoint union of open subsets
{Xi }i∈I such that for each i ∈ I there is a continuous map f : Bni → X from the unit closed ball Bni of
dimension ni to X satisfying (i) the restriction of f to the interior of Bni is a homeomorphism onto Xi ;
and (ii) the image f (∂Bni ) is contained in the union of finitely many X j ’s with dim X j < dim Xi .
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Proof There is a general affine transformation (X , y) ∈ GA(n) such that

(X , y) · (A j + b) = X(A j ) + Xb + y = B j + c, j = 1, . . . , k,

i.e., X(A j ) = B j and Xb + y = c. The existence of X ∈ GL(n) is guaranteed by the
transitive action of GL(n) on (linear) flags of fixed dimensions (d1, . . . , dk). We then
set y := c − Xb. ��

We also provide an analogue of Fact 2(i), whose proof is somewhat more involved.

Theorem 3 The dimension of an affine Schubert variety is

dim�(d1, . . . , dk) =
k∑

j=1

d j − k(k + 1)

2
+ (d1 − 1).

Proof Let j be the embedding in (5.1). The dimension of j
(
�(d1, . . . , dk)

)
is clearly

the same as that of �(d1, . . . , dk). We claim that

j
(
�(d1, . . . , dk)

) = 
(d1, d1 + 1, . . . , dk + 1) ∩ j
(
Graff(k, n)

)
. (6.2)

Since 
(d1, d1 + 1, . . . , dk + 1) is an irreducible subset of Gr(k + 1, n + 1) and
j
(
Graff(k, n)

)
is an affine open subset of Gr(k + 1, n + 1), we obtain the required

dimension via

dim j
(
�(d1, . . . , dk)

) = dim
(d1, d1 + 1, . . . , dk + 1)

= d1 +
k∑

i=1

(di + 1) − (k + 1)(k + 2)

2

=
k∑

i=1

di − k(k + 1)

2
+ (d1 − 1),

where we have used Fact 2(i) for the second equality.
It remains to establish (6.2). Let A0 + b ⊆ A1 + b ⊆ · · · ⊆ Ak + b be an affine

flag with dim(Ai + b) = di , i = 0, 1, . . . , k, where we set d0 := d1 − 1.
Let B+ c ∈ �(A1 + b, . . . , Ak + b). As dim(A1 + b)∩ (B+ c) ≥ 1, there is some

−x contained in both A1 + b and B + c. Since A1 + b ⊆ · · · ⊆ Ak + b, we have

Ai + b = Ai + x, B + c = B + x, i = 1, . . . , k. (6.3)

Therefore, for any i = 1, . . . , k,

dim j(B + c) ∩ j(Ai + b) = dim j(B + x) ∩ j(Ai + x)

= dim(B + c) ∩ (Ai + b) + 1 ≥ i + 1.
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Since j(A0 + b) is a codimension-one linear subspace of j(A1 + b), we also have

dim j(B + c) ∩ j(A0 + b) ≥ dim j(B + c) ∩ j(A1 + b) − 1 ≥ 1.

Hence we must have

j(B + c) ∈ 

(
j(A0 + b), j(A1 + b), . . . , j(Ak + b)

) ∩ j
(
Graff(k, n)

)
.

This shows the “⊆” in (6.2).
Conversely, let j(B + c) ∈ 


(
j(A0 + b), j(A1 + b), . . . , j(Ak + b)

)
. On the one

hand, we have

dim j(B + c) ∩ j(Ai + b) ≥ i + 1;

and on the other hand, since j is an embedding, we have

j
(
(B + c) ∩ (Ai + b)

) = j(B + c) ∩ j(Ai + b),

for any i = 0, 1, . . . , k. Therefore, we have

dim(B + c) ∩ (Ai + b) + 1 = dim j(B + c) ∩ j(Ai + b) ≥ i + 1, i = 0, 1, . . . , k.

In other words, B + c ∈ �(A1 + b, . . . , Ak + b). This shows the “⊇” in (6.2). ��
In Sect. 7.2, we will give the affine analogues of Facts 2(ii) and (iii) as Theorem 6

and Proposition 9, respectively.
There are two affine Schubert varieties that deserve special mention because of their

importance in our metric geometry discussions in Sect. 8.3 and, to a lesser extent, also
the probability discussions in Sect. 9.

Definition 5 Let A + b ∈ Graff(k, n) and B + c ∈ Graff(l, n) where k ≤ l ≤ n. The
affine Schubert varieties of l-flats containing A + b and k-flats contained in B + c are,
respectively,

�+(A + b) := {X + y ∈ Graff(l, n) : A + b ⊆ X + y
}
,

�−(B + c) := {Y + z ∈ Graff(k, n) : Y + z ⊆ B + c
}
.

(6.4)

The nomenclature in Definition 5 is justified as �+(A + b) is the affine Schubert
variety of the affine flag

{0} =: A0 + b0 ⊆ A1 + b1 ⊆ · · · ⊆ Ak + bk := A + b ⊆ · · · ⊆ Al + bl , (6.5)

whereAk+i +bk+i is an affine subspace of dimension n− l+(k+ i), i = 1, . . . , l−k;
and �−(B + c) is the affine Schubert variety of the affine flag

{0} =: B0 + c0 ⊆ B1 + c1 ⊆ · · · ⊆ Bk + ck := B + c (6.6)
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where B j + c j is an affine subspace of dimension l − k + j, j = 1, . . . , k.
We next discuss the geometry of these sets, starting with the observation that

�+(A + b) is isomorphic to a Grassmannian and �−(B + c) is isomorphic to an
affine Grassmannian.

Proposition 6 Let A + b ∈ Graff(k, n) and B + c ∈ Graff(l, n). Then

�+(A + b) ∼= Gr(n − l, n − k) and �−(B + c) ∼= Graff(k, l)

as Riemannian manifolds and algebraic varieties. In particular, we have

dim�+(A + b) = (n − l)(l − k), dim�−(B + c) = (k + 1)(l − k).

Proof We first observe that the map ϕ : �+(A + b) → 
+(A), X + y 	→ X + y − b,
is well-defined since A ⊆ X + y − b by our choice of X + y. Also, ψ : 
+(A) →
�+(A + b), X 	→ X + b, is the inverse of ϕ and so it is an isomorphism. Together
with [41, Proposition 21], we obtain the first isomorphism �+(A + b) ∼= 
+(A) ∼=
Gr(n− l, n−k). For the second isomorphism, consider ϕ′ : �−(B+c) → Graffk(B),
Y + z 	→ Y + z − c, which is well-defined since Y + z − c is an affine subspace of
dimension k in B. Its inverse is given by ψ ′ : Graffk(B) → �−(B + c), Y + z 	→
Y + z + c, and so it is an isomorphism. The required isomorphism then follows from
�−(B + c) ∼= Graffk(B) ∼= Graff(k, l). ��
The asymmetry in Proposition 6 is expected. �+(A + b) is a Grassmannian of linear
subspaces since all affine subspaces containing A+b can be shifted back to the origin
by the vector b. In the case of �−(B + c), shifting B + c back to the origin by c and
then taking all affine subspaces contained in B still gives a Grassmannian of affine
subspaces. As a sanity check, note that the dimensions in Proposition 6 agree with
their values given by Theorem 3 with respect to the affine flags (6.5) and (6.6).

We also have the following analogue of Proposition 4 that allows us to regard
�+(A + b), �−(B + c) as subsets of n × (n + 1) matrices.

Proposition 7 The affine Schubert varieties�+(A+b) and�−(B+c) are isomorphic
to real affine algebraic varieties in R

n×(n+1) given by

�+(A + b) ∼= {[P, d] ∈ R
n×(n+1) : PT = P2 = P, Pd = 0,

tr(P) = l, j(A + b) ⊆ im([P, d])},
�−(B + c) ∼= {[P, d] ∈ R

n×(n+1) : PT = P2 = P, Pd = 0,
tr(P) = k, im([P, d]) ⊆ j(B + c)}.

7 Algebraic topology of the affine Grassmannian

Wewill determine thehomotopygroups and (co)homologygroups/rings ofGraff(k, n).
With this in mind, we begin with yet another structure of Graff(k, n), namely, as a
vector bundle—in fact it is the universal quotient bundle of Gr(k, n).
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Recall that if S is a subbundle of a vector bundle E on a manifold M , then Q is
called the quotient bundle on M of E by S if there is a short exact sequence of vector
bundles

0 → S → E → Q → 0. (7.1)

Recall also that the tautological bundle over Gr(k, n) is the vector bundle whose fiber
over A ∈ Gr(k, n) is simply A itself. One may view this as a subbundle of the trivial
vector bundleGr(k, n)×R

n . If S is the tautological bundle and E is the trivial bundle
in (7.1), then the quotient bundle Q is called the universal quotient bundle of Gr(k, n)

[16,28].

Theorem 4
(i) Graff(k, n) is a rank-(n − k) vector bundle over Gr(k, n) with bundle projection

τ : Graff(k, n) → Gr(k, n), the deaffine map in (3.2).
(ii) Graff(k, n) is the universal quotient bundle of Gr(k, n),

0 → S → Gr(k, n) × R
n → Graff(k, n) → 0, (7.2)

where S is the tautological bundle.

Proof In affine coordinates, the deaffine map τ : Graff(k, n) → Gr(k, n),A+b 	→ A

takes the form τ([a1, . . . , ak, b0]) = [a1, . . . , ak] where ai ’s and b0 are chosen as in
the proof of Proposition 1. Notice that the fiber τ−1(A) for A ∈ Gr(k, n) is simply
R
n/A, a linear subspace of dimension n − k. Local trivializations of Graff(k, n) are

obtained from local charts of Gr(k, n) by construction. Hence Graff(k, n) is a vector
bundle over Gr(k, n). Let q : Gr(k, n) × R

n → Graff(k, n), (A, b) 	→ A + b. It is
straightforward to check that q is a surjective bundle map and the kernel of q is the
tautological vector bundle S over Gr(k, n), i.e., we obtain the exact sequence in (7.2).
This shows that Graff(k, n) is the universal quotient bundle. ��

7.1 Homotopy of Graff(k, n)

When Graff(k, n) is regarded as a vector bundle on Gr(k, n) as in Theorem 4(i), the
base spaceGr(k, n) is homeomorphic to the zero section,which is a strong deformation
retract of Graff(k, n). Hence Gr(k, n) and Graff(k, n) have the same homotopy type
and so

πr (Graff(k, n)) � πr (Gr(k, n)), r ∈ N.

From the list of homotopy groups of Gr(k, n) in [39, Section 10.8], we obtain those
of Graff(k, n).

Proposition 8 Graff(k, n) is homotopy equivalent to Gr(k, n). Therefore

(i) for n ≥ k + 2 and 0 < k < n/2,

π1(Graff(k, n)) �
{

Z if k = 1, n = 2,

Z2 otherwise;
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(ii) for 0 ≤ k < n/2 and 2 ≤ r < n − 2k,

πr (Graff(k, n)) �

⎧
⎪⎨

⎪⎩

Z if r = 0, 4 mod 8,

Z2 if r = 1, 2 mod 8,

0 if r = 3, 5, 6, 7 mod 8.

Since the deaffine map τ in (3.2) is a bundle projection by Theorem 4(i), it is
straightforward to take direct limits in (3.4) and extend Proposition 8 to the infinite
Grassmannian via the commutative diagram (4.2). This also shows that Graff(k,∞)

is a classifying space [20].

Corollary 1 Graff(k,∞) is homotopy equivalent to Gr(k,∞). Therefore

π1(Graff(k,∞)) � Z2;

and for r ≥ 2,

πr (Graff(k,∞)) �

⎧
⎪⎨

⎪⎩

Z if r = 0, 4 mod 8,

Z2 if r = 1, 2 mod 8,

0 if r = 3, 5, 6, 7 mod 8.

Moreover, Graff(k,∞) is the classifying space of E(n) and GA(n) with total space
Vaff(k,∞).

7.2 Homology and cohomology of Graff(k, n)

We show that the affine Schubert varieties in Sect. 6 play a role for the (co)homology
of Graff(k, n) similar to that of Schubert varieties for Gr(k, n).

Let A1 ⊆ · · · ⊆ Ak be a flag in R
n . For any b ∈ R

n , the deaffine map τ :
Graff(k, n) → Gr(k, n) in (3.2), when restricted to �(A1 + b, . . . , Ak + b), defines
a map

τb : �(A1 + b, . . . , Ak + b) → 
(A1, . . . , Ak), A + b 	→ A.

For any fixed b ∈ R
n , it has a right inverse

sb : 
(A1, . . . , Ak) → �(A1 + b, . . . , Ak + b), A 	→ A + b.

Lemma 2 LetA1 ⊆ · · · ⊆ Ak be a flag inR
n and b ∈ R

n. Then the following diagram
commutes:

�(A1 + b, . . . , Ak + b) τ−1
(

(A1, . . . , Ak)

)
Graff(k, n)


(A1, . . . , Ak) Gr(k, n)

τb
τ τ

sb
(7.3)
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Proof The only point in (7.3) that needs verification is the inclusion �(A1 +
b, . . . , Ak + b) ⊆ τ−1

(

(A1, . . . , Ak)

)
. Let B + c ∈ �(A1 + b, . . . , Ak + b). Then

dim(A j + b) ∩ (B + c) ≥ j , j = 1, . . . , k. We need to show that dimA j ∩ B ≥ j ,
j = 1, . . . , k. By the same argument that led to (6.3), we may choose an x ∈ R

n so
that

A j + b = A j + x, B + c = B + x, j = 1, . . . , k.

Therefore

dim(A j + x) ∩ (B + x) = dim(A j + b) ∩ (B + c) ≥ j

and thus dimA j ∩ B ≥ j , j = 1, . . . , k. ��
For amoreprecise relationbetween�(A1+b, . . . , Ak+b) and τ−1

(

(A1, . . . , Ak)

)
,

we show that the fibers of τb are contractible.

Lemma 3 LetA1 ⊆ · · · ⊆ Ak be a flag inR
n,B ∈ 
(A1, . . . , Ak), and b ∈ R

n. Then

τ−1
b (B) = {B + c ∈ Graff(k, n) : dim(B + c) ∩ (A j + b) ≥ j, j = 1, . . . , k}

is convex and therefore contractible.

Proof We first define an auxiliary set

C(B, b) := {c ∈ R
n : B + c ∈ τ−1

b (B)}
= {c ∈ R

n : dim(B + c) ∩ (A j + b) ≥ j, j = 1, . . . , k}. (7.4)

If c ∈ C(B, b), then c + b′ ∈ C(B, b) for any b′ ∈ B. Moreover, B + c = B + c′ if
and only if c′ − c ∈ B. So we have a homeomorphism

C(B, b)/B ∼= τ−1
b (B), (7.5)

where the left-hand side is regarded as a subset of the quotient vector space R
n/B. So

the convexity of τ−1
b (B) would follow from the convexity of C(B, b) in R

n .
We remind the reader that if A ∈ V(k, n) is an orthonormal basis for A ∈ Gr(k, n),

then A = im(A) = ker(In − AAT). Let B ∈ V(n, n − k) and A j ∈ V(n − d j , n) be
orthonormal bases of B and A j , respectively, j = 1, . . . , k. So

B = {y ∈ R
n : (In − BBT)y = 0}, A j = {y ∈ R

n : (In − A j A
T
j )y = 0},

and so
B + c = {y ∈ R

n : (In − BBT)(y − c) = 0},
A j + b = {y ∈ R

n : (In − A j A
T
j )(y − b) = 0}, (7.6)

for j = 1, . . . , k. Hence by (7.4) and (7.6),

C(B, b) = {c ∈ R
n : solution space of (7.6) has dimension ≥ j, j = 1, . . . , k}.
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With this characterization of C(B, b), convexity is straightforward: Let c1, c2 ∈
C(B, b) and y1, y2 ∈ R

n be such that

(In − BBT)(yi − ci ) = 0, (In − A j A
T
j )(yi − b) = 0, j = 1, . . . , k, i = 1, 2.

(7.7)
For any t ∈ [0, 1], ct = tc1 + (1 − t)c2 and yt = t y1 + (1 − t)y2 clearly also satisfy
(7.7). ��

This leads us to the following relation between �(A1 + b, . . . , Ak + b) and
τ−1
(

(A1, . . . , Ak)

)
.

Theorem 5 The image sb
(

(A1, . . . , Ak)

)
is a strong deformation retract of �(A1 +

b, . . . , Ak + b). In particular, �(A1 + b, . . . , Ak + b) is homotopy equivalent to
τ−1
(

(A1, . . . , Ak)

)
.

Proof sb : 
(A1, . . . , Ak) → �(A1+b, . . . , Ak+b) is a section of τb, i.e., τb◦sb = 1.
Hence it suffices to prove that the fiber τ−1

b (B) deformation retracts to sb(B) for each
B ∈ 
(A1, . . . , Ak), but this is trivially true since τ−1

b (B) is contractible by Lemma 3.
��

By virtue of Theorem 5, we deduce next that the affine Schubert varieties form
a natural basis for the (co)homology groups of Graff(k, n). In this context, the
(co)homology classes determined by affine Schubert varieties are called affine Schu-
bert cycles.

Theorem 6 Affine Schubert cycles form a basis for the (co)homology groups of an
affine Grassmannian. In particular,

Hi (Graff(k, n), Z2) � Hi (Graff(k, n), Z2) � Z
ri
2 ,

where ri is the number of partitions of the integer i into at most k parts, each not
exceeding n − k. We also have a graded ring isomorphism

H∗(Graff(k,∞), Z2) � Z2[x1, . . . , xk]Sk .

Proof By Fact 2(ii), as τ is a homotopy equivalence, the set of τ−1
(

(A1, . . . , Ak)

)

over all i-dimensional Schubert varieties 
(A1, . . . , Ak) form a basis for the
i th (co)homology group of Graff(k, n). Therefore, by Theorems 3 and 5, the j-
dimensional affine Schubert varieties �(A1 + b, . . . , Ak + b) form a basis for the
( j − d1 + 1)th (co)homology group of Graff(k, n).

For the cohomology ring, the homotopy equivalence between Graff(k,∞) and
Gr(k,∞) in Corollary 1 gives H∗(Graff(k,∞), Z2) � H∗(Gr(k,∞), Z2). The rest
then follows from Fact 2(ii). ��
We stated Theorem 6 with Z2 coefficients for simplicity, but in the same manner we
may obtain H∗(Graff(k,∞), Z) and H∗(Graff(k,∞), Q) in terms of characteristic
classes using the corresponding results for Gr(k,∞) in [7,8,35] and [37], respectively.

We conclude this section with a cell decomposition of Graff(k, n).

123



Foundations of Computational Mathematics (2021) 21:537–574 559

Proposition 9 The collection of preimages τ−1
(

(A1, . . . , Ak)

)
over all flags in R

n

of length k gives a cell decomposition of Graff(k, n).

Proof By Theorem 4, Graff(k, n) is a vector bundle over Gr(k, n)with bundle projec-
tion τ : Graff(k, n) → Gr(k, n). By Fact 2(iii), the collection of 
(A1, . . . , Ak) over
all flags of length k provides a cell-decomposition of Gr(k, n). So the required result
follows. ��

8 Metric geometry of the affine Grassmannian

We have two goals in this section. The first is to extend various distances defined on
Grassmannian to the affine Grassmannian; the results are summarized in Table 2—
these are distances between affine subspaces of the same dimension. Following our
earlier work in [41], our next goal is to further extend these distances in a natural way
(using the affine Schubert varieties in Definition 5) to affine subspaces of different
dimensions.

8.1 Issues in metricizing Graff(k, n)

A reason for the widespread applicability of the usual Grassmannian is that one has
concrete, explicitly computable expressions for geodesics and distances on Gr(k, n).
In [2,12,40], these expressions were obtained from a purely differential geometric per-
spective. One might imagine that the differential geometric structures on Graff(k, n)

in Propositions 1, 2, or Theorem 4 would yield similar results. Surprisingly this is not
the case.

A more careful examination of the arguments in [2,12,40] for obtaining explicit
expressions for geodesics and geodesic distances on V(k, n) and Gr(k, n) reveals that
they rely on a somewhat obscure structure, namely, that of a geodesic orbit space
[4,15]. In general, if G is a compact semisimple Lie group and G/H is a reductive
homogeneous space, then there is a standard metric induced by the restriction of the
Killing form on g/hwhere g and h are the Lie algebras of G and H , respectively. With
this standard metric, G/H is a geodesic orbit space, i.e., all geodesics are orbits of
one-parameter subgroups of G. In the case of Gr(k, n) = O(n)/

(
O(n − k) × O(k)

)

and V(k, n) = O(n)/O(n − k), as O(n) is a compact semisimple Lie group, Gr(k, n)

and V(k, n) are geodesic orbit spaces. Furthermore, as O(n) is a matrix Lie group,
all its one-parameter subgroups are given by exponential maps, which in turn allows
us to write down explicit expressions for the geodesics (and thus also the geodesic
distances) on Gr(k, n) and V(k, n). The difficulty in seeking similar expressions on
Graff(k, n) = E(n)/

(
E(n − k) × O(k)

)
is that it may not be a geodesic orbit space

since E(n) is not compact.
What about the vector bundle structure on Graff(k, n) then? If E is a vector bundle

over a Riemannian manifold M , then the pullback of the metric on M induces a metric
on E . Nevertheless, this metric on E is uninteresting—by definition, it disregards the
fibers of the bundle. In the context of Theorem 4, this is akin to defining the distance
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between A + b and B + c ∈ Graff(k, n) as the usual Grassmann distance between A

and B ∈ Gr(k, n).
We will turn to the algebraic geometric properties of Graff(k, n) in Theorem 1

to provide the framework for defining distances with explicitly computable expres-
sions, first for equidimensional affine subspaces and next for inequidimensional affine
subspaces.

8.2 Distances on Graff(k, n)

The Riemannian metric on Gr(k, n) yields the following well-known Grassmann dis-
tance between two subspaces A, B ∈ Gr(k, n),

dGr(k,n)(A, B) =
(∑k

i=1
θ2i

)1/2
, (8.1)

where θ1, . . . , θk are the principal angles between A and B. This distance is easily
computable via svd as θi = cos−1 σi , where σi is the i th singular value of the matrix
ATB for any orthonormal bases A and B of A and B [14,41].

By Theorem 1(ii), we may identify Graff(k, n) with its image j
(
Graff(k, n)

)
in

Gr(k + 1, n + 1). As a subset of Gr(k + 1, n + 1), Graff(k, n) inherits the Grassmann
distance dGr(k+1,n+1) on Gr(k + 1, n + 1), giving us the distance in Theorem 7 that
can also be readily computed using svd. We will show in Proposition 11 that this
distance is in fact intrinsic. In the following, Theorem 7 reproduces the statement (but
not the proof) of [26, Theorem 4.2] for the reader’s easy reference. On the other hand,
Lemma 4 and Corollary 2 collectively provide a full proof for [26, Corollary 4.3],
wherein only a sketch was given.

Theorem 7 For any two affine k-flats A + b and B + c ∈ Graff(k, n),

dGraff(k,n)(A + b, B + c) := dGr(k+1,n+1)
(
j(A + b), j(B + c)

)
,

where j is the embedding in (5.1), defines a notion of distance consistent with the
Grassmann distance. If

YA+b =
[
A b0/

√
1 + ‖b0‖2

0 1/
√
1 + ‖b0‖2

]

, YB+c =
[
B c0/

√
1 + ‖c0‖2

0 1/
√
1 + ‖c0‖2

]

are the matrices of Stiefel coordinates for A + b and B + c, respectively, then

dGraff(k,n)(A + b, B + c) =
(∑k+1

i=1
θ2i

)1/2
, (8.2)

where θi = cos−1 σi and σi is the i th singular value of Y T
A+bYB+c ∈ R

(k+1)×(k+1).
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Proof Similar to [26, Theorem 4.2]. ��
It is not difficult to see that the angles θ1, . . . , θk+1 are independent of the choice of

Stiefel coordinates. We define the following affine analogues of principal angles and
principal vectors of linear subspaces [6,14,41] that will be useful later.

Definition 6 We will call θi the i th affine principal angles between the respective
affine subspaces and denote it by θi (A + b, B + c). Consider the svd,

Y T
A+bYB+c = U�V T (8.3)

where U , V ∈ O(k + 1) and � = diag(σ1, . . . , σk+1). Let

YA+bU = [p1, . . . , pk+1], YB+cV = [q1, . . . , qk+1].

Wewill call the pair of column vectors (pi , qi ) the i th affine principal vectors between
A + b and B + c.

We next show that the distance in Theorem 7 is the only possible distance on an affine
Grassmannian compatible with the usual Grassmann distance on a Grassmannian. On
any connected RiemannianmanifoldM with Riemannianmetric g, there is an intrinsic
distance function dM on M with respect to g,

dM (x, y) := inf{L(γ ) : γ is a piecewise smooth curve connecting x and y in M}.

Here L(γ ) is the length of the curve γ : [0, 1] → M defined by

L(γ ) :=
∫ 1

0
‖γ ′(t)‖ =

∫ 1

0

√
gγ (t)(γ

′(t), γ ′(t)).

For a connected submanifold of N ⊆ M , there is a natural Riemannian metric gN
on N induced by g and therefore a corresponding intrinsic distance function,

dN (x, y) := inf{L(γ ) : γ is a piecewise smooth curve connecting x and y in N }.

On the other hand, we may also define a distance function dM |N on N by simply
restricting the distance function dM to N—note that this is what we have done in
Theorem 7 with M = Gr(k+1, n+1) and N = Graff(k, n). In general, dM |N �= dN .
For example, for N = S

2 embedded as the unit sphere in M = R
3, the two distance

functions on S
2 are obviously different. However, for our embedding of Graff(k, n)

in Gr(k + 1, n + 1), the two distances on Graff(k, n) agree.

Proposition 10 Let K be a closed submanifold of codimension at least two in M and
let N be the complement of K in M. Then dM |N = dN .

Proof We need to show that for any two distinct points x, y ∈ N , dM (x, y) =
dN (x, y). By the definition of dM and dN , it suffices to show that any piecewise
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smooth curve γ in M connecting x, y can be approximated by a piecewise smooth
curve in N connecting x, y. We remind the reader of the transversality theorem [18,
Theorem 2.4]: Let ϕ : L → M be a smooth map between two manifolds and let
K ⊆ M be a submanifold. Then ϕ can be perturbed in an arbitrarily small neighbor-
hood to some ϕ̃ such that

Tϕ̃(x)(K ) + im(dϕ̃x ) = Tϕ̃(x)(M)

for any x ∈ ϕ̃−1(K ). In particular, if dim im(ϕ)+dim K < dim M , then there exists a
perturbation ϕ̃ in any small neighborhood ofϕ such that im(ϕ̃)∩K = ∅.When applied
to our case with L = [0, 1], the transversality theorem permits us to perturb the curve
γ = ϕ(L) ⊆ M in any small neighborhood to avoid K as long as K has codimension
at least two. It follows that γ can be approximated by curves in N = M \K connecting
x and y. ��
Proposition 11 The distance dGraff(k,n) in Theorem 7 is intrinsic with respect to the
Riemannian metric on Graff(k, n) induced from that of Gr(k + 1, n + 1).

Proof By Theorem 1, the complement of N = Graff(k, n) in M is Gr(k + 1, n) and
has codimension k + 1 ≥ 2. Hence Proposition 10 applies. ��

Proposition 11 justifies calling the distance in (8.2) the Grassmann distance on
Graff(k, n). We next determine an expression for the geodesic connecting two points
on Graff(k, n) that attains their minimum Grassmann distance. There is one caveat—
this geodesic may contain a point lying outside Graff(k, n) as it is not a geodesically
complete manifold.

Lemma 4 Let A + b, B + c ∈ Graff(k, n) and let

YA+b =
[
A b0/

√
1 + ‖b0‖2

0 1/
√
1 + ‖b0‖2

]

, YB+c =
[
B c0/

√
1 + ‖c0‖2

0 1/
√
1 + ‖c0‖2

]

be their Stiefel coordinates. If Y T
A+bYB+c is invertible, then there is at most one point

on the distance-minimizing geodesic in Gr(k + 1, n + 1) connecting A + b and B + c
which lies outside j

(
Graff(k, n)

)
. Here j is the embedding in (5.1).

Proof Let U ∈ O(k + 1) and the diagonal matrix � be as in (8.3). Let � :=
diag(θ1, . . . , θk+1) = cos−1 � be the diagonal matrix of affine principal angles. By
[2] the geodesic γ : [0, 1] → Gr(k + 1, n + 1) connecting j(A + b) and j(B + c) is
given by γ (t) = span

(
YA+bU cos(t�)+ Q sin(t�)

)
, where Q is an (n+1)× (k+1)

orthonormal matrix such that the rhs of

(In+1 − YA+bY
T
A+b)YB+c(Y

T
A+bYB+c)

−1 = Q(tan(�))U T

gives an svd of the matrix on the lhs. Let the last row ofU be [uk+1,1, . . . , uk+1,k+1]T
and that of Q be [qk+1,1, . . . , qk+1,k+1]T. Then γ (t) ∈ Gr(k+1, n+1)\ j(Graff(k, n)

)
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if and only if the entries on the last row of γ (t) are all zero, i.e.,

uk+1,i cos(tθi )√‖b‖2 + 1
+ qk+1,i sin(tθi ) = 0,

for all i = 1, . . . , k + 1. So at most one point on γ lies outside Graff(k, n). ��
Corollary 2 Let A + b and B + c ∈ Graff(k, n). The distance-minimizing geodesic
γ : [0, 1] → Graff(k, n) connecting A + b and B + c is given by

γ (t) = j−1(span(YA+bU cos t� + Q sin t�)
)
, (8.4)

where Q ∈ O(n + 1),U ∈ O(k + 1) and the diagonal (n + 1) × (k + 1) matrix � are
determined by the svd

(In+1 − YA+bY
T
A+b)YB+c(Y

T
A+bYB+c)

−1 = Q(tan�)U T.

The matrix U is the same as that in (8.3) and � = diag(θ1, . . . , θk+1) is the diagonal
matrix of affine principal angles. The geodesic γ attains the distance in (8.2) and its
derivative at t = 0 is given by

γ ′(0) = j−1(Q�U T
)
. (8.5)

We next give an example to illustrate Corollary 2 when k = 1, n = 2.

Example 1 Let r , s ∈ R with r < s. Consider the two affine lines in R
2,

A + b = {(x, y) ∈ R
2 : x = r} = {r} × R,

B + c = {(x, y) ∈ R
2 : x = s} = {s} × R.

By definition, these are two points on the affine Grassmannian Graff(1, 2) and we
may represent them in orthogonal affine coordinates as [A, b0], [B, c0] ∈ R

2×2 with

A = B =
[
0
1

]
∈ R

2×1, b0 =
[
r
0

]
∈ R

2, c0 =
[
s
0

]
∈ R

2.

Let θ, φ ∈ (−π/2, π/2) be given by tan θ = r and tan φ = s. By (8.4), the distance-
minimizing geodesic curve γ : [0, 1] → Graff(1, 2) is given by

γ (t) = j−1
(
im

[
0 sin((1−t)θ+tφ)
1 0
0 cos((1−t)θ+tφ)

])
=
{[

x
y

]
∈ R

2 : x = tan
(
(1 − t)θ + tφ

)
}
.

So the image of γ consists of affine lines of the form {(x, y) ∈ R
2 : x = τ } = {τ }×R

where r ≤ τ ≤ s. See Fig. 2 for an illustration. The geodesic distance is then

dGraff(1,2)
({r} × R, {s} × R

) = |θ − φ| = tan−1(s) − tan−1(r). (8.6)
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Fig. 2 The geodesic curve on Graff(1, 2) in Example 1 is indicated by the shaded strip. Note that a point
on Graff(1, 2) is an affine line in R

2. The blue line x = s is the initial point of this geodesic curve and the
red line x = r the terminal point. The black line x = τ is an arbitrary point on this geodesic curve. The
lines are packed more closely together as we move to the left

It is worthwhile emphasizing that the geodesic distance between A + b (red line) and
B+c (blue line) inFig. 2 is not r−s—this potential pitfall shows the fallacyof regarding
Graff(k, n) as a subset of Gr(k, n)×R

n ; the value r − s is the product distance on the
latter, not the geodesic distance on Graff(k, n) as a Riemannian manifold. Note that
the Riemannian structure on Graff(k, n) in this section comes from regarding it as a
subset of Gr(k + 1, n + 1) as in Sect. 5. In particular, the geodesic distance between
any two points is finite since Gr(k + 1, n + 1) is compact. For instance, by (8.6), if
r = −1 and s = 1, then d = π/2; and if r → −∞ and s → ∞, then d → π .

The dark-to-light shading in Fig. 2 is intended to convey the idea that the affine
lines get packed more closely together as we move to the left, i.e., for any δ > 0,

dGraff(1,2)
({r} × R, {s} × R

)
> dGraff(1,2)

({r + δ} × R, {s + δ} × R
)
.

For instance, dGraff(1,2)
({0} × R, {1} × R

) ≈ 0.785 > 0.322 ≈ dGraff(1,2)
({1} ×

R, {2} × R
)
. ��

The Grassmann distance in (8.1) is the best known distance on the Grassmannian.
But there are in fact several common distances on the Grassmannian [41, Table 2]
and we may extend them to the affine Grassmannian by applying the embedding
j : Graff(k, n) → Gr(k + 1, n + 1) and emulating our arguments in this section. We
summarize these distances in Table 2.

8.3 Distances on Graff(∞,∞)

The problem of defining distances between linear subspaces of different dimensions
has recently been resolved in [41]. We show here that the framework in [41] may be
adapted for affine subspaces. This is expected to be important in modeling mixtures
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Table 2 Distances on Graff(k, n) in terms of affine principal angles and Stiefel coordinates. The matrices
U , V ∈ O(k + 1) in the right column of Table 2 are the ones in (8.3)

Affine principal angles Stiefel coordinates

Asimov dα
Graff(k,n)

(A + b, B + c) = θk+1 cos−1‖Y T
A+bYB+c‖2

Binet–Cauchy dβ
Graff(k,n)

(A + b, B + c) =
(
1 −∏k+1

i=1 cos2 θi

)1/2
(1 − (det Y T

A+bYB+c)
2)1/2

Chordal dκ
Graff(k,n)

(A + b, B + c) =
(∑k+1

i=1 sin2 θi

)1/2 1√
2
‖YA+bY

T
A+b − YB+cY

T
B+c‖F

Fubini–Study dφ
Graff(k,n)

(A + b, B + c) = cos−1
(∏k+1

i=1 cos θi

)
cos−1|det Y T

A+bYB+c|

Martin dμ
Graff(k,n)

(A + b, B + c) =
(
log
∏k+1

i=1 1/ cos2 θi

)1/2
(−2 log det Y T

A+bYB+c)
1/2

Procrustes dρ
Graff(k,n)

(A + b, B + c) = 2
(∑k+1

i=1 sin2(θi /2)
)1/2 ‖YA+bU − YB+cV ‖F

Projection dπ
Graff(k,n)

(A + b, B + c) = sin θk+1 ‖YA+bY
T
A+b − YB+cY

T
B+c‖2

Spectral dσ
Graff(k,n)

(A + b, B + c) = 2 sin(θk+1/2) ‖YA+bU − YB+cV ‖2

of affine subspaces of different dimensions [34]. The proofs of Lemma 5, Theorems 8
and 9 are similar to those of their linear counterparts [41, Lemma 3, Theorems 7 and
12] and are omitted.

Our first observation is that the Grassmann distance (8.2) on Graff(k, n) does not
depend on the ambient space R

n and may thus be extended to Graff(k,∞).

Lemma 5 The valuedGraff(k,n)(A+b, B+c)of twok-flatsA+b andB+c ∈ Graff(k, n)

is independent of n, the dimension of their ambient space. Consequently, dGraff(k,n)

induces a distance dGraff(k,∞) on Graff(k,∞).

Our second observation is that for a k-dimensional affine subspace A + b and an
l-dimensional affine subspace B + c, assuming k ≤ l without loss of generality, (i)
the distance from A + b to the set of k-dimensional affine subspaces contained in
B + c equals (ii) the distance from B + c to the set of l-dimensional affine subspaces
containing A + b. Their common value then defines a natural distance between A + b
and B + c.

Note that (i) is a distance in Graff(k, n), whereas (ii) is a distance in Graff(l, n).
Furthermore, the set in (i) is precisely �+(A + b) and the set in (ii) is precisely
�−(B + c)—the affine Schubert varieties introduced in Definition 5.

Theorem 8 Let k ≤ l ≤ n. For any A + b ∈ Graff(k, n) and B + c ∈ Graff(l, n), the
following distances are equal,

dGraff(k,n)

(
A + b, �−(B + c)

) = dGraff(l,n)

(
B + c, �+(A + b)

)
, (8.7)

and their common value δ(A + b, B + c) may be computed explicitly as

δ(A + b, B + c) =
(∑min(k,l)+1

i=1
θi (A + b, B + c)2

)1/2
. (8.8)
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The affine principal angles θ1, . . . , θmin(h,l)+1 are as defined in Theorem 7 except that
now they correspond to the singular values of the rectangular matrix

Y T
A+bYB+c =

[
A b0/

√
1 + ‖b0‖2

0 1/
√
1 + ‖b0‖2

]T [
B c0/

√
1 + ‖c0‖2

0 1/
√
1 + ‖c0‖2

]

∈ R
(k+1)×(l+1).

Like its counterpart for linear subspaces in [41, Theorem 7], δ defines a distance
between the respective affine subspaces in the sense of a distance of a point to a set.
It reduces to the Grassmann distance dGraff(k,n) in (8.2) when dimA = dimB = k.

Our third observation is that, likedGraff(k,n), the distances inTable 2maybe extended
in the same manner to affine subspaces of different dimensions.

Theorem 9 Let k ≤ l ≤ n. Let A + b ∈ Graff(k, n), B + c ∈ Graff(l, n). Then

d∗
Graff(k,n)

(
A + b, �−(B + c)

) = d∗
Graff(l,n)

(
B + c, �+(A + b)

)

for ∗ = α, β, κ, μ, π, ρ, σ, φ. Their common value δ∗(A + b, B + c) is given by:

δα(A + b, B + c) = θk+1, δβ(A + b, B + c) =
(
1 −

∏k+1

i=1
cos2 θi

)1/2
,

δπ (A + b, B + c) = sin θk+1, δμ(A + b, B + c) =
(
log
∏k+1

i=1

1

cos2 θi

)1/2
,

δσ (A + b, B + c) = 2 sin(θk+1/2), δφ(A + b, B + c) = cos−1(∏k+1

i=1
cos θi

)
,

δκ (A + b, B + c) =
(∑k+1

i=1
sin2 θi

)1/2
, δρ(A + b, B + c) =

(
2
∑k+1

i=1
sin2(θi/2)

)1/2
,

where θ1, . . . , θk+1 are as defined above.

Like the δ in Theorem 8, the δ∗’s in Theorem 9 are distances in the sense of dis-
tances from a point to a set, but they are notmetrics. The doubly infinite Grassmannian
of linear subspaces of all dimensions Gr(∞,∞) has been shown to be metrizable
[41, Section 5] with respect to any of the common distances between linear sub-
spaces. Our last observation is that Graff(∞,∞) can likewise be metricized, i.e.,
a metric can be defined between any pair of affine subspaces of arbitrary dimen-
sions. The embedding j : Graff(k, n) → Gr(k + 1, n + 1) induces an embedding
of sets j∞ : Graff(∞,∞) → Gr(∞,∞). So Graff(∞,∞) may be identified with
j∞
(
Graff(∞,∞)

)
and regarded as a subset of Gr(∞,∞). It inherits any metric on

Gr(∞,∞): If A + b and B + c are affine subspaces of possibly different dimensions,
we may define

d∗
Graff(∞,∞)(A + b, B + c) := d∗

Gr(∞,∞)

(
j∞(A + b), j∞(B + c)

)
,

for any choice of metric d∗
Gr(∞,∞) on Gr(∞,∞). For example, the metrics in Table 3

correspond to Grassmann, chordal, and Procrustes distances.
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Table 3 Metrics on Graff(∞, ∞) in terms of affine principal angles and k = dimA, l = dimB

Grassmann metric dGraff(∞,∞)(A + b, B + c) =
(
|k − l|π2/4 +∑min(k+1,l+1)

i=1 θ2i

)1/2

Chordal metric dκ
Graff(∞,∞)

(A + b, B + c) =
(
|k − l| +∑min(k+1,l+1)

i=1 sin2 θi

)1/2

Procrustes metric dρ
Graff(∞,∞)

(A + b, B + c) =
(
|k − l| + 2

∑min(k+1,l+1)
i=1 sin2(θi /2)

)1/2

9 Probability on the affine Grassmannian

To do statistical estimation and inference with affine subspace-valued data, i.e., with
Graff(k, n) in place of R

n = Graff(0, n), we will need reasonable notions of prob-
ability densities on Graff(k, n). We introduce three here: uniform, Langevin (or von
Mises–Fisher), and Langevin–Gaussian.

The Riemannian metric on Gr(k, n) that induces the Grassmann distance in (8.1)
also induces a volume density dγk,n on Gr(k, n) [29, Proposition 9.1.12] with

Vol
(
Gr(k, n)

) =
∫

Gr(k,n)

|dγk,n| =
(
n

k

) ∏n
j=1 ω j

(∏k
j=1 ω j

)(∏n−k
j=1 ω j

) , (9.1)

where ωm := πm/2/�(1 + m/2), volume of the unit ball in R
m . A natural uniform

probability density on Gr(k, n) is given by dμk,n := Vol
(
Gr(k, n)

)−1|dγk,n|.
By Theorem 1(ii), Graff(k, n) is a Zariski open dense subset in Gr(k+1, n+1) and

we must have μk+1,n+1
(
Graff(k, n)

) = 1. Therefore the restriction of μk+1,n+1 to
Graff(k, n) gives us a uniform probability measure on Graff(k, n). It has an interest-
ing property—a volumetric analogue of Theorem 8: The probability that a randomly
chosen l-dimensional affine subspace contains A + b equals the probability that a
randomly chosen k-dimensional affine subspace is contained in B + c.

Theorem 10 Let k ≤ l ≤ n be such that k + l ≥ n. Let A + b ∈ Graff(k, n) and
B + c ∈ Graff(l, n). The relative volume of �+(A + b) in Graff(l, n) and �−(B + c)
inGraff(k, n) are identical. Furthermore, their common value does not depend on the
choices of A + b and B + c but only on k, l, n and is given by

μl+1,n+1
(
�+(A + b)

) = μk+1,n+1
(
�−(B + c)

) = (l + 1)!(n − k)!∏l+1
j=l−k+1 ω j

(n + 1)!(l − k)!∏n+1
j=n−k+1 ω j

.

Proof By Theorem 1(ii), we have

Vol
(
Graff(k, n)

) = Vol
(
Gr(k + 1, n + 1)

) =
(
n + 1

k + 1

) ∏n+1
j=1 ω j

(∏k+1
j=1 ω j

)(∏n−k
j=1 ω j )

.
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By Proposition 6, we have

Vol
(
�+(A + b)

) = Vol
(
Gr(n − l, n − k)

) =
(
n − k

n − l

) ∏n−k
j=1 ω j

(∏n−l
j=1 ω j

)(∏l−k
j=1 ω j

) ,

Vol
(
�−(B + c)

) = Vol
(
Graff(k, l)

) =
(
l + 1

k + 1

) ∏l+1
j=1 ω j

(∏k+1
j=1 ω j

)(∏l−k
j=1 ω j

) .

DividingVol
(
�+(A+b)

)
andVol

(
�−(B+c)

)
byVol

(
Graff(l, n)

)
andVol

(
Graff(k, n)

)
,

respectively, completes the proof. ��
In the following, we will use the projection coordinates in Definition 3. By embed-

dingGraff(k, n) as a subset X = j
(
Graff(k, n)

) ⊆ Gr(k+1, n+1) as in Theorem1(ii)
and noting that X is an open dense subset, we haveμ(X) = 1 for any Borel probability
measure μ on Gr(k + 1, n + 1) (and that μ(Xc) = 0). Hence Graff(k, n) inherits any
continuous probability distribution on Gr(k + 1, n + 1), in particular the Langevin
distribution [10].

Definition 7 The Langevin distribution, also known as the von Mises–Fisher distribu-
tion, on Graff(k, n) is given by the probability density function

fL(PA+b | S) := 1

1F1
( 1
2 (k + 1); 1

2 (n + 1); S) exp
(
tr(SPA+b)

)

for any A + b ∈ Graff(k, n). Here S ∈ R
(n+1)×(n+1) is symmetric and 1F1 is the

confluent hypergeometric function of the first kind of a matrix argument [23].

The function 1F1(a; b; S) has well-known expressions as series and integrals and
may be characterized via functional equations and recurrence relations. However, its
explicit expression is unimportant for us—the only thing to note is that it can be
efficiently evaluated [23] for any a, b ∈ C and symmetric S ∈ C

(n+1)×(n+1).
Roughly speaking, the parameter S ∈ R

(n+1)×(n+1) may be interpreted as a ‘mean
direction’ and its eigendecomposition S = V�V T gives an ‘orientation’ V ∈ O(n+1)
with ‘concentrations’ � = diag(λ1, . . . , λn+1). In some sense, the Langevin distribu-
tion measures the first-order ‘spread’ on Graff(k, n). If S = 0, then the distribution
reduces to the uniform distribution, but if S is ‘large’ (i.e., |λi |’s are large), then
the distribution concentrates about the orientation V . It may appear that a ‘Bingham
distribution’ that measures second-order ‘spread’ can be defined on Graff(k, n) by

fB(PA+b | S) := 1

1F1
( 1
2 (k + 1); 1

2 (n + 1); S) exp
(
tr(PA+bSPA+b)

)
,

but this is identical to the Langevin distribution as tr(PSP) = tr(SP2) = tr(SP) for
any projection matrix P .

The Langevin distribution treats an affine subspace A + b ∈ Graff(k, n) as a
single object, but there are occasions where it is desirable to distinguish between the
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linear subspace A ∈ Gr(k, n) and the displacement vector b ∈ R
n . We will show

how a probability distribution on Graff(k, n) may be constructed by amalgamating
probability distributions on Gr(k, n) and R

n (or rather, R
n−k , as we will see). First,

we will identify Gr(k, n) and Graff(k, n) with their projection affine coordinates, i.e.,
imposing equality in (5.3) and (5.4),

Gr(k, n) = {P ∈ R
n×n : PT = P2 = P, tr(P) = k},

Graff(k, n) = {[P, b] ∈ R
n×(n+1) : P ∈ Gr(k, n), Pb = 0}.

We will define a marginal density on the linear subspaces, and then impose a con-
ditional density on the displacement vectors in the orthogonal complement of the
respective linear subspaces.

For concreteness, we use the Langevin distribution fL(P | S) on the linear spaces
P ∈ Gr(k, n). Conditioning on P , we know there exists Q ∈ O(n) such that ker(P) =
{b ∈ R

n : Pb = 0} = QEn−k ∼= R
n−k , where En−k := span{e1, . . . , en−k} ⊆ R

n+1.
Wemay use any probability distribution on ker(P) ∼= R

n−k but again for concreteness,
a natural choice is the spherical Gaussian distributionwith probability density fG(x |
σ 2) := (2πσ 2)−(n−k)/2 exp(−‖x‖2/2σ 2). The conditional density on ker(P) is then

fG(b | P, σ 2) = 1
√

(2πσ 2)n−k
exp

(
−‖b‖2

2σ 2

)
(9.2)

for any b ∈ ker(P). Note that QTb = [ b′
0

]
where b′ ∈ R

n−k and since ‖b‖ = ‖QTb‖ =
‖b′‖, it is fine to have b instead of b′ appearing on the rhs of (9.2). The construction
gives us the following distribution.

Definition 8 The probability density function of the Langevin–Gaussian distribution
on Graff(k, n) is fLG([P, b] | S, σ 2) := fL(P | S) fG(b | P, σ 2), i.e.,

fLG([P, b] | S, σ 2) = 1

1F1
( 1
2k; 1

2n; S)√(2πσ 2)n−k
exp

(
tr(SP) − ‖b‖2

2σ 2

)
,

where S ∈ R
n×n is symmetric and σ 2 > 0.

10 Statistics on the affine Grassmannian

Even without going into the statistical analysis of affine subspace-valued data, we will
see that the affine Grassmannian is hidden in plain sight in many standard problems
of old-fashioned statistics and machine learning. Statistical estimation problems in
multivariate data analysis and machine learning often seek linear relations among
variables. This translates to finding an affine subspace from the sample data set that,
in an appropriate sense, either best represents the data set or best separates it into
components. In other words, statistical estimation problems are often optimization
problems on the affine Grassmannian. We present four examples to illustrate this,
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following conventional statistical notations (n, p, X ,β, etc). For the rest of this section,
1 = (1, . . . , 1) will denote a vector of all ones of appropriate dimension.

In the next two examples, we look at two common regression problems from this
perspective, one that agrees with the intuitive idea of regression—finding a best-
fitting affine hyperplane through a collection of n scattered data points (xi , yi ) ∈
R

p × R = R
p+1, i = 1, . . . , n. The sole difference between Examples 2 and 3 is in

the interpretation of “best-fitting.”

Example 2 (Linear Regression) Consider a linear regression problem with X ∈ R
n×p,

a design matrix of explanatory variables, and y = (y1, . . . , yn) ∈ R
n , a vector of

response variables. In linear regression, we seek parameters β = (β0, β1, . . . , βp) ∈
R

p+1 such that

yi = β0 + β1xi1 + · · · + βpxip + εi , i = 1, . . . , n.

Note that unlike the next example, the assumption here is that the observational errors
εi ’s occur only in the response variables yi ’s but not in the explanatory variables xi j ’s.
The parameters β0, β1, . . . , βp are then estimated by minimizing the ordinary least
squares error ε21+· · ·+ε2n , or, equivalently, ‖[1, X ]β− y‖2. Geometrically, this yields
an affine hyperplane in R

p+1, i.e., A + b ∈ Graff(p, p + 1), given by

A + b = {z ∈ R
p+1 : β0 + β1z1 + · · · + βpz p − z p+1 = 0}

= {(w, β0 + β1w1 + · · · + βpwp) ∈ R
p+1 : w ∈ R

p}, (10.1)

where β ∈ R
p+1 is the least squares estimator. The affine hyperplane A + b best fits

the given data in the sense of ordinary least squares error, as illustrated on the left of
Fig. 3. ��

Example 3 (Errors-in-Variables Regression) We follow the same notations as in the
above example. In errors-in-variables regression, we do not distinguish between
response and explanatory variables and assume that observational errors occur in
all variables. In this case, β = (β0, β1, . . . , βp) ∈ R

p+1 is obtained by minimiz-
ing over all β ∈ R

p+1, y′ ∈ R
n , and X ′ ∈ R

n×p, the total least squares error
‖X ′ − X‖2 + ‖y′ − y‖2 subjected to the condition y′ = [1, X ′]β. One can show that
the total least squares estimator β ∈ R

p+1 may also be obtained by minimizing

‖[1, X ]β − y‖2
1 + ‖β‖2 − β2

0

,

and the corresponding affine hyperplane B + c ∈ Graff(p, p + 1) is given by

B + c = {z ∈ R
p+1 : β0 + β1z1 + · · · + βpz p − z p+1 = 0}

= {(w, β0 + β1w1 + · · · + βpwp) ∈ R
p+1 : w ∈ R

p}.
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Fig. 3 Illustrations of linear regression (left) and errors-in-variables regression (right)

This appears to be identical to (10.1), but the difference here is that β ∈ R
p+1 is the

total least squares estimator, i.e., the affine hyperplane B + c best fits the given data
in the sense of total least squares error, as illustrated on the right of Fig. 3. ��

Example 4 (Principal Component Analysis) Let x̄ = 1
n X

T1 ∈ R
p be the sample mean

of a data matrix X ∈ R
n×p. Write X̄ = X − 1x̄T for the mean-centered data. Find

Zk ∈ R
p×k that maximizes tr(Z T

k X̄
T X̄ Zk) subjected to Z T

k Zk = Ik . For k ≤ p, the
k-dimensional linear subspace im(Zk) ⊆ R

p is the kth principal subspace of X and
an orthonormal basis of im(Zk), defined successively for k = 1, . . . , p, gives the k
largest principal components of X . The affine subspace

im(Zk) + x̄ ∈ Graff(k, p)

then captures the greatest k-dimensional variability in the data X . ��
Example 5 (Support Vector Machine) Let {(xi , yi ) ∈ R

p+1 : xi ∈ R
p, yi = ±1, i =

1, . . . , n} be a training set for binary classification. The maximum-margin hyperplane
is given by wTx − β = 0, where (w, β) ∈ R

p × R is found by minimizing ‖w‖
subjected to yi (wTxi − β) ≥ 1 for all i = 1, . . . , n. Let x̂ ∈ R

p be any vector
satisfying wT x̂ = β. Then

ker(wT) + x̂ ∈ Graff(p, p + 1)

is the best separating hyperplane in the sense of support vector machines. ��
These four examples represent a sampling of themost rudimentary classical examples.
It is straightforward to extend them to incorporate more modern considerations such
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as sparsity or robustness by changing the objective function used; or have matrix
variables in place of vector variables by considering affine subspaces within S

n or
R
m×n instead of R

n .
These simple examples may be solved in the usual manners with techniques in

numerical linear algebra: least squares for linear regression, singular value decom-
position for errors-in-variables regression, eigenvalue decomposition for principal
component analysis, linear programming for support vector machines. Nevertheless,
viewing them in their full generality as optimization problems on the affine Grass-
mannian allows us to treat them on equal footings and facilitates development of new
multivariate statistics/machine learning techniques. More importantly, we argue that
the prevailing approaches may be suboptimal. For instance, in Example 4 one circum-
vents the problem of finding a best-fitting affine subspace with a two-step heuristic:
First find the empirical mean of the data set x̄ and then mean center to reduce the prob-
lem to one of finding a best-fitting linear subspace im(Z). But there is no reason to
expect im(Z) + x̄ to be the best-fitting affine subspace. In [26], we developed various
optimization algorithms—steepest decent, conjugate gradient, Newton method—that
allow us to directly optimize real-valued functions on Graff(k, n).

We would like to highlight another reason we expect the affine Grassmannian to be
useful in data analytic problems. Over the past two decades, parameterizing a data set
by geometric structures has become a popular alternative to probabilistic modeling,
particularly when the intrinsic dimension of the data set is low or when it satisfies
obvious geometric constraints. In this case, statistical estimation takes into account
the intrinsic geometry of the data, and the deviation from the underlying geometric
structures is used as a measure of accuracy of the statistical model. The two most
common geometric structures employed are (a) a mixture of affine spaces [17,25,27]
and (b) amanifold,whichoften reduces to (a)when it is treated as a collectionof tangent
spaces [38]—in fact, the first manifold learning techniques isomap [36], lle [31], and
Laplacian Eigenmap [5] are essentially different ways to approximate a manifold
by a collection of its tangent spaces. This provides another impetus for studying
Graff(k, n), which parameterizes all affine spaces of a fixed dimension in an ambient
space; Graff(k,∞), which parameterizes all affine spaces of a fixed dimension; and
Graff(∞,∞), which parameterizes all affine spaces of all dimensions.
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