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recap from lecture IV



recap from lecture IV

tensor product defined in three ways
@ via tensor product of function spaces
® via tensor product of more general vector spaces

©® via the universal mapping property

@ is the sum of separable functions construction

@ is the polyadic construction

e unfortunately no time for ©



recap: two constructions

O polyadic construction: a d-tensor in Vi ® -+ - @ Vy_1 ® Vg is a
‘linear combination’

1€ + axex + -+ ape,

with (d — 1)-tensor coefficients e, ...,a, € V1 ® --- ® V4_1 and
ey,...,e, basis of Vy4

® sum of separable functions construction: a d-tensor is a d-variate
function f : Q1 X Qp x --- x Q4 — R that is a finite sum of
separable functions

F(x1, %2, .., Xd) = 3 @i(x1)vi(x2) - - 0i(xq)
=11}



trivial case of @

e notation [n] .= {1,2,...,n} for any n € N

R" =R = {f : [n] = R}
Rm*xn — RImIx[n] — {f : [m] x [n] = R}
Rm*nxp — wlmx[n]x[p] — {f : [m] x [n] x [p] = R}

e outer product of vectors a € R™, b € R", c € R”

aiby -+ aib,
a®b=ab'=| : . | eR™"
amby -+ ambn
aibici -+ aibpa |aibicz -+ aibse aibicy, -+ aibncp
a®b®c= 3 ; 3 2 [lecococ : : ]eR’"X”X”
ambict -+ ambnci |ambicy -+ ambpc ambicy -+ ambncp



goes much further

e allows us to view functions, vector fields, distributions, operators,
hypermatrices, multilinear maps, tensor fields, etc, as tensors

e solution for fluid velocity v in the Navier—Stokes

av, avi 18p v, .
Zax, Tpox Za2+f“ =123,

is a tensor v € C?(R%) ® C'[0,0) ® R3
e quantum state of spin-half particle is a tensor W € L?(R3) ® C?

= 3 ix)xilo)
=il

with ¢; € L2(R3) and x;: {— 27 2} —-C



many applications

e tensor product constructions:
» orthogonal bases
> Riesz bases
> frames
> Mercer kernels
» function spaces
» density operators
> multiresolution analyses
e algorithms exploting separability:
> kernel trick
» multipole expansion
» Smolyak’s quadrature
» Grover quantum search
» row—column decomposition
» separable ODEs and integral equations
> separable convex and integer programming

e unfortunately no time for any of these
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Justifying separation of
variables
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The separation of variables technique for solving partial differential equations looks like
a magic trick the first time you see it. The lecturer, or author if you're more self-taught,

makes an audacious assumption, like pulling a rabbit out of a hat, and it works.

For example, you might first see the heat equation

Up=ctuy
The professor asks you to assume the solution has the form John D. Cook, PhD, President
ulx, t) = X(x) (). My colleagues and | have decades of
consulting experience helping
i.e. the solution can be separated into the product of a function of x alone and a companies solve complex problems
function of t alone. involving data privacy, math, statistics,

and computing.
Following that you might see Laplace’s equation on a rectangle
Let's talk. We look forward to
Uy * Uy, =0 exploring the epportunity to help your

company too.
with the analogous assumption that

ulx,¥) = X0 Yy, 6



common mistake

e incorrect: “separation of variables works because sums of separable
functions are dense in the function space”

e take wave equation for example

or v
ox2 ot
and f(x, t) = o(x)(t) solves it
e { =x—t,n=x+tturnsitinto
0?f B
oEon
and 1(&,m) = p(§)¥(n) leads nowhere
e sums of separable functions are dense in (£, 7) coordinates as they

are in (x, t) coordinates so this cannot be the reason

e whether it works or not depends on choice of coordinates



justifying separation-of-variables



additive and multiplicative separability

o F U XX xQy—RorC

e additive separability
f(x1,%2,. .., xd) = fi(x1) + fa(x2) + - - + fa(xq)

for some f; : Q;, - R

multiplicative separability
f(x1,%2,...,%xq) = f(x1)fa(x2) - - - fa(xq)

for some f; : Q; - R

both forms intimately related but we focus on the latter first



in terms of tensors

e tensor product of functions ¢ : 2y - R, ¥: Qo = R,...,0:Qy >R
PRUYRR0: U XWX XxQy—R
defined by
lP®Y - ®0O)(x1,X2,...,Xq) = @(x1)1(x2) - - - O(xq)
e vector space of real-valued functions
Vi={f:Q; =R}

e tensor product of vector spaces
VieVo®:---®Vy = {Z@i@l/}i@---@@;i
i=1

cp,-€V1,1/),-€V2,...9;€Vd, I’EN}

e by definition V; ® V, ® - -+ ® V4 comprises all finite-rank tensors



operators

e 1:V; > Wq,...,d,: Vg — Wy linear operators

e Kronecker product of operators
[P1Q - @Py)(vi® - @vy) = DP1(v1) ® -+ @ Py(vy)

and extend linearly to all of V; ® - - - ® V4
e anoperator ®: Vi ®---®Vy >V ®---®Vy is separable if

O=01@h® O+ hO®®® Qg+ +h®L®- - ® Py

where /i is identity operator on V

10



separation-of-variables

P=P10hLR R+ h@P@ - Qg+ +hRh® - @by

e transforms homogeneous linear system into eigenproblems:

¢1(v1) = A\1vi
Dy (v2) = Aovo

P(vi@V®- - @vy) =0 —>
Dy(va) = —(AM1+ -+ Ag—1)va

e ® being linear, any sum, linear combination, integral of
Vi ®Vy ® -+ ® vy is also a solution

e relies on just one simple fact: for any non-zerov € V and w € W,
vaw=vaow = v=X\,6 w=\1w

for some non-zero A € R

11



e d = 3 for illustration

(PRIQI+IVRI+I/0/R0) (udvew)=0

equivalently

Pu)eveow+uVv)ow+ueve(w)=0

since P(u) @ (v w) =u® [-V(v)@w —v® O(w)]

P(u)=Au, vew=-A"'V(v)ow+veO(w)
e rearranging second equation, V(v) @ w = v ® [—-O(w) — Aw]
V(v) =pv, O(w)=—(pn+A)w

transformed into three eigenproblems:
®(u) = Au,
V(v) = pv,
O(w) = (—1— \)w

12



example: partial differential equation

e wave equation:

o
ox2 otz 7
e separation-of-variables
Oip = —wp
RRN+10(-0)(p@y)=0 — x

e ODEs have solutions

o(x) = a1 e+ aye™ p(x) = a1 + axx
P(x) = aze”t +aze " »(t) = a3 + agt

for w # 0 and w = 0 respectively

e any finite linear combinations of ¢ ® 1 give us general solutions

13



depends on coordinates

e change coordinates
== n=x-+t

e wave equation becomes

0*f
=0
o0& dn
e operator here is 0 ® 0, and is not separable

e solution easily seen to take the form

F(&,m) = (&) + ¥(n)

e so an ansatz of the form (£, 1) = ¢(&)y(n) will not work

e moral: separation-of-variables depends on coordinates

14



more generally

e wave equation

O*f
Af — — =
ot2 0
e separation-of-variables
A6 1+16(-R)poP) =0 A
®I+1®(- ® 1) =
N o =Py

with separation constant —w?

e important for us later: Helmholtz equation

Ap = —w?p

15



example: integro-differential equation

e heterogeneous heat transfer:

of  Pf (¥
e write
O*f X of
bu(f) =gz —F+ b/o fly,t)dy, WVlf):=->

e separation-of-variables

b, =\
[ @1 +1@V](p@y)=0 — { (p) = Ap
lUt(w) = _/\1/)
e equivalently
d?p X dv
3@4*()\71)(,04*[3'/0 e(y)dy =0, E‘F/\?/J—O

e solve to get ¢(x) = ¢ ™™ + e%(cp cos r3x + ¢z sin r3x) and
Y(t) = ca et with ¢; arbitrary constants

16



example: recurrence equations

e forward-time centred space discretization applied to heat equation

Ukntl = MUk—1.0+ (L= 2F)ukn + ruks1n k=1,...,m—1

Up,ne1 = 0= tpm nt1
uk,o = f(k/m) k=0,1,...,m

with n=0,1,2,..., and r > 0 some fixed constant

e write

S (uk,n) = ruk—1,n+ (1 = 2r)tpn + rugsi,n,  Van(Uk,n) = Uk,nt1
e separation-of-variables

Cbk(ak) = )\ak

[bx@l+1a(=Va)l(a®b) =0 — {wn(b,,) = —\b,

17



example: recurrence equations

equivalently
rak—1+ (1 —2r)ax + ragr1 = Xax, k=1,...,m—1
bpy1 = Ab,, n=0,1,2,....
second equation is easy: b, = \"bg

first equation is tridiagonal eigenproblem with solution

YL . ([ jkm
Aj=1—4rsin (2m) ajc = sin <m>

where aj is kth coordinate of the jth eigenvector

solution is

18



general solutions

e summary: if operator ® is separable
P=0;0hLb® - Rlg+h@PQ- - Qly+-+h@L® - - @Dy
then ®(f) = 0 has a multiplicatively separable solution
f=pRY®---®0

e linear combinations of such f's gives us more general solutions
e one way to write down such a linear combination

fZZCisDi@)w;@---@G,-

i=1
e a better way: each factor given its own index

n r

f=>> " ZCU *Pi ®Y; @

i=1 i=1
e both are sums of separable functlons but latter gives us a way to
impose structures on coefficients and indices

19



some background




Schrodinger equation

e time-dependent Schrodinger equation for d particles

ih%f(x, t) = [—;mA + V(x)} f(x, t)

» x = (X1,...,Xd) € R3" positions of d particles
> V real-valued function representing potential
> A=A+ Ay + -+ Ag with A;: [2(R?) — L*(R?) Laplacian

e not necessarily Cartesian, may have say

Afli rzg + 1 i sinﬁ-i +#872
" 2o\ o) " rZsind; 00; '90;) " r2sin®6; 042
with x; = (I’,’, 0;, ¢,)

e enough for us: ignore constants, keep signs

(A + V)f —i0f =0

20



Schrodinger equation

e separation-of-variables

(-A+V)p=Ep

(-A+V)RI+1I®(-i0;) — { _
—i0p = —E¢

where we write separation constant as —E
e second equation is easy (t) = e Et
e problem is first equation: time-independent Schrodinger equation

e need to solve for ¢ and E

21



toy example

e potential V' additively separable
V(x) = Vi(x1) + Va(x2) + - - + Via(xq)

e then Schrodinger equation has the form we need
d

Z(_Ai +V))p—Ep=0

i=1
e may apply separation-of-variables
(A1 + V)@@ @1+ (D + Vo)@---®
+1Q - RIQ(—Ag+Va—E)(01Q9p2® - ®pg) =0
(A1 + Vi)p1 = E1n
(A2 + Va)gp2 = B2

(—Ag+ Va)pg=(E—E1—---— Eq_1)pa

22



toy example

e write

Eg=E-E—--—Ej1, o=¢1®---®pd

e moral: if potential V' additively separable
V(x) = Vi(x1) + Va(x2) + - - - + Vig(xq)
e then eigenfunction ¢ is multiplicatively separable
p(x) = p1(x1)p2(x2) - - - a(xa)
e and the eigenvalue E is additively separable
E=E+E+ - -+E

e separates d-particle Schrodinger into d one-particle Schrodinger

23



o V(x) = Vi(x1)+ -+ Vy(xq) unrealistic — says that the particles
do not interact

e but even by including only pairwise interactions

d

V(x) =Y Vi(xi) + Y Vii(xirx))

i=1 i<j
i.e., no higher-order terms of the form Vi (x;, X}, Xx)
e and even by restricting to

1

Vij(xi,x;) = T —x|
i — Xj

e (—A + V)p = Ep becomes computationally intractable in multiple
ways

24



computational intractability

QMA -hard

_ e stunning results of [Schuch—Verstraete,
2009]

° is NP-hard

> . is QMA-hard

see [Whitfield-Love—Aspuru-Guzik,
2013] for a survey, [Aaronson, 2009]
for a summary

picture from [Aaronson, 2009]
25



approximation schemes

e we know

o(x) = p1(x1) - - - pa(xa)

V(x):V1(X1)+"'+Vd(xd) = { E=FE+---+E4

e rougly, approximations based on the belief

P(x) = p1(x1) - - - pd(xq)

V(x);t-; V1(X1)+"'+ Vd(Xd) =
E~E+- -+ E4

e '~ interpreted differently and with different schemes

> one-electron approximation: perturbation theory
» Hartree—Fock approximation: calculus of variations

26



example: Hartree—Fock

e Rayleigh quotient

A=A+ V)p,p)
0 ="

is stationary, i.e., & =0, if and only if (—A + V)p = Ep
e Hartree—Fock approximation seeks stationarity under multiplicative
separability p = 1 ® - -+ ® @gq

£(<P17~~~74Pd7)\1a~~7)\d) :g(sola'"7(7‘9d)_)\1‘|901||2_"'_>\d||30d||2
e 0L =0 gives
80+ 3 [ IO Vi) ay] e = v

J#i
e makes physical sense:
> particle 7/ in a potential field due to the charge of particle j
> charge spread over space with density |;|?
» sum over potential fields created by all particles j # i

27



example: multiconfiguration Hartree—Fock

e as before but now with ansatz

f=a1p1®p1+ ap ® @

where 1, @2 € L2(R3?) orthonormal and (ay, a2) € R? unit vector

e non-linear energy functional
E(p1, 02,31, 32) = aF{(—A + V)1 ® 01,01 ® 1)
+2a13((—A + V)1 ® 01, 02 @ ©2)
+ a5{(—A + V)2 ® 2,02 ® 2)

with constraints [[o1[? = [le2ll* = 1, {p1,02) =0, [lal* =1
e Lagrangian is

L(p1, 92, a1, a2, A\11, A2, Aoz, A)

= E(1, 02, a1, @) + Allorll® + Az (o1, ©2) + Aazlloal* — Al al?

28



example: multiconfiguration Hartree—Fock

e for i,j € {1,2} write

bij = ((—A+V)pi®yi, vi®p)), Cu(X):/]%a ei(x)ei(y)V(x,y)dy

e stationarity conditions V,£ =0 and J£ = 0 give

b1y — A bio ap|
[ b1o by — A Lz} =0
and
—Daupr| _ ci1(x) — Az (a2/a1)(cr2(x) — A12) | |1
—A2<,92 (31/82)(C12(X) - >\12) C22(X) — A2 ©2

e solved numerically with a combination of finite-difference and
quadrature [Fischer, 1977]
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tensor networks




e instead of restricting to L?(IR®) assume arbitrary separable Hilbert
spaces Hj, ..., Hy to allow for spin, i.e., [?(R3) ® C?~!

e seek solution f € H; ® --- ® Hy to d-particle Schrodinger equation
e by definition of ®, f finite rank even if Hy, ..., Hy infinite-dimensional
e so there is a decomposition

n rn

f=>> Zcu "I @Y ®

i=1 j=1

e may assume orthogonal factors

30



motivation

e issue with

f—zz Zcu kP Y; ®

is exponential number of rank-one terms as d increases

d

e if i =---=ry = r, then there are r¢ summands

e good ansatz supposed to capture small region of the space where
solution likely lies

e goal of tensor networks is to provide such an ansatz by limiting the
coefficients [cjj...k] € R™**" to a much smaller set

31



example: matrix product states

e impose on the coefficients the structure
Cijo-k = tl’(A,'Bj .- Ck)
with
A; € Rnlan, Bj S Rn2><n3, o, C € R M

e due to [Anderson, 1959], [Affleck, Kennedy, Lieb and Tasaki, 1987],
[White, 1992], [White-Huse, 1993]

e VIPS is ansatz of the form
= ZZ"'Z”(AI'BJ“'Ck)90i®wj®"'®9k
i=1 j=1 k=1
e coefficients parametrized by r; + - -+ + ry matrices of various sizes

eifrp=---=rgy=rand ny =--- = ng = n, then MPS has rdn? as
opposed to r? degrees of freedom

32



open and periodic MPS

e when n; = 1, first and last matrices are a row and a column vector

respectively
.
Ai=a;, C=c

with a; € R™ and ¢, € R™

e trace of a 1 x 1 matrix is itself and may drop the ‘tr’

f‘ZZ Za Bi- - Ckpi @Y ® - @ bk

e special case called MPS with open boundary conditions [Anderson,
1959]

e general case called MPS with periodic conditions

33



computing MPS

e another difference between Hartree—Fock and tensor network is that
the factors ¢;, 1, ..., 0k are often fixed in advance as some
standard bases of Hy, ..., Hy, called a local basis

e computational effort then reduces to determining coefficients cj...x
e for MPS this can be done via several SVDs [Ords, 2014]

e in fact coefficients of MPS ansatz sometimes represented as
tr(Q X1 @Yy ... XyQ411), Qi € U(n;), X; € RM*M+
o follows from singular value decomposing A; = U;¥; V" and setting
Qr1=V'Uy, i=1,...,d-1,

with Q1 = Ui, Qo411 =V)

34



graph structure

e take d = 3 and denote

A=), B = [bgi]» Ce = [c{)]

e then MPS is
r,r,rn
= Z,,J,k tl’(A B; Ck)cp, RY; ® Ok
o rn,r2,r ni,n2,n3 (I) ( ) (k
N Zij k=1 [Za By=1 305Dy Cial Pi ©Y; @ 94

ny,n2,n3 o . "
- Za’ﬂ’v ! [Z =1 ((l}j ip,} © {ijl bg’)v wj} @ [Zk:l Cgl;) QJ
ny,n2,n3
- Za,ﬁ,7:1 Pap © Ppy ® Oya
e where

— “ 0) — 2 3) o ® k
Pap = Z, 1 aﬁ ¥i wﬁ'\/ '_ Zj:l bﬁ’)’ wj’ 9’70‘ '_ Zk:l C’(YO‘) ek
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graph structure

e so MPS may alternatively be written in the form

ny,n2,n3

f= Z @aﬁ®/‘/}ﬁ'y®9'ya
a,B,y=1

e indices have the incidence structure of an undirected graph, in this
case a triangle

0 Y

¥

e bottom line: any tensor network state is a sum of separable
functions indexed by a graph [Landsberg—Qi-Ye, 2012]
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common examples

e periodic matrix product states

ny,n2,n3

Fxy,2) = Y 0i(X)eu(y)0ii(z)

k=1
e tree tensor network states [Shi-Duan-Vidal, 2006]

ny,nz,n3

Fxy,z,w) = > oi(x)vi(y)0;(2)m(w)

ij,k=1
e open matrix product states

n1,N2,N3,N4

Foy,zouv) = > 0i(x)Yi(y)0(2)ma(u)pi(v)

ik, I=1

e projected entangled pair states [Verstrate-Cirac, 2004]

ny1,n2,N3,N4,N5,N6,N7

f(X,y,Z, U,V,W) = Z <)Ol'j(x)wjkl(y)elm(z)’rrmn(u)pnko(V)O—oi(w)

iJj,k,l,mno=1
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associated graphs

MPS (open)
i J k /
® P 0 W
g
w o n
MPS (periodic) : k "
eriodic o
P J /
@ ¥ (2 4

e all tensor network ansatze are sums of separable functions

e differ only in how their factors are indexed
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deeper look




Helmholtz equation

e recall Helmholtz equation
Af + w?f =0,
e n =2 in Cartesian and polar coordinates:
(’)2f+82f 82f+18f_~_182f+ 260
Ox2  Qy? arr Tror Treee TV T
e separation-of-variables works for both but entirely different solutions
» Cartesian:

+w?f =0,

f(x,y) = & ei[kx+(w27k2)1/2y] T ei[kaJr(wszz)l/zy]

i[kx—(wZ—kZ)l/2 i[—kx—(w2—k2)1/2y]

+aze Nyae
» polar:
fi(r,0) = a1 €% i (wr)+az e X S (wr)+as €™ J_i(wr)+as e 0 Iy (wr)
e for n = 2, there are exactly four systems of separable coordinates:
Cartesian, polar, parabolic and elliptic
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separable coordinates

e for n = 3, there are exactly eleven

(i) Cartesian
(i) cylindrical
(iii) spherical
(iv) parabolic
(v) paraboloidal
(vi) ellipsoidal
(vii) conical
(viii) prolate spheroidal
(ix) oblate spheroidal
(x) elliptic cylindrical
(xi) parabolic cylindrical

e how do | know this?
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Stackel condition

e n-dimensional Helmholtz equation in coordinates xi, ..., x, can be

solved using the separation-of-variables technique if and only if
@ the Euclidean metric tensor g is a diagonal matrix in this
coordinate system

@ if g = diag(g11,---,&nn), then there exists an invertible matrix

of the form
si(x) si2(x) - sia(x)
521(X2) 522(X2) ce Szn(X2)
Snl(xn) SnQ(Xn) T Snn(Xn)
with

-1 1 .

g:u :(5 )11', _j:].,...,n
e S is called a Stackel matrix for g in coordinates xg, ..., X,
e note that the ith row of S depends only on the ith coordinate

a1



Stackel condition for n =3

Euclidean metric in Cartesian, cylindrical, spherical, parabolic coordinates

g(x,y,z) =

g(r,0,¢) =

0
1
0
0
2

0

0f, g(r,0,z) =
0
0 |, gloy7,¢0)=
r?sin’ 6

1 0 0

0 r* 0|,

0 0 1

0% + 72 0 0
0 g%+ 12 0
0 0 %12
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Stackel condition for n =3

Stackel condition is satisfied with following matrices

Cartesian

cylindrical

spherical

parabolic

S:

S:

S —

S:

-1

=i

1 1 1
0 1 0
-1 -1 0

1 1o

0 1 0

-1 -4 o0
1 1

1 2 e

0 O 1
1 1 1

o C I T
72 o 1

T (02472 (02472 T2-1/02
0 0 1
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Stackel condition for n =3

e when metric tensor is diagonal, g = diag(gi1, ..., &m), Laplacian is

A — Z 1 8 \/det(g) af
Vdet(g) Oxi  gi  Ox;

e Helmholtz equation in cylindrical, spherical, parabolic coordinates:
0*f 10f 109°f O°f
ot Ee e =

0*f  20f 1 0°f cos¢ Of 821‘
ar? L ror * r2sin® ¢ 062 " r2sin2¢37¢+ﬁ@+ =0
1 0*f 10f 9% 10f 1 0°f z
22|02 o os 62 D norl 2o Y ]

e not so obvious that these are amenable to separation-of-variables,
speaking to the power of the Stackel condition
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general Stackel condition

e more generally, Stackel condition can be extended to
> any higher-order semilinear PDE [Koornwinder, 1980]
» any Riemannian manifold M [Eisenhart, 1934]

e a system of local coordinates on M is separable if and only if
@ Riemannian metric tensor g is a diagonal matrix in this

coordinate system
@ Ricci curvature tensor R is a diagonal matrix in this coordinate

system
® g satisfies the Stackel condition

e ancient results that have largely been forgotten
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P. McCullagh, Y. Qi, E. Riehl, K. Ye
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