Tensors in Computations 11l

Lek-Heng Lim

University of Chicago

recap from lecture Il

recap: three definitions

e tensors capture three great ideas:

@ equivariance
@ multilinearity
® separability

e roughly correspond to three common definitions of a tensor
@® a multi-indexed object that satisfies tensor transformation rules
@ a multilinear map

® an element of a tensor product of vector spaces

recap: definition @

e recall: is this

w N =
B~ N
[~ NN}

a tensor?
e makes no sense
e suppose it does represent a tensor, what kind of tensor is it?
e answer: can be

» covariant 2-tensor 5 : VxV — R

contravariant 2-tensor ¢ : V* x V* — R
mixed 2-tensor ¢ : V — V
contravariant 1-tensor (vi,v2,v3) E VAV HV
covariant 1-tensor (¢1,¢2,¢3) €V @V @ V*
» or yet other possibilities

vVvyyvyy

here V is any vector space of dimension three

recap: definition @

e say it is a mixed 2-tensor, which ® : V — V does it represent?

e answer: with probability one, any ® : V — V can be represented as

1
2
3

S 0N
(S2 I~ OV)

with respect to some choice of basis on V

e moral: knowing

1
2
3

S~ w N
[S2 B SN OV)

tells us almost completely nothing about the tensor

recap: why important

e saw two examples

higher derivatives: functions defined on spaces other than R" like
f,g:S". =R, f(X)=logdet(X), g(X)=tr(X"1)

self-concordance: essential for defining this important notion

3/2

|V3f(x)(h, h, h)| < 20| V?f(x)(h,h)|

V3£f(x) is trilinear, V2f(x) is bilinear functional

e will say a bit more about these today

example: self-concordance

example: self-concordance

e log barrier for semidefinite programming
f:S7, =R, f(X)=—logdet(X)
e inverse barrier for semidefinite programming
g:SL =R, g(X)=tr(X"")

e why don't we ever see the latter?

example: self-concordance

e log barrier f

D?f(X)(H, H) = tr(HT[VZf(X)](H)) = tr(HXtHX 1)
D3f(X)(H, H, H) = tr(HT[V3f(X)](H, H)) = —2tr(HX *HX"1HX1)

e self-concordant by Cauchy-Schwarz
ID*F(X)(H, H, H)| < 2|HX7H|]* = 2[D*F(X)(H, H)]*/?
e inverse barrier g

D?g(X)(H, H) = 2tr(HX*HX?)
D3g(X)(H,H,H) = —6tr(HXHX*HX?)

e set H=hl, X = xI, then 6/h|3/x* > 2(2h?/x3)3/2 as x — 0O,
self-concordant condition fails when X is near singular

example: bilinear complexity

example: bilinear complexity

e given U, V, W, how to construct a bilinear operator
B:UxV—>W?

e take linear functional ¢ : U — R, linear functional ¢ : V — R,
vector w € W, define

B(u, v) = p(u)(v)w

foranyue U, veV
e evaluating B requires exactly one multiplication of variables
e call such a bilinear operator rank-one

e every bilinear operator is a sum of rank-one bilinear operators

example: bilinear complexity

o for example U=V =W = R3 with

o(u) = vy +2up + 3us
7/)(V = 2V1 —+ 3V2 + 4V3

then
3(up + 2up 4 3u3)(2vy + 3va + 4v3)

B(U./ V) = 4(U1 + 2up + 3U3)(2V1 +3v, + 4V3)
5(uy 4 2us + 3u3)(2vy + 3va + 4vs3)
e multiplications like 2uy or 4vs are all scalar multiplications, i.e., one
of the factors is a constant

e only variable multiplication like (u1 + 2up 4 3u3)(2vi + 3va + 4v3)
counts

example: near complexity

e this is the notion of bilinear complexity [Strassen, 1987]

e once we fixed ¢, 1, w, evaluation of these can be hardwired or
hardcoded

e e.g., discrete Fourier transform

pes 1 1 1 1 1 X0
xq 1 w w? w3 wh=t X1
x5 1 |1 w? w Wb w21 X2
<5 | = ﬁ 1 Wl w® w? W3(=1) X3
X,/171 1 wr1 wZ(nfl) w3(nfl) . w(nfl)(nfl) Xn—1

e may use FFT to evaluate DFT

e bilinear complexity of DFT or FFT all the same, namely, zero

example: bilinear complexity

e may often bound number of additions and scalar multiplications in
terms of number of variable multiplications

e e.g., if an algorithm takes nP variable multiplications, may show that
it takes at most 10n” additions and scalar multiplications

e so algorithm still O(nP) even if we count all arithmetic operations

e most importantly, bilinear complexity = tensor rank

rank(B) = mln{r B(u,v) ng, »i(,}

e if only need B(u,v) up to e-accuracy, border rank

rank(B)—mln{r B(u,v) = ||m Z@O, ¥; :}

e due to [Strassen, 1973] and [Bini—Lotti-Romani, 1980] respectively

10

example: Gauss’s algorithm

e complex multiplication with three real multiplications

(a+ bi)(c + di) = (ac — bd) + i(bc + ad)
= (ac — bd) + i[(a+ b)(c + d) — ac — bd]

e B:CxC—C, (z,w)— zw is R-bilinear
C f—
) d -

B(z, w) = [e1(2)e1(w)—e3(2)ez(w)ler +[e1(2)e; (w)+e;(2)ei (w)]e:

ac — bd
bc + ad

a

B:R? x R? — R?, B("

e usual:

e Gauss:

B(z,w) = [(e1 +e3)(z)(e1 + e3)(w)]es
+ [e1(2)er(w)](e1 — e2) — [e3(2)e3 (w)](er +)

11

example: Gauss’s algorithm

e Gauss optimal in both exact and approximate sense:

rank(B) = 3 = rank(B)

why useful?

e complex matrix multiplication:
(A+iB)(C +iD) = (AC — BD) +i[(A+ B)(C + D) — AC — BD]

for A+ iB, C + iD € C"™*" with A, B, C, D € R""

which is why we should allow for modules

» C two-dimensional vector space over R
» C"*" two-dimensional free module over R"*"

12

other simple example?

e Gauss essentially the only one in two dimensions

e parallel evaluation of standard inner product and standard
symplectic form on R?
gl y) =xy +xy2, wx,y) =Xy —

e algorithm similar to Gauss's gives result with rank(B) = 3 = rank(B)
e three dimensions: skew-symmetric matrix-vector product

0 a X ay + bz

—a 0 ¢l |y| =|—-ax+cz

—-b —c 0] |z —bx — ¢y

e in this case! rank(B) = 5 = rank(B)

Lthanks to J. M. Landsberg (for C) and Visu Makam (for R)
13

example: Strassen’s algorithm

e 2 X 2 matrix multiplication with seven multiplications

a a| |by by|
as aa b3 b4 B

with

aib; + axby /34”‘/4’(814*82*83 *84)b4
a+ 7+ ag(b2 + b3 — by — bs) a+f+y

a= (33 — 31)(b3 — b4), B = (33 + 34)(b3 = bl), vy =aib; + (33 + as — 31)(1)1 + by — bg)

e consequence: inverting n X n matrix in 5.64n'°827 arithmetic
operations (both additions and multiplications) [Strassen, 1969]

e huge surprise as there were results showing n®/3 required by
Gaussian elimination cannot be improved

e such results assume row and column operations, Strassen used block
operations

e rank(B) = 7 = rank(B) [Landsberg, 2006]

14

example: exponent of matrix multiplication

e bilinear operator
Bmnp : RTT X R™P - R™P (A B)— AB
called matrix multiplication tensor
e exponent of matrix multiplication is
w = inf{p € R : rank(pn,nn) = O(n")}
e current bound w < 2.3728596 [Alman—Vassilevska Williams, 2021]
e w underlies nearly every problem in numerical linear algebra

15

example: exponent of matrix multiplication

e inversion: given A € GL(n), find A=t € GL(n)
e determinant: given A € GL(n), find det(A) € R
e null basis: given A € R"*", find a basis vi,...,v, € R" of ker(A)

e linear system: given A € GL(n) and b € R”, find v € R” so that
Av=b

e U decomposition: given A € R™*" of full rank, find permutation
P, unit lower triangular L € R™*™ upper triangular U € R™*" so
that PA= LU

e QR decomposition: given A € R"™ " find orthogonal @ € O(n),
upper triangular U € R"*" so that A = QR

16

example: exponent of matrix multiplication

e cigenvalue decomposition: given A € S”, find Q € O(n) and
diagonal A € R"™" so that A = QAQ"

e Hessenberg decomposition: given A € R™" find Q € O(n) and
upper Hessenberg H € R"*" so that A = QHQ"

e characteristic polynomial: given A € R"*" find (ag,...,a,—1) € R"
so that det(x/ — A) = x" + a,_1x"" 1 + -+ + a;x + ag

e sparsification: given A € R"*" and ¢ € [1,00), find X, Y € GL(n) so
that nnz(XAY 1) < cn

exponent of nearly all matrix computations

any € > 0, there is an algorithm for each of these problems in O(n**¢)
arithmetic operations (including additions and scalar multiplications)

17

example: integer multiplication

example: integer multiplication

e need to consider tensors over modules, i.e., replace field of scalars
like R or C by a ring like Z

e integer multiplication
B:Zx7Z—17, (a,b) — ab

bilinear map over the Z-module Z

e but this is not the relevant module structure in fast integer
multiplication algorithms

18

example: integer multiplication

e unsigned integers represented as polynomials

fuy

p—1
6= Z a0’ = a(h), b= b/ = b(0)
i=0

T

—.
Il
o

for some number base 6

e product has coefficients given by convolutions

2p—2 k
ab = Z Ckf)k = C(@), Cx = Za;bk_,-
k=0 i=0

e set n =2p — 1 and pad vectors of coefficients with enough zeros

(307~--73n71)7 (b07-"7bI771)7 (C07~-~>Cn71)

19

example: integer mult

e use DFT for some root of unity w to perform convolution

2
a

e

/
L¥n—1]

Co
[&]

(&)

Cn—1

1
1

1

1 ao
wnfl a
w2(n71) a
w(nfl)(nfl) an—1
1 171 bo]
wn—l bl
w2(n—1) by
w(nfl)(nfl)_ _bnfl_

1
CE)
w72(n71)

w—(n=1)(n-1)

(N,
ag by
al by

N
a,b)

/ /
nflbnfl

20

example: integer multiplication

e Fourier transform turns convolution * into pointwise product -
axb=F"1(F(a) F(b))
e key idea 1: convert integer multiplication to a bilinear operator

By: (Z/2°Z)[0] x (Z/2°Z)[8] — (Z/2°Z)[6]
(a(6), b(0)) — a(6)b(0)

e key idea 2: a Fourier conversion into another bilinear operator

By: (Z/mZ)" x (Z)mZ)" — (Z/mZ)"
((ao, ey a,,,l), (b(), 600y bnfl)) — (aobo, coog anflbnfl)

o (Z/2°7)|6] is a Z/2°Z-module
e (Z/mZ)" is a Z/mZ-module

21

example: integer multiplication

e all fast integer multiplication algorithms based on variation of these
ideas: [Karatsuba—Ofman, 1962], [Cook—Aanderaa, 1969], [Toom,
1963], [Schonhage—Strassen, 1971], [Fiirer, 2009]

e sensational breakthrough by [Harvey—van der Hoeven, 2021]:
O(nlog n)-algorithm for n-bit integer multiplication

e clever idea: use multidimensional DFT

n Nng
a/(¢17 ¢27 ©coog ¢d) = Z o Z Wflelw;ﬁzaz s 'Wﬁdada(el,eb 5009 ed),
6,=0

= 04=0

e replace bilinear operator with d-linear operator

22

example: cryptography

example: Diffie—-Hellman key exchange

e Alice and Bob want to generate (secure) common password over
(insecure) internet

e pick large prime p and primitive root of unity g € (Z/pZ)*
e any non-zero x € Z/pZ may be expressed as

a

x=g? (mod p)

henceforth write x = g°

e Alice picks secret a € Z and sends g? publicly to Bob
e Bob picks secret b € Z and sends g” publicly to Alice
e Alice computes g?® = (g?)? from the g” she received from Bob
e Bob computes g?® = (g?)? from the g2 he received from Alice

e they now share the secure password g2°

23

example: multilinear cryptography

e security based on intractability of computing a = log,(g?)
e observation 1: (Z/pZ)* is Z-module

e observation 2: Diffie-Hellman is Z-bilinear map
B: (Z/pZ)* x (Z/pZ)* — (Z/PL)*, (&°,8°) — &
e forany \,\ € Z and g2, gb € (Z/pZ)*
B(g7 g%) = B(g?, g?)*B(g”, g)"

e what if not two parties but 1000 parties, e.g., on Zoom or Teams?
e d + 1 parties require each party doing d + 1 exponentiations
e solution: cryptographic multilinear map [Boneh-Silverberg, 2003]

24

example: multilinear cryptography

e cryptographic d-linearmap ®: G x --- x G — G

e assumptions: discrete log in G hard, evaluating ® easy

e jth party pick password a;, perform one exponentiation to get g
e broadcast g% to other parties, who will each do likewise

e every party now has g, ..., g

?

e jth party will now compute

(D(gal’ L ,gai—l’gaf+17 . ’gad+1)ai = q)(g7 . 7g)al"'adﬂ

e result is common password for the d + 1 parties

25

no time for these

e tensor nuclear norm and numerical stability

bilinear Hilbert transform and Calderon conjecture

tensor fields: multilinear operators over C°°(M)-modules

e metric, Ricci, and Riemann curvature tensors

Grothendieck inequality

26

classifying multilinear maps

problem with definition @

e many more multilinear maps than there are types of tensors
e d=2:

» linear operators

¢:U" -V, ¢:U—-V", o:U" —=V"
» bilinear functionals

B:U"xV—-R, B:UxV' =R, B:U"'xV'=R
e d=3:
» bilinear operators
B:UXV-W B:UxV' ->W,... B:U"xV" > W"
» trilinear functionals
T:U'XVXxW SR, 7:UxV'XW=SR,...,7: U xV' xW* - R
» more complicated maps
G U= L(V;W), &:L(U; V) =W,

r:UxL(V;W) =R, B:LUV)xW-—=R
27

problem with definition @

e possibilities increase exponentially with order d

e ought to be only as many as types of transformation rules

covariant 2-tensor: ¢:U— V*, B:UxV =R

contravariant 2-tensor: ¢:U* =V, B:U"xV* >R

mixed 2-tensor: d:U—V, B:UxV" =R,
¢ :U" = V", B:U"xV—>R

e definition @ accomplishes this without reference to the
transformation rules

28

e only allow W =R

e d-tensor of contravariant order p and covariant order d — p is
multilinear functional

P:VIX - xVyx Vo x--xVy =R

e excludes vectors, by far the most common 1-tensor
e excludes linear operators, by far the most common 2-tensor
e excludes bilinear operators, by far the most common 3-tensor

e e.g., instead of talking about v € V, need to talk about linear
functionals f : V* — R

e ultimately need definition ®

29

acknowledgment

e Simons Foundation Award no. 663281 granted to the Institute of
Mathematics of the Polish Academy of Sciences for 2021-2023

e L-H. Lim, “Tensors in computations,” Acta Numer., 30 (2021),
pp. 555764

30

	recap from lecture II
	example: self-concordance
	example: bilinear complexity
	example: integer multiplication
	example: cryptography
	classifying multilinear maps

