
Tensors in Computations II

Lek-Heng Lim

University of Chicago



recap from lecture I



recap: three definitions

• tensors capture three great ideas:

➀ equivariance

➁ multilinearity

➂ separability

• roughly correspond to three common definitions of a tensor

➀ a multi-indexed object that satisfies tensor transformation rules

➁ a multilinear map

➂ an element of a tensor product of vector spaces

1



recap: definition ➀

• take home idea: definition ➀ is all about tensor transformation rules

• example: is this 1 2 3

2 3 4

3 4 5


a tensor?

• makes no sense

• definition ➀ requires a context

2



recap: definition ➀

• if it comes from a measurement of stressσ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


then it is a contravariant 2-tensor

• if we are interested in its eigenvalues and eigenvectors

(XAX−1)Xv = λXv

then it is a mixed 2-tensor

• if we are interested in its Hadamard producta11 a12 a13
a21 a22 a23
a31 a32 a33

 ◦
b11 b12 b13
b21 b22 b23
b31 b32 b33

 =

a11b11 a12b12 a13b13
a21b21 a22b22 a23b23
a31b31 a32b32 a33b33


then it is not a tensor

3



recap: definition ➀

• indices tell us nothing

• A ∈ Rm×n has two indices but if transformation is

A′ = XA = [Xa1, . . . ,Xan] or A′ = X−TA = [X−Ta1, . . . ,X
−Tan]

then it is covariant or contravariant 1-tensor respectively

• e.g., Householder QR algorithm treats the matrix as a covariant

1-tensor

4



recap: why important

saw three examples

full-rank least squares: solved by applying sequence of 0-, 1-, 2-tensor

transformation rules

Krylov subspace methods: exploits relations in change-of-coordinates

matrices of 2-tensor transformation rules

linearly constrained optimization: Newton method is tensorial, i.e.,

satisfies 0-, 1-, 2-tensor transformation rules, and thus

insensitive to condition number; steepest descent is not

5



more examples



example: equivariant neural networks

• neural network f : Rn → Rn obtained by alternately composing

Ai ∈ Rn×n with pointwise activations σi (v) := max(v,bi ), bi ∈ Rn

f (v) = Akσk−1Ak−1 · · ·σ2A2σ1A1v

• G -equivariant function f : Rn → Rn

f (Xv) = Xf (v)

for all X ∈ G ⊆ GL(n)

• observe

f (Xv) = X (X−1AkX )(X−1σk−1X )(X−1Ak−1X )

· · · (X−1A2X )(X−1σ1X )(X−1A1X )v

= XA′
kσ

′
k−1A

′
k−1 · · ·σ′

2A
′
2σ

′
1A

′
1v

• equals Xf (v) if

A′
i = X−1AiX = Ai , σ′

i = X−1σiX = σi

6



example: equivariant neural networks

• for image-based tasks n is on the order of millions of pixels, k

typically 10 to 50 layers deep

• may not even have enough data to fit weights and biases

A1, . . . ,Ak ∈ Rn×n, b1, . . . ,bk−1 ∈ Rn

• G -equivariance narrows range of possible Ai and bi by requiring

A′
i = X−1AiX = Ai , σ′

i = X−1σiX = σi

• G -equivariance = mixed 2-tensor transformation rule

7



image-based tasks

• convolutional neural networks: group of translations

G =

{[
1 0 m1
0 1 m2
0 0 1

]
∈ R3×3 : m1,m2 ∈ Z

}
• p4 group of translations and right-angle rotations

G =

{[
cos(kπ/2) − sin(kπ/2) m1

sin(kπ/2) cos(kπ/2) m2

0 0 1

]
∈ R3×3 :

k = 0, 1, 2, 3;

m1,m2 ∈ Z

}
• p4m group: p4 plus reflections

G =

{[
(−1)j cos(kπ/2) (−1)j+1 sin(kπ/2) m1

sin(kπ/2) cos(kπ/2) m2

0 0 1

]
∈ R3×3 :

k = 0, 1, 2, 3;

j = 0, 1; m1,m2 ∈ Z

}

8



other tasks

• drug discovery: preserve pairwise distances between atoms in a

molecule and chirality SO(3) or SE(3)

• DeepMind’s AlphaFold 2: SE(3)-equivariant neural network and

SE(3)-invariant attention module

• data from high energy phsyics: Lorentz groups O(1, 3) or SO(1, 3)

9



example: cone programming

• primal and dual forms of cone programming problem over a

symmetric cone K ⊆ V conform to transformation rules for

Cartesian 0-, 1-, 2-tensors

• but change-of-coordinates matrices would have to be replaced a

linear map from the orthgonal group of the cone:

O(K) := {φ : V→ V : φ linear, invertible, and φ∗ = φ−1}

• special cases include linear programming (LP), convex quadratic

programming (QP), second-order cone programming (SOCP), and

semidefinite programming (SDP)

10



motivation: multilinearity



why important

linearity principle: almost any natural process is linear in small amounts

almost everywhere

multilinearity principle: if we keep all but one factors constant, the

varying factor obeys principle of linearity

Hooke’s and Ohm’s laws both linear but not if we pass a current through

the spring or stretch the resistor

11



coordinate-free tensors

Kip Thorne’s Geometric Principle

The laws of physics must all be expressible as geometric (coordinate

independent and reference frame independent) relationships between

geometric objects (scalars, vectors, tensors, . . . ) that represent physical

entitities.

laws of physics do not depend on coordinates, and thus the tensors used

to express these laws should not depend on coordinates either

➀ a multi-indexed object that satisfies certain transformation rules

➁ a multilinear map

➂ an element of a tensor product of vector spaces

12



tensors over arbitrary vector spaces

• vector space V may not be Rn, e.g., K = Sn++ and V = Sn for SDP

• numerical linear algebra notations we have been using to describe

definition ➀ awkward and unnatural

• want to work with tensors over arbitrary vector spaces

▶ space of Toeplitz or Hankel or Toeplitz-plus-Hankel matrices
▶ space of polynomials or differential forms or differential operators
▶ space of L2-functions on homogeneous spaces

• another impetus for coordinate-free approach in definitions ➁ and ➂

13



tensors via multilinear maps



multilinear maps

• V1, . . . ,Vd and W vector spaces

• multilinear map or d-linear map is φ : V1 × · · · × Vd →W with

Φ(v1, . . . , λvk + λ′v′k , . . . , vd)

= λΦ(v1, . . . , vk , . . . , vd) + λ′Φ(v1, . . . , v
′
k , . . . , vd)

for v1 ∈ V1, . . . , vk , v′k ∈ Vk , . . . , vd ∈ Vd , λ, λ
′ ∈ R

• write Md(V1, . . . ,Vd ;W) for set of all such maps

• write M1(V;W) = L(V;W) for linear maps

• tensor transformation rules = change-of-bases theorems for

multilinear maps

14



d = 1

• B = {v1, . . . , vm} basis of V, B∗ = {v∗1 , . . . , v∗m} dual basis
• any v ∈ V uniquely represented by a ∈ Rm

V ∋ v = a1v1 + · · ·+ amvm ←→ [v ]B :=

a1
...

am

 ∈ Rm

• any φ ∈ V∗ uniquely represented by b ∈ Rm

V∗ ∋ φ = b1v
∗
1 + · · ·+ bmv

∗
m ←→ [φ]B∗ :=

b1
...

bm

 ∈ Rm

15



d = 1

• if C = {v′1, . . . , v′m} another basis and X ∈ Rm×m is

v′j =
m∑
i=1

xijvi

• change-of-basis theorem:

[v]C = X−1[v]B, [φ]C∗ = X T[φ]B∗

• recover transformation rules for contravariant and covariant 1-tensors

a′ = X−1a, b′ = X Tb

• vectors ←→ contravariant 1-tensors

• linear functionals ←→ covariant 1-tensors

16



d = 2

• bases A = {u1, . . . ,un} on U, B = {v1, . . . , vm} on V

• linear operator Φ : U→ V has matrix representation

[Φ]A ,B = A ∈ Rm×n

where

Φ(uj) =
m∑
i=1

aijvi

• new bases A ′ and B′

[Φ]A ′,B′ = A′ ∈ Rm×n

• change-of-basis theorem: if X ∈ GL(m) change-of-basis matrix on

V, Y ∈ GL(n) change-of-basis matrix on U, then

A′ = X−1AY

17



d = 2

• special case U = V with A = B and A ′ = B′

A′ = X−1AX

• recover transformation rules for mixed 2-tensors

• bilinear functional β : U× V→ R with

β(λu+ λ′u′, v) = λβ(u, v) + λ′β(u′, v),

β(u, λv + λ′v′) = λβ(u, v) + λ′β(u, v′)

for all u,u′ ∈ U, v, v′ ∈ V, λ, λ′ ∈ R
• matrix representation of β

[β]A ,B = A ∈ Rm×n

given by

aij = β(ui , vj)

18



d = 2

• change-of-basis theorem: if

[β]A ′,B′ = A′ ∈ Rm×n,

then

A′ = X TAY

• special case U = V, A = B, A ′ = B′

A′ = X TAX

• recover transformation rules for covariant 2-tensors

• linear operators ←→ mixed 2-tensors

• bilinear functionals ←→ covariant 2-tensors

19



1- and 2-tensor transformation rules

contravariant 1-tensor: a′ = X−1a a′ = Xa

covariant 1-tensor: a′ = X Ta a′ = X−Ta

covariant 2-tensor: A′ = X TAX A′ = X−TAX−1

contravariant 2-tensor: A′ = X−1AX−T A′ = XAX T

mixed 2-tensor: A′ = X−1AX A′ = XAX−1

contravariant 2-tensor: A′ = X−1AY−T A′ = XAY T

covariant 2-tensor: A′ = X TAY A′ = X−TAY−1

mixed 2-tensor: A′ = X−1AY A′ = XAY−1

20



d = 3

• bilinear operator B : U× V→W,

B(λu+ λ′u′, v) = λB(u, v) + λ′B(u′, v),

B(u, λv + λ′v′) = λB(u, v) + λ′B(u, v′)

• bases A = {u1, . . . ,un}, B = {v1, . . . , vm}, C = {w1, . . . ,wp},

B(ui , vj) =

p∑
i=1

aijkwk

• change-of-basis theorem: if

[B]A ,B,C = A and [B]A ′,B′,C ′ = A′ ∈ Rm×n×p,

then

A′ = (X T,Y T,Z−1) · A

21



d = 3

• trilinear functional τ : U× V×W→ R,

τ(λu+ λ′u′, v,w) = λτ(u, v,w) + λ′τ(u′, v,w),

τ(u, λv + λ′v′,w) = λτ(u, v,w) + λ′τ(u, v′,w),

τ(u, v, λw + λ′w′) = λτ(u, v,w) + λ′τ(u, v,w′)

• bases A = {u1, . . . ,un}, B = {v1, . . . , vm}, C = {w1, . . . ,wp},

τ(ui , vj ,wk) = aijk

• change-of-basis theorem: if

[τ ]A ,B,C = A and [τ ]A ′,B′,C ′ = A′ ∈ Rm×n×p,

then

A′ = (X T,Y T,Z T) · A

22



extends to arbitrary order

• bilinear operators ←→ mixed 3-tensor of covariant order 2

contravariant order 1

• trilinear functionals ←→ covariant 3-tensor

• recover all transformation rules in definition ➀

▶ covariant d-tensor f : V1 × · · · × Vd → R

A′ = (X T
1 ,X

T
2 , . . . ,X

T
d ) · A

▶ contravariant d-tensor f : V∗
1 × · · · × V∗

d → R

A′ = (X−1
1 ,X−1

2 , . . . ,X−1
d ) · A

▶ mixed d-tensor f : V∗
1 × · · · × V∗

p × Vp+1 · · · × Vd → R

A′ = (X−1
1 , . . . ,X−1

p ,X T
p+1, . . . ,X

T
d ) · A

• definition ➁ is the easiest definition of a tensor (but it has issues)

23



adopted in books c. 1980s

24



aside: why not hypermatrices



why not hypermatrices

• why not choose bases and just treat them as hypermatrices

A ∈ Rn1×···×nd ?

• may not be computable: writing down a hypermatrix given bases in

general #P-hard

• may not be possible: multilinear maps extend to modules, which

may not have bases

• may not be useful: even for d = 1, 2, writing down matrix unhelpful

when vector spaces have special structures

• may not be meaningful: ‘indices’ may be continuous

25



writing down hypermatrix is #P-hard

• 0 ≤ d1 ≤ d2 ≤ · · · ≤ dn, generalized Vandermonde matrix

V(d1,...,dn)(x) :=


xd11 xd12 . . . xd1n
xd21 xd22 . . . xd2n
...

...
. . .

...

x
dn−1

1 x
dn−1

2 . . . x
dn−1
n

xdn1 xdn2 . . . xdnn


• usual Vandermonde matrix

V(0,1,...,n−1)(x) =


1 1 . . . 1

x1 x2 . . . xn
...

...
. . .

...

xn−2
1 xn−2

2 . . . xn−2
n

xn−1
1 xn−1

2 . . . xn−1
n


• if di ≥ i , then detV(d1,d2,...,dn)(x) divisible by detV(0,1,...,n−1)(x)

26



writing down hypermatrix is #P-hard

• for any integers 0 ≤ p1 ≤ p2 ≤ · · · ≤ pn,

s(p1,p2,...,pn)(x) :=
detV(p1,p2+1,...,pn+n−1)(x)

detV(0,1,...,n−1)(x)

is a symmetric polynomial in the variables x1, . . . , xn

s(x1, x2, . . . , xn) = s
(
xσ(1), xσ(2), . . . , xσ(n)

)
• U, V, W vector spaces of symmetric polynomials of degrees d , d ′,

and d + d ′ respectively

• B : U× V→W bilinear operator given by

B
(
s(x), t(x)

)
= s(x)t(x)

for s(x) of degree d and t(x) of degree d ′

27



writing down hypermatrix is #P-hard

• A be basis of U given by{
s(p1,p2,...,pn)(x) ∈ U : p1 ≤ p2 ≤ · · · ≤ pn integer partition of d

}
• B, C similar bases for V, W
• B may in principle be written down as 3-dimensional hypermatrix

[B]A ,B,C = A ∈ Rd×d′×(d+d′)

with

B(ui , vj) =

p∑
i=1

aijkwk

• aijk ’s are Littlewood–Richardson coefficients, well-known to be

#P-complete [Narayanan, 2006]

• used in resolution of Horn’s conjecture on eigenvalues of sums of

Hermitian matrices [Klyachko 1998; Knutson–Tao, 1999]

28



multilinear operators are useful



higher-order derivatives

• favorite example: higher derivatives of multivariate functions

• but need a norm on Md(V1, . . . ,Vd ;W)

• Md(V1, . . . ,Vd ;W) is itself a vector space

• if V1, . . . ,Vd and W endowed with norms, then

∥Φ∥σ := sup
v1,...,vd ̸=0

∥Φ(v1, . . . , vd)∥
∥v1∥ · · · ∥vd∥

defines a norm on Md(V1, . . . ,Vd ;W)

• slightly abused notation: same ∥ · ∥ denote norms on different spaces

29



higher-order derivatives

• V, W normed spaces; Ω ⊆ V open

• derivative of f : Ω→W at v ∈ Ω is linear operator Df (v) : V→W,

lim
h→0

∥f (v + h)− f (v)− [Df (v)](h)∥
∥h∥

= 0

• since Df (v) ∈ L(V;W), apply same definition to Df : Ω→ L(V;W)

• get D2f (v) : V→ L(V;W) as D(Df ),

lim
h→0

∥Df (v + h)− Df (v)− [D2f (v)](h)∥
∥h∥

= 0

• apply recursively to get derivatives of arbitrary order

Df (v) ∈ L(V;W), D2f (v) ∈ L
(
V; L(V;W)

)
,

D3f (v) ∈ L
(
V; L(V; L(V;W))

)
, D4f (v) ∈ L

(
V; L

(
V; L(V; L(V;W))

))
30



higher-order derivatives

• how to avoid nested spaces of linear maps?

• use multilinear maps

L
(
V;Md−1(V, . . . ,V;W)

)
= Md(V, . . . ,V;W)

• if Φ : V→ Md(V, . . . ,V;W) linear, then

[Φ(h)](h1, . . . ,hd)

linear in h for fixed h1, . . . ,hd , d-linear in h1, . . . ,hd for fixed h

• Dd f (v) : V× · · · × V→W may be regarded as multilinear operator

• Taylor’s theorem

f (v + h) = f (v) + [Df (v)](h) +
1

2
[D2f (v)](h,h) + · · ·

· · ·+ 1

d!
[Dd f (v)](h, . . . ,h) + R(h)

remainder ∥R(h)∥/∥h∥d → 0 as h→ 0

31



multilinear maps in computations



example: semidefinite programming

• barrier function for positive definite cone Sn++

f : Sn++ → R, f (X ) = − log detX

• gradient is

∇f : Sn++ → Sn, ∇f (X ) = −X−1

• Hessian, i.e., ∇2f := D(∇f ), at any X ∈ Sn++ is linear operator

∇2f (X ) : Sn → Sn, H 7→ X−1HX−1

• standard formulas useless

∇f =


∂f

∂x1
...
∂f

∂xn

 , ∇2f =


∂2f

∂x21
· · · ∂2f

∂x1∂xn
...

. . .
...

∂2f

∂xn∂x1
· · · ∂f

∂x2n


32



example: semidefinite programming

• writing down (hyper)matrix representations of (multi)linear maps

may not be useful even when d = 1, 2

• in SDP, vector space is Sn, n × n real symmetric matrices

• bad idea to identify it with Rn(n+1)/2

• what about higher derivatives of f (X ) = − log detX?

• formulas like

∇d f =

[
∂d f

∂xi∂xj · · · ∂xk

]n
i,j,...,k=1

even less illuminating

• need to view them as multilinear maps

33



example: semidefinite programming

• write F = ∇f , i.e., F (X ) = −X−1

• then DF (X ) = ∇2f (X ) and now we want D2F (X )

• by earlier discussion, this is bilinear operator

D2F (X ) : Sn × Sn → Sn

• not hard to show that it is given by

(H1,H2) 7→ −X−1H1X
−1H2X

−1 − X−1H2X
−1H1X

−1.

• dth derivative is d-linear operator

DdF (X ) : Sn × · · · × Sn → Sn

that sends (H1,H2, . . . ,Hd) to

(−1)d+1
∑
σ∈Sd

X−1Hσ(1)X
−1Hσ(2)X

−1 · · ·X−1Hσ(d)X
−1

34



example: self-concordance

• need third derivative to check self-concordance

• convex f : Ω ⊆ Rn → R self-concordant at x ∈ Ω if∣∣∇3f (x)(h,h,h)
∣∣ ≤ 2σ

∣∣∇2f (x)(h,h)
∣∣3/2

for all h ∈ Rn [Nesterov–Nemirovskii, 1994]

• convex programming problem may be solved to ε-accuracy in

polynomial time if it has self-concordant barrier functions,

• e.g., LP, QP, SOCP, SDP, GP

35



example: self-concordance

• not useful when vector space is not Rn:

∇2f (x)(h,h) =
n∑

i,j=1

∂2f (x)

∂xi∂xj
hihj ,

∇3f (x)(h,h,h) =
n∑

i,j,k=1

∂3f (x)

∂xi∂xj∂xk
hihjhk

• to check that f (X ) = − log det(X ) is self-concordant, need to show∣∣tr(HT[∇3f (X )](H,H)
)∣∣ ≤ 2σ

∣∣tr(HT[∇2f (X )](H)
)∣∣3/2

• easy with multilinear map formulas

[∇2f (X )](H) = X−1HX−1,

[∇3f (X )](H,H) = −2X−1HX−1HX−1

36



acknowledgment

• Simons Foundation Award no. 663281 granted to the Institute of

Mathematics of the Polish Academy of Sciences for 2021–2023

• L.-H. Lim, “Tensors in computations,” Acta Numer., 30 (2021),

pp. 555–764

37


	recap from lecture I
	more examples
	motivation: multilinearity
	tensors via multilinear maps
	aside: why not hypermatrices
	multilinear operators are useful
	multilinear maps in computations

