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recap from lecture |



recap: three definitions

e tensors capture three great ideas:

® equivariance
@ multilinearity
® separability

e roughly correspond to three common definitions of a tensor
® a multi-indexed object that satisfies tensor transformation rules
@ a multilinear map

® an element of a tensor product of vector spaces



recap: definition ®

e take home idea: definition @ is all about tensor transformation rules
e example: is this

1 2 3

2 3 4

3 4 5

a tensor?

e makes no sense

definition @ requires a context



e if it comes from a measurement of stress

T(Ea) %

TQ&

e if we are interested in its eigenvalues and eigenvectors

011 012 013
021 022 023
031 032 033

then it is a contravariant 2-tensor

(XAXHXv = AXv
then it is a mixed 2-tensor

e if we are interested in its Hadamard product

a1 412 a3 b1 bix b3 anbin  awbiy  azbis
a ax axn|o|bax bn b arbo1  axbo  axsbos
a1 ax  as3 bs1 b3y b33 asibsr  azbsy  aszbss

then it is not a tensor



recap: definition ®

e indices tell us nothing

e A c R™*X" has two indices but if transformation is
A = XA=[Xay,...,Xa,] or A=XTA=[XTay,...,X Ta,]

then it is covariant or contravariant 1-tensor respectively

e e.g., Householder QR algorithm treats the matrix as a covariant
1-tensor



recap: why important

saw three examples

full-rank least squares: solved by applying sequence of 0-, 1-, 2-tensor
transformation rules

Krylov subspace methods: exploits relations in change-of-coordinates
matrices of 2-tensor transformation rules

linearly constrained optimization: Newton method is tensorial, i.e.,

satisfies 0-, 1-, 2-tensor transformation rules, and thus
insensitive to condition number; steepest descent is not



more examples



example: equivariant neural networks

e neural network f: R” — R" obtained by alternately composing
A; € R"™" with pointwise activations o;(v) := max(v, b;), b; € R"

f(v) = Akok—1Ak—1- - 02A201 A1V
e G-equivariant function f: R” — R”
f(Xv) = Xf(v)
for all X € G C GL(n)
e observe
fF(Xv) = X(XTAX) (X Lo 1 X) (XL A_1X)
e (XTEARX) (X TR X)) (XA X )V
= XAk 1Ak 02 Az01 ALY
e equals Xf(v) if
Al=XTTAX = A, ol=XtoX=0;



example: equivariant neural networks

for image-based tasks n is on the order of millions of pixels, k
typically 10 to 50 layers deep

e may not even have enough data to fit weights and biases
AL, ..., A e R by,...,bx_; €R"

e G-equivariance narrows range of possible A; and b; by requiring
Al=XTIAX =A;, ol =X"1o;X=0;

e G-equivariance = mixed 2-tensor transformation rule



image-based tasks

e convolutional neural networks: group of translations
10
G = {{01%} e R3>*3: my, my GZ}
00 1
e p4 group of translations and right-angle rotations
cos(km/2) —sin(kw/2) m k= 0,1,2,3;
G= { |:sin(/<7r/2) cos(k /2) m;:| e R3x3;
0 0 1 my, my € 7

e pAm group: p4 plus reflections

(—1) cos(km/2) (—1Y ' sin(km/2) m k=0,1,2,3;
G = {[ sin(k/2) cos(k /2) m;:| cR¥3:
0 0 1 =01, m,meZ



other tasks

e drug discovery: preserve pairwise distances between atoms in a
molecule and chirality SO(3) or SE(3)

e DeepMind's AlphaFold 2: SE(3)-equivariant neural network and
SE(3)-invariant attention module

e data from high energy phsyics: Lorentz groups O(1, 3) or SO(1, 3)



example: cone programming

e primal and dual forms of cone programming problem over a
symmetric cone K C V conform to transformation rules for
Cartesian 0-, 1-, 2-tensors

e but change-of-coordinates matrices would have to be replaced a
linear map from the orthgonal group of the cone:

O(K) := {¢: V= V : ¢ linear, invertible, and ¢* = ¢~}

e special cases include linear programming (LP), convex quadratic
programming (QP), second-order cone programming (SOCP), and
semidefinite programming (SDP)
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motivation: multilinearity



\l'H

2
* Ea

linearity principle: almost any natural process is linear in small amounts
almost everywhere

multilinearity principle: if we keep all but one factors constant, the
varying factor obeys principle of linearity

Hooke's and Ohm's laws both linear but not if we pass a current through
the spring or stretch the resistor
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coordinate-free tensors

Kip Thorne’s Geometric Principle

The laws of physics must all be expressible as geometric (coordinate
independent and reference frame independent) relationships between
geometric objects (scalars, vectors, tensors, ...) that represent physical
entitities.

laws of physics do not depend on coordinates, and thus the tensors used
to express these laws should not depend on coordinates either

@ a multi-indexed object that satisfies certain transformation rules
@ a multilinear map

@ an element of a tensor product of vector spaces
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tensors over arbitrary vector spaces

e vector space V may not be R”, e.g., K=S87 and V =§" for SDP

e numerical linear algebra notations we have been using to describe
definition ® awkward and unnatural

e want to work with tensors over arbitrary vector spaces

» space of Toeplitz or Hankel or Toeplitz-plus-Hankel matrices
» space of polynomials or differential forms or differential operators
» space of L2-functions on homogeneous spaces

e another impetus for coordinate-free approach in definitions @ and ®
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tensors via multilinear maps




multilinear maps

e Vi,...,V, and W vector spaces

e multilinear map or d-linear map is ¢ : Vi X -+ x V4 — W with

D(vi,. . AV + NV, )
=AP(Vy, .y Vky e V) F N D(Ve, e Ve V)

forvi € Vi, v,V € Vi, o o,vg € Vg, AN e R

o write M9(Vy,...,Vg; W) for set of all such maps

o write M'(V; W) = L(V; W) for linear maps

e tensor transformation rules = change-of-bases theorems for
multilinear maps
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o B ={vi,...,Vp} basis of V, B* = {vj,...,v}} dual basis
e any v € V uniquely represented by a € R”

a
Vov=avi+ - -+anv, +— [V]ggZ: e R"”
am
e any ¢ € V* uniquely represented by b € R™
by
V'sp=bvi+ - +bnp, <+— |olar=]|:|cR"
bm
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if € ={vi,...,v,} another basis and X € R"*" is

m
/ } :

Vj = XijVi
i=1

change-of-basis theorem:
Ve =Xz, lple = X0z
recover transformation rules for contravariant and covariant 1-tensors
a’ = Xla, b’ = X"b
vectors <— contravariant 1-tensors

linear functionals +— covariant 1-tensors
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d=2

e bases & = {uy,...,u,fon U, B={vq,...,v} on V

e linear operator ® : U — V has matrix representation
[q)]g{’gg =AcR™"
where
m
q)(l.lj) = Z a,-jv,-
i=1
e new bases @’ and &’
[d)]{d/’@/ — A/ e Rmxn

e change-of-basis theorem: if X € GL(m) change-of-basis matrix on
V, Y € GL(n) change-of-basis matrix on U, then

A = XTAY

17



d=2

e special case U=V with & = B and &' = B’
A =X"1AX
e recover transformation rules for mixed 2-tensors
e bilinear functional 8: U x V — R with
B + N/, v) = AB(u,v) + N (W, v)
B(u, v + A'v') = AB(u,v) + X B(u, V)

3

forallu,u’ eU,v,v eV, \, N eR

e matrix representation of 3
[6];2{7.% — A e Rmxn

given by

aj = p(uj, v))
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change-of-basis theorem: if

[ﬁ],oj’,g@’ — Al E Ran’

then
A = XTAY

special case U=V, & = %, o' = &'
A = XTAX

recover transformation rules for covariant 2-tensors
linear operators «— mixed 2-tensors

bilinear functionals «+— covariant 2-tensors
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1- and 2-tensor transformation rules

contravariant 1-tensor:

covariant 1-tensor:

covariant 2-tensor:

contravariant 2-tensor:

mixed 2-tensor:

contravariant 2-tensor:

covariant 2-tensor:

mixed 2-tensor:

a’=X'a
a’=X"a

A = XTAX

A =XTTAXTT
A = XT1AX
A =XTTAY T
A = XTAY

A = X"1AY

a’' = Xa
a=X""a

A =XTAX !
A = XAXT

A = XAX!
A = XAY"

A =XTAy !
A = XAy !
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d=3

e bilinear operator B: U xV — W,

B(Au + Mu',v) = AB(u,v) + M'B(u’, v),
B(u, Av + \'v') = AB(u,v) + \'B(u, V')

e bases & ={uy,....up}, B={vi,... .V}, € ={wq,...,wp},

u/a VJ E ajjkW i

e change-of-basis theorem: if
[B]gf7337<5 =A and [B]gf/%@/yw/ =Ac Rmxnxp7

then
A=(X", Y, Z71-A
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d=3

e trilinear functional 7: U x V x W — R,

7(Au + X', v, w) = Ar(u, v, w) + N 7(u', v, w),

/

T(u, Av + X'V w) = A7(u,v,w) + N 7(u, v, w),

7(u, v, Aw + A'w') = A7 (u, v, w) + N 7(u,v,w’)
e bases &7 = {uy,...,up}, Z={v1,...,Vm}, € ={wq,...,w,},
T(uj, v, wWi) = ajjk
e change-of-basis theorem: if
[Tl e =A and [T]w @ o =A € RT*"P,

then
A =(X",Y,Z")-A
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extends to arbitrary order

e bilinear operators <— mixed 3-tensor of covariant order 2
contravariant order 1

e trilinear functionals «<— covariant 3-tensor

e recover all transformation rules in definition ®

» covariant d-tensor f : Vi x --- x Vg — R
A =(X,X,...,X])-A
» contravariant d-tensor f : Vi x --- xV; - R
A =XTHX XA
» mixed d-tensor f : Vi X .- X Vy X Vpi1--- x Vg =R
A = (X X X, X)) A
e definition @ is the easiest definition of a tensor (but it has issues)
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adopted in books c. 1980s

ANALYSIS,
MANIFOLDS
DIFFERENTIAL
GEOMETRY AND

e ND
o i AN INTRODUCTION TO
] %&:.nsg?ds. DIFFERENTIABLE MANIFOLDS PHYSICS SYMMETRIC SPACES
m Analysis, and AND RIEMANNIAN GEOMETRY Part I: Basics
Applications
E— Revised Edition

NORTH-HOLLAND

7(}7e r;eral
Relativity i
Bohert M. \Wald GRAV]TAT'ON

AModem Introductionto
its Foundations
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aside: why not hypermatrices




why not hypermatrices

e why not choose bases and just treat them as hypermatrices
A€ Rmxxna?

e may not be computable: writing down a hypermatrix given bases in
general #P-hard

e may not be possible: multilinear maps extend to modules, which
may not have bases

e may not be useful: even for d = 1,2, writing down matrix unhelpful
when vector spaces have special structures

e may not be meaningful: ‘indices’ may be continuous
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writing down hypermatrix is #P-hard

e 0<dy <dr <---<d,, generalized Vandermonde matrix

d d di
Xy X5 cee XS
d> d> d>
X X5 e XS
Vidy,....d) (X) = :
dn71 d,,,l d,771
X Xy Xn
dn d, d
X1 X2 Xp"
e usual Vandermonde matrix
1 1 1
X1 X2 Xn
Vior,..n—1)(x) = | g
n—2 n—2 n—2
Xy X3 cee X
n—1 n—1 n—1
X{ X5 cee X

o if di > i, then det \/(dl_ydz_,__”dn)(x) divisible by det V(o_yl,__,,_l)(x)
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writing down hypermatrix is #P-hard

e for any integers 0 < p; < pp < --- < pp,

_ det Vior,pot1,...patn—1) (X)

S X) =
(p17pz,...,pn)( ) det \/(0,1,_..,,7—1)()()

is a symmetric polynomial in the variables x1, ..., x,
S(X17X27 s 7Xn) = S(X(T(l)) Xo(2)y - 7X¢7(n))

e U, V, W vector spaces of symmetric polynomials of degrees d, d’,
and d + d’ respectively

e B:U xV — W bilinear operator given by

B(s(x), t(x)) = s(x)t(x)

for s(x) of degree d and t(x) of degree d’
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writing down hypermatrix is #P-hard

e o/ be basis of U given by
{s(php%m,pn)(x) €U:py < pp <--- < p, integer partition of d}

o A, € similar bases for V, W
e B may in principle be written down as 3-dimensional hypermatrix
[B]d By = Ac Rdxd’x(d+d’)

with
uH VJ § ajjkW k

aji's are Littlewood—Richardson coefﬁments, well-known to be
#P-complete [Narayanan, 2006]

e used in resolution of Horn's conjecture on eigenvalues of sums of
Hermitian matrices [Klyachko 1998; Knutson—Tao, 1999]
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multilinear operators are useful




higher-order derivatives

e favorite example: higher derivatives of multivariate functions
e but need a norm on MY(Vy,..., Vg W)
° Md(Vl, .., Vg, W) is itself a vector space
o if Vi,...,Vy and W endowed with norms, then
10, =  sup |[D(vi,...,vq)ll
vivgz0 Vil [vdl|

defines a norm on M9(Vy, ..., V4; W)

slightly abused notation: same || - || denote norms on different spaces
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higher-order derivatives

e V, W normed spaces; Q2 C V open
o derivative of f : Q — W at v € Q is linear operator Df (v) : V — W,

im NFQv+h) = f(v) — [DF()I(h)]| _
h—0 i

since Df (v) € L(V; W), apply same definition to Df : Q — L(V; W)
get D2f(v) : V — L(V; W) as D(Df),

i 1Pf(v+h) — Df(v) — [Df(v)](h)]|

=0
h—0 [h|
e apply recursively to get derivatives of arbitrary order
Df(v) € L(V; W), D*f(v) € L(V;L(V;W)),

D3*f(v) € L(V;L(V;L(V;W))), D*f(v) € L(V;L(V;L(V;L(V;W))))

30



higher-order derivatives

how to avoid nested spaces of linear maps?

use multilinear maps
L(V; MY (V,...,V;W)) = MYV, ..., V; W)
if &:V— MYV,...,V; W) linear, then
[®(h)](h1, ... hg)

linear in h for fixed hy,..., hy, d-linear in hy,..., hy for fixed h
Df(v) : V x --- x V — W may be regarded as multilinear operator

Taylor's theorem
f(v+h) = f(v) + [Df(v)](h) + %[DQf(v)](h, h)+---
ot %[Ddf(v)](h, ...,h) + R(h)

remainder ||R(h)|/||h||¥ = 0ash —0
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multilinear maps in computations




example: semidefinite programming

e barrier function for positive definite cone S”,
f:87, =R, f(X) = —logdet X

e gradient is
VF:S", —=S",  VFX)=-X"1

e Hessian, i.e., V2f := D(Vf), at any X € S, is linear operator
V2f(X):S" = S", H s XTHX !

e standard formulas useless

of 0*f O*f
aixl Qixf o 0x10x,
VE=| 1|, V=] . :
of 0*f of
O0xn Oxaxy  Ox2
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example: semidefinite programming

e writing down (hyper)matrix representations of (multi)linear maps
may not be useful even when d = 1,2

e in SDP, vector space is S”, n X n real symmetric matrices
e bad idea to identify it with R"("+1)/2

e what about higher derivatives of f(X) = — logdet X?
e formulas like ; )
viF o%f
Oxj0xj - - - Oxic iyek=1

even less illuminating

e need to view them as multilinear maps
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example: semidefinite programming

e write F = Vf, ie, F(X) = _x1
then DF(X) = V2f(X) and now we want D?F(X)

by earlier discussion, this is bilinear operator

D?F(X):S" x S" — 8"

not hard to show that it is given by
(Hi, Ho) = =X PHi X P Ho X7 — X HL X EH XL
e dth derivative is d-linear operator
DIF(X):S"x---xS" = 8"
that sends (Hi, Ha, ..., Hy) to

(D)7 D X T Hy)X T Ho) X X T Hp g X1
eSSy
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example: self-concordance

need third derivative to check self-concordance

convex f : 2 C R" — R self-concordant at x € Q if

|V3£(x)(h, h, h)| < 20| V2F(x)(h, h)|*>
for all h € R" [Nesterov—Nemirovskii, 1994]

e convex programming problem may be solved to e-accuracy in
polynomial time if it has self-concordant barrier functions,

e.g., LP, QP, SOCP, SDP, GP
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example: self-concordance

e not useful when vector space is not R":

" 07f(x)
f(x)(h,h) = hih;
(X)( ’ ) = aX,'an o
*f(x)(h,h,h) ———""h;h;h
vE Z ax,ax,a T
e to check that 7(X) = — log det(X) is self-concordant, need to show

|tr (HT[VRF(X)I(H, H))| < 20|tr(HT[V2F(X)](H))] 2

e easy with multilinear map formulas

[V2F(X)](H) = X THX L,
[V3F(X)](H, H) = —2X *HX'HX !
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