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Abstract
A flag is a sequence of nested subspaces. Flags are ubiquitous in numerical analysis,
arising in finite elements, multigrid, spectral, and pseudospectral methods for numer-
ical pde; they arise in the form of Krylov subspaces in matrix computations, and
as multiresolution analysis in wavelets constructions. They are common in statistics
too—principal component, canonical correlation, and correspondence analyses may
all be viewed as methods for extracting flags from a data set. The main goal of this
article is to develop the tools needed for optimizing over a set of flags, which is a
smooth manifold called the flag manifold, and it contains the Grassmannian as the
simplest special case. We will derive closed-form analytic expressions for various dif-
ferential geometric objects required for Riemannian optimization algorithms on the
flag manifold; introducing various systems of extrinsic coordinates that allow us to
parameterize points, metrics, tangent spaces, geodesics, distances, parallel transports,
gradients, Hessians in terms of matrices andmatrix operations; and thereby permitting
us to formulate steepest descent, conjugate gradient, and Newton algorithms on the
flag manifold using only standard numerical linear algebra.
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1 Introduction

Launched around 20 years ago in a classic article of Edelman, Arias, and Smith [20],
Riemannian manifold optimization is now entrenched as a mainstay of optimization
theory [2,4,19,51].While studies of optimization algorithms onRiemannianmanifolds
predate [20], the distinguishing feature of Edelman et al.’s approach is that their
algorithms are built entirely and directly from standard algorithms in numerical linear
algebra; in particular, they do not require numerical solutions of differential equations.
For instance, the parallel transport of a vector in [20] is not merely discussed in the
abstract but may be explicitly computed in efficient and numerically stable ways via
closed-form analytic expressions involving QR and singular value decompositions of
various matrices.

The requirement that differential geometric quantities appearing in a manifold
optimization algorithms have analytic expressions in terms of standard matrix decom-
positions limits the type of Riemannian manifolds that one may consider. Aside from
Euclidean spaces, we know of exactly three1 Riemannian manifolds [4] on which one
may define optimization algorithms in this manner:

(i) Stiefel manifold V(k, n),
(ii) Grassmann manifold Gr(k, n),
(iii) manifold of positive definite matrices S

n
++.

The main contribution of this article is to furnish a fourth: flag manifold.
A flag in a finite-dimensional vector space V over R is a nested sequence of linear

subspaces {Vi }di=1 of V, i.e.,

{0} ⊆ V1 ⊆ · · · ⊆ Vd ⊆ V.

For any increasing integer sequence of length d, 0 < n1 < · · · < nd < n, the set
of all flags {Vi }di=1 with dim(Vi ) = ni , i = 1, . . . , d, is a smooth manifold called
a flag manifold, and denoted by Flag(n1, . . . , nd ; V). This is a generalization of the
Grassmannian Gr(k, V) that parameterizes k-dimensional linear subspaces in V as
flags of length one are just subspaces, i.e., Flag(k; V) = Gr(k, V). Flag manifolds,
sometimes also called flag varieties, were first studied by Ehresmann [21] and saw
rapid development in 1950’s [11,12,14,17]. They are now ubiquitous in many areas
of pure mathematics, and, as we will discuss next, they are also ubiquitous in applied
mathematics, just hidden in plain sight.

The optimization algorithms on Grassmann and Stiefel manifolds originally pro-
posed in [20] have foundwidespread applications: e.g., computer vision [49,50], shape

1 Discounting manifolds that can be realized as products or open subsets of these manifolds, e.g., those
considered in [1,31,35,44].
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Optimization on flag manifolds 623

analysis [43,45], matrix computations [33,48], subspace tracking [8], and numerous
other areas—unsurprising as subspaces and their orthonormal bases are ubiquitous
in all areas of science and engineering. For the same reason, we expect optimization
algorithms on flag manifolds to be similarly useful as flags are also ubiquitous—any
multilevel, multiresolution, or multiscale phenomena likely involve flags, whether
implicitly or explicitly. We will discuss some examples from numerical analysis and
statistics.

1.1 Flags in numerical analysis

In numerical analysis, flags naturally arise in finite elements, multigrid, spectral and
pseudospectral methods, wavelets, iterative matrix computations, etc, in several ways.

Example 1 (Mesh refinement) In multigrid, algebraic multigrid, finite element meth-
ods, we often consider a sequence of increasingly finer grids or meshes G1 � G2 �

G3 � · · · on the domain of interest Ω . The vector space of real-valued functions

Vk := { f : Gk → R}

gives us a flag V1 � V2 � V3 � · · · of finite-dimensional vector spaces where
dimVk = |Gk |, the number of grid points in Gk . The aforementioned numerical
methods are essentially different ways of extracting approximate solutions of increas-
ing accuracy from the flag.

Example 2 (Increasing order) In spectral and pseudospectral methods, we consider a
class of functions of increasing complexity determined by an order d, e.g., polynomial
or trigonometric polynomial functions of degree d, on the domain of interest Ω . The
vector space

Vd := { f : Ω → R : deg( f ) ≤ d}

gives us a flag V1 � V2 � V3 � · · · as d is increased. Again, these methods operate
by extracting approximate solutions of increasing accuracy from the flag.

Example 3 (Cyclic subspaces) Given A ∈ R
n×n and b ∈ R

n , the subspace

Kk(A, b) := span{b, Ab, . . . , Ak−1b}

is called the kthKrylov subspace. The gist behind Krylov subspace methods in numer-
ical linear algebra, whether for computing solutions to linear systems, least squares
problems, eigenvalue problems, matrix functions, etc, are all based on finding a
sequence of increasingly better approximations from the flag K0(A, b) � K1(A, b) �

· · · � Kk(A, b), assuming that A has at least k distinct eigenvalues.
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Example 4 (Multiresolution) A standard way to construct wavelets is to define a mul-
tiresolution analysis, i.e., a sequence of subspaces Vk+1 � Vk defined by

f (t) ∈ Vk ⇔ f (t/2) ∈ Vk+1.

The convention inwavelet literature has the indexing in reverse order but this is aminor
matter—a nested of sequence of subspaces is a flag regardless of how the subspaces
in the sequence are labeled. So a multiresolution analysis is also a flag.

This is not an exhaustive list, flags also arise in numerical analysis in other ways,
e.g., analysis of eigenvalue methods [6,28].

1.2 Flags in statistics

Although not usually viewed in this manner, classical multivariate data analysis tech-
niques [34] may be cast as nested subspace-searching problems, i.e., constrained or
unconstrained optimization problems on the flag manifold.

We let 1 denote a vector of all ones (of appropriate dimension). We assume that
our data set is given in the form of a samples-by-variables design matrix X ∈ R

n×p,
n ≥ p, which we call a data matrix for short. Let x = 1

n X
T1 ∈ R

p be its sample mean
and SX = (X − 1xT)T(X − 1xT) ∈ R

p×p be its sample covariance. For another data
matrix Y ∈ R

n×q , SXY = (X − 1xT)T(Y − 1yT) = ST
Y X ∈ R

p×q denotes sample
cross-covariance.

Example 5 (Principal Component Analysis (PCA)) The kth principal subspace of X
is im(Zk), where Zk is the p × k matrix given by

Zk = argmax{tr(Z TSX Z) : Z ∈ V(k, p)}, k = 1, . . . , p. (1)

So im(Zk) is a k-dimensional linear subspace of R
p spanned by the orthonormal

columns of Zk . In an appropriate sense, the kth principal subspace captures the greatest
variability in the data among all k-dimensional subspaces of R

p. In principal compo-
nent analysis, the data points, i.e., columns of X , are often projected onto im(Zk)with
k = 2, 3 for visualization or with other small values of k for dimension reduction.
Clearly im(Zk) is contained in im(Zk+1) and the flag

im(Z1) � im(Z2) � · · · � im(Z p)

explains an increasing amount of variance in the data.

In [42, Theorem 9], it is shown how one may directly define PCA as an optimization
problem on a flag manifold, a powerful perspective that in turn allows one to gener-
alize and extend PCA in various manners. Nevertheless what is lacking in [42] is an
algorithm for optimization on flag manifolds, a gap that our article will fill.
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Example 6 (Canonical Correlation Analysis (CCA)) The kth pair of canonical corre-
lation loadings (ak, bk) ∈ R

p × R
q is defined recursively by

(ak, bk) = argmax{aTSXY b : aTSXa = bTSY b = 1,

aTSXa j = aTSXY b j = bTSY Xa j = bTSY b j = 0, j = 1, . . . , k − 1}. (2)

Let Ak = [a1, . . . , ak] ∈ R
p×k and Bk = [b1, . . . , bk] ∈ R

q×k . Then the canonical
correlation subspaces of X and Y are given by

im(A1) � · · · � im(Ap) and im(B1) � · · · � im(Bq),

which are flags in R
p and R

q respectively. Collectively they capture how the shared
variance between the two data sets increases with k.

Example 7 (Correspondence Analysis (CA)) Let t = 1TX1 ∈ R, r = 1
t X1 ∈ R

n ,
c = 1

t X
T1 ∈ R

p denote the total, row, and column weights of X respectively and
set Dr = 1

t diag(r) ∈ R
n×n , Dc = 1

t diag(c) ∈ R
p×p. For k = 1, . . . , p, we seek

matrices Uk ∈ R
k×n and Vk ∈ R

k×p such that

(Uk, Vk) = argmax
{
tr
(
U T( 1t X − rcT)V

) : U TDrU = I = V TDcV
}
. (3)

The solution

im(U1) � · · · � im(Up) and im(V1) � · · · � im(Vp)

are flags in R
n and R

p respectively and collectively they explain the increasing devi-
ation from the independence of occurrence of two outcomes.

For reasons such as sensitivity of the higher-dimensional subspaces to noise in the
data, in practice one relies on the first few subspaces in these flags to make various
inference about the data. Nevertheless, we stress that the respective flags that solve
(1), (2), (3) over all k will paint a complete picture showing the full profile of how
variance, shared variance, or deviation from independence vary across dimensions.

Apart from PCA, CCA, and CA, flags arise in other multivariate data analytic
techniques [34], e.g., factor analysis (FA), linear discriminant analysis (LDA), multi-
dimensional scaling (MDS), etc, inmuch the samemanner. One notable example is the
independent subspace analysis proposed in [38,39], a generalization of independent
component analysis.

1.3 Prior work and our contributions

Some elements of optimization theory on flag manifolds have been considered in [38],
although optimization is not its main focus and only analytic expressions for tangent
spaces and gradients have been obtained. In particular, no actual algorithm appears in
[38]—note that a Riemannian steepest descent algorithm in the spirit of [20] would
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at least require analytic expressions for geodesics and, to the best of our knowledge,
they have never been derived; in fact prior to this article it is not even known if such
expressions exist.

The main contribution of our article is in providing all necessary ingredients for
optimization algorithms on flag manifolds in full details, and from two different
perspectives—representing a flag manifold as (i) a homogeneous space, where a flag
is represented as an equivalence class of matrices; and as (ii) a compact submanifold
of R

n×n , where every flag is uniquely represented by a matrix. We will provide four
systems of extrinsic coordinates for representing a flagmanifold that arise from (i) and
(ii)—whilemodern differential geometry invariably adopts an intrinsic coordinate-free
approach, we emphasize that such suitable extrinsic coordinate systems are indispens-
able for performing computations on manifolds.

In particular, the analytic expressions for various differential geometric objects
and operations required for our optimization algorithms will rely on these coordinate
systems. We will supply ready-to-use formulas and algorithms, rigorously proven but
also made accessible to applied mathematicians and practitioners. For the readers’
convenience, the following is a road map to the formulas and algorithms:

Object on flag manifold Results

Point Propositions 4, 12, 17, 21
Tangent vector Propositions 6, 13, 18, 22, Corollary 2
Metric Propositions 7, 14, 23
Geodesic Propositions 8, 9, 15, 19
Arclength Corollary 1, Proposition 15
Geodesic distance Proposition 10
Parallel transport Propositions 11, 16, 20
Gradient Proposition 24
Hessian Proposition 25
Steepest descent Algorithm 1
Conjugate gradient Algorithm 2

1.4 Outline

We begin by reviewing basic materials about Lie groups, Lie algebras, homogeneous
spaces, and Riemannian manifolds (Sect. 2). We then proceed to describe the basic
differential geometry of flag manifolds (Sect. 3), develop four concrete matrix repre-
sentations of flag manifolds, and derive closed-form analytic expressions for various
differential geometric objects in terms of standard matrix operations (Sects. 4, 5, 6).
With these, standard nonlinear optimization algorithms can be ported to the flag mani-
fold almost as an afterthought (Sect. 7).We illustrate using two numerical experiments
with steepest descent on the flag manifold (Sect. 8).
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Optimization on flag manifolds 627

2 Basic differential geometry of homogeneous spaces

Wewill need some rudimentary properties of homogeneous spaces not typically found
in the manifold optimization literature, e.g., [4,20].While these materials are certainly
available in the standard differential geometry literature, e.g., [10,25,29], they are not
presented in a form easily accessible to practitioners. This section provides a self-
contained review, pared down to a bare minimum of just what we need later.

2.1 Lie groups and Lie algebras

LetM be a smoothmanifold andT ∗M be its cotangent bundle.ARiemannianmetric on
M is a smooth section g : M → T ∗M ⊗ T ∗M such that gx := g(x) ∈ T ∗

x M ⊗ T ∗
x M

is a positive definite symmetric bilinear form on the tangent space TxM for every
x ∈ M . Intuitively, a Riemannian metric gives an inner product on TxM for every
x ∈ M and it varies smoothly with respect to x ∈ M . Let G be a group and let
m : G × G → G be the multiplication map m(a1, a2) = a1a2 and i : G → G
be the inversion map i(a) = a−1. Then G is a Lie group if it is a smooth manifold
and the group operations m and i are smooth maps. The tangent space g of G at the
identity e ∈ G is a Lie algebra, i.e., a vector space equipped with a Lie bracket, a
bilinear map [·, ·] : g × g → g satisfying [X ,Y ] = −[Y , X ] (skew-symmetry) and
[X , [Y , Z ]] + [Z , [X ,Y ]] + [Y , [Z , X ]] = 0 (Jacobi identity). For example, if G is
the orthogonal group O(n) of all n × n real orthogonal matrices, then its Lie algebra
so(n) is the vector space of all n × n real skew-symmetric matrices.

For a Lie groupG, wemay define the left and right translationmaps La, Ra : G →
G by La(x) = m(a, x) = ax and Ra(x) = m(x, a) = xa. We say that a Riemannian
metric g on G is left invariant if for all a ∈ G,

gLa(x)
(
(dLa)x (X), (dLa)x (Y )

) = gx (X ,Y );

right invariant if for all b ∈ G,

gRb(x)
(
(dRb)x (X), (dRb)x (Y )

) = gx (X ,Y );

and bi-invariant if for all a, b ∈ G,

gRb◦La(x)
(
(d(Rb ◦ La))x (X), (d(Rb ◦ La))x (Y )

) = gx (X ,Y )

over all X ,Y ∈ TxM . These notions are pertinent for Sect. 2.2: There are infinitely
many Riemannian metrics that one could put on the flag manifold but there is a natural
choice that is induced from the unique bi-invariant metric on O(n) and this is the one
that we use.
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2.2 Homogeneous spaces

Wenowrecall somebasic definitions and facts about homogeneous spaces. Throughout
this article, we will use double brackets �x� to denote the equivalence class of x .

Definition 1 LetG be aLie group acting on a smoothmanifoldM viaϕ : G×M → M .
If the action ϕ is smooth and transitive, i.e., for any x, y ∈ M , there is some a ∈ G
such that ϕ(a, x) = y, then M is called a homogeneous space of the Lie group G.

For a point x ∈ M , the subgroup Gx = {a ∈ G : ϕ(a, x) = x} is called the
isotropy group of x . We write G/Gx for the quotient group of G by Gx and denote by
�a� ∈ G/Gx the coset (or equivalence class) of a ∈ G. SinceG acts on M transitively,
we see that there is a one-to-one correspondence F between G/Gx and M given by

F : G/Gx → M, F(�a�) = ϕ(a, x),

for any x ∈ M . In fact, F defines a diffeomorphismbetween the two smoothmanifolds,
which is the content of the following theorem [10, Theorems 9.2 and 9.3].

Theorem 1 Let G be a Lie group acting on a smooth manifold M. For any x ∈ M,
there exists a unique smooth structure on G/Gx such that the action

ψ : G × G/Gx → G/Gx , ψ(a, �a′�) = �aa′�

is smooth. Moreover, the map F : G/Gx → M sending �a� to ϕ(a, x) is a G-
equivariant diffeomorphism, i.e., F is a diffeomorphism such that F

(
ψ(a, �a′�)

) =
ϕ
(
a, F(�a′�)

)
.

The Grassmannian Gr(k, n) of k-dimensional subspaces in R
n is probably the best

known example of a homogeneous space in manifold optimization. Indeed, O(n) acts
transitively on Gr(k, n) and as any k-dimensional subspace W ⊆ R

n has isotropy
group isomorphic to O(k) × O(n − k), we obtain the well-known characterization of
Grassmannian

Gr(k, n) ∼= O(n)/
(
O(k) × O(n − k)

)

that is crucial for manifold optimization. Throughout this article ‘∼=’ will mean dif-
feomorphism.

LetG be aLie group andM ahomogeneous spaceofGwith actionϕ : G×M → M .
Fix any x ∈ M and let H denote its isotropy group. By Theorem 1 we may identify
M with G/H . The left translation map in Sect. 2.1 may be extended to this setting
as La : M → M , La(y) = ϕ(a, y) for any a ∈ G. In particular, if a ∈ H , then
La(x) = x , and we have a linear isomorphism

(dLa)x : TxM → TxM .
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Optimization on flag manifolds 629

Let g : M → T ∗M⊗T ∗M be aRiemannianmetric onM .We say that g isG-invariant
if for every y ∈ M and a ∈ G, we have

gLa(y)
(
(dLa)y(X), (dLa)y(Y )

) = gy(X ,Y ) for all X ,Y ∈ TyM .

As M = G/H , we have T�e�M = g/h where g and h are the Lie algebras of
G and H respectively. Here e ∈ G is the identity element. This allows us to define
the adjoint representation AdH : H → GL(g/h), a 
→ d(La ◦ Ra−1)�e�; recall that
GL(V) denotes the group of linear isomorphisms on the vector space V and here we
take V = g/h. In other words, for any a ∈ H and X ∈ g/h,

AdH (a)(X) = d(La ◦ Ra−1)�e�(X).

An inner product η on the vector space g/h is said to be AdH -invariant if for every
a ∈ H ,

η(AdH (a)(X),AdH (a)(Y )) = η(X ,Y ) for all X ,Y ∈ g/h.

We state an important result about their existence and construction [16, Proposi-
tion 3.16].

Proposition 1 Let G be a connected Lie group and H a closed Lie subgroup with Lie
algebras g and h respectively. If there is a subspace m of g such that g = m ⊕ h
and AdH (m) ⊆ m, then there is a one-to-one correspondence between G-invariant
metrics on M = G/H and AdH -invariant inner products on m.

Proposition 1 says that if h ⊆ g admits a complement m, then we may obtain a G-
invariant metric g on M by an AdH -invariant inner product on m. Moreover, we may
identify TxM with m, implying that the metric g on M is essentially determined by
gx at a single arbitrary point x ∈ M .

Proposition 2 If G is a compact Lie group, then G admits a bi-invariant metric and
this metric induces a G-invariant metric g on M = G/H for any closed subgroup
H ⊆ G.

If in addition G is simple, i.e., has no nontrivial connected normal subgroups, then
G admits a unique bi-invariant metric called the canonical metric and in this case M
is called a normal homogeneous space. A flag manifold is a normal homogeneous
space and the metric we derive later in Propositions 7, 14, 23 comes from the unique
bi-invariant metric on O(n).

2.3 Geodesic orbit spaces

Let M = G/H be a homogeneous space of G. If M has a Riemannian metric g such
that every geodesic inM is an orbit of a one-parameter subgroup ofG, then we say that
(M, g) is a geodesic orbit space. The following result [30] will allow us to construct
several interesting examples.
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Theorem 2 Let G be a compact Lie group with a bi-invariant metric g and H be a
subgroup such that M = G/H is a smooth manifold (e.g., H is closed subgroup).
Then M = G/H together with the metric g̃ induced by g is a geodesic orbit space.

In general it is difficult if not impossible to determine closed-form analytic expres-
sions for geodesics on a Riemannian manifold. But in the case of a geodesic orbit
space, since its geodesics are simply orbits of one-parameter subgroups of G, the task
reduces to determining the latter. The next result [23, Theorem 1.3.5] will be helpful
towards this end.

Theorem 3 If G is a matrix Lie group , then every one-parameter subgroup γ (t) of G
is of the form

γ (t) = exp(ta) :=
∞∑
k=0

tkak

k!

for some a ∈ g.

So for example, every one-parameter subgroup of SO(n) must take the form γ (t) =
exp(ta) for some skew-symmetric matrix a ∈ so(n).

Fortuitously, as we will see in Sect. 4, a flag manifold is a geodesic orbit space
G/H where G can be either O(n) or SO(n) with an appropriate choice of subgroup
H . This is the key to obtaining closed-form analytic expressions for geodesics in
Propositions 8, 9, 15, 19.

2.4 Riemannian notions

Although not specific to homogeneous or geodesic orbit spaces, we state the famous
Hopf–Rinow theorem [16, Theorem 1.8] and recall the definitions of Riemannian
gradient and Hessian [10,25,29] below for easy reference.

Theorem 4 (Hopf–Rinow) Let (M, g) be a connected Riemannian manifold. Then the
following statements are equivalent:

(i) closed and bounded subsets of M are compact;
(ii) M is a complete metric space;
(iii) M is geodesically complete, i.e., the exponential map expx : TxM → M is defined

on the whole TxM for all x ∈ M.

Furthermore, any one of these conditions guarantees that any two points x, y on M
can be connected by a distance minimizing geodesic on M.

A flag manifold satisfies the Hopf–Rinow theorem, ensuring that there is a geodesic
curve γx connecting any initial point x with any optimal point x∗. Various path-
following algorithms may then be viewed as different ways of alternating between
approximating the geodesic curve γx and updating the initial point x . Also, Theo-
rem 4(iii) guarantees that the exponential map is well-defined in our steepest descent
(Algorithm 1) and conjugate gradient (Algorithm 2) methods.

In the following we will write X(M) for the set of all smooth vector fields on M .
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Definition 2 (Riemannian gradient and Hessian) Let (M, g) be a Riemannian mani-
fold. Let f : M → R be a smooth function. The Riemannian gradient of f , denoted
∇ f , is defined by

g(∇ f , V ) = V ( f ),

for any V ∈ X(M). The Riemannian Hessian of f , denoted ∇2 f , is defined by

(∇2 f )(U , V ) = g
(∇U (∇ f ), V

)
,

where U , V ∈ X(M) and ∇UV is the covariant derivative2 of V along U , which is
uniquely determined by the Riemannian metric g.

By their definitions, ∇ f is a smooth vector field and ∇2 f is a smooth field of
symmetric bilinear forms. In particular, ∇2 f is uniquely determined by its values at
points of the form (V , V ) over all V ∈ X(M) because of bilinearity and symmetry,
i.e.,

∇2 f (U , V ) = 1

2

(∇2 f (U + V ,U + V ) − ∇2 f (U ,U ) − ∇2 f (V , V )
)
, (4)

for any U , V ∈ X(M). Definition 2 is standard but not as useful for us as a pointwise
definition—the Riemannian gradient ∇ f (x) and Riemannian Hessian ∇2 f (x) at a
point x ∈ M is given by

gx (∇ f (x), X) = d f
(
exp(t X)

)

dt

∣∣∣
t=0

, ∇2 f (x)(X , X) = d2 f
(
exp(t X)

)

dt2

∣∣∣
t=0

, (5)

where exp(t X) is the geodesic curve emanating from x in the direction X ∈ TxM . We
may obtain (5) by Taylor expanding f

(
exp(t X)

)
.

Given a specific function f , one may express (5) in terms of local coordinates on
M but in general there are no global formulas for ∇ f (x) and ∇2 f (x), and without
which it would be difficult if not impossible to do optimization on M . We will see in
Sect. 6 that when M is a flag manifold, then the gradient and Hessian in (5) may be
expressed globally in terms of extrinsic coordinates.

3 Basic differential geometry of flagmanifolds

Wewill nowdefineflags andflagmanifolds formally anddiscuss somebasic properties.
Let n be a positive integer and V be an n-dimensional vector space over R. We write
V(k, V) for the Stiefel manifold [46] of orthonormal k-frames in V and Gr(k, V)

for the Grassmannian [24] of k-dimensional subspaces in V. If the choice of V is
unimportant or if V = R

n , then we will just write V(k, n) and Gr(k, n).

2 More precisely, the covariant derivative associated with the Levi-Civita connection on M .
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Definition 3 Let 0 < n1 < · · · < nd < n be an increasing sequence of d positive
integers and V be an n-dimensional vector space over R. A flag of type (n1, . . . , nd)
in V is a sequence of subspaces

V1 ⊆ V2 ⊆ · · · ⊆ Vd , dimVi = ni , i = 1, . . . , d.

We denote the set of such flags by Flag(n1, . . . , nd ; V) and call it the flag manifold
of type (n1, . . . , nd). If V is unimportant or if V = R

n , then we will just write
Flag(n1, . . . , nd ; n).

For notational convenience we will adopt the following convention throughout:

n0 := 0, nd+1 := n, V0 := {0}, Vd+1 := V.

Wewill see in Proposition 3 that flag manifolds are indeed manifolds. When d = 1,
Flag(k; V) is the set of all k-dimensional subspaces of V, which is the Grassmannian
Gr(k, V). The other extreme case is when d = n − 1 and ni = i , i = 1, . . . , n − 1,
and in which case Flag(1, . . . , n − 1; V) comprises all complete flags of V, i.e.,

V1 ⊆ V2 ⊆ · · · ⊆ Vn−1, dimVi = i, i = 1, . . . , n − 1.

Like the Grassmannian, the flag manifold is not merely a set but has rich geometric
structures. We will start with the most basic ones and defer other useful characteriza-
tions to Sects. 4 and 5.

Proposition 3 Let 0 < n1 < · · · < nd < n be integers and V be an n-dimensional
real vector space. The flag manifold Flag(n1, . . . , nd ; V) is

(i) a connected compact smooth manifold;
(ii) an irreducible affine variety;
(iii) a closed submanifold of Gr(n1, V) × Gr(n2, V) × · · · × Gr(nd , V);
(iv) a closed submanifold ofGr(n1, V)×Gr(n2 −n1, V)×· · ·×Gr(nd −nd−1, V);
(v) a fiber bundle on Gr(nd , V) whose fiber over W ∈ Gr(nd , V) is Flag(n1, . . . ,

nd−1; W);
(vi) a smooth projective variety.

Proof Property (i) is well-known [13,36] but also follows from the characterization in
Proposition 4 as a quotient of a compact connected Lie group by a closed subgroup.
Property (ii) is a consequence of Propositions 17 and 21, where we give two different
ways of representing Flag(n1, . . . , nd ; V) as an affine variety in R

m , m = (nd)2.
Property (vi) is a consequence of (iii) or (iv), given that theGrassmannian is a projective
variety.

In the following, let {Vi }di=1 ∈ Flag(n1, . . . , nd ; V), i.e., dimVi = ni , i =
1, . . . , d. For (iii), the map

ε : Flag(n1, . . . , nd ; V) → Gr(n1, V) × · · · × Gr(nd , V),

{Vi }di=1 
→ (V1, V2, . . . , Vd) (6)
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is clearly an embedding. Its image is closed since if (V1, . . . , Vd) /∈ ε
(
Flag(n1, . . . ,

nd; V)
)
, then there exists some i ∈ {1, . . . , d − 1} such that Vi � Vi+1; so if V

′
i ∈

Gr(ni , V) and V
′
i+1 ∈ Gr(ni+1, V) are in some small neighborhood of Vi and Vi+1

respectively, then V
′
i � V

′
i+1.

For (iv), choose and fix an inner product on V. Let V
⊥
i denote the orthogonal

complement of Vi in Vi+1, i = 1, . . . , d − 1. The map

ε′ : Flag(n1, . . . , nd ; V) → Gr(n1, V) × Gr(n2 − n1, V) × · · · × Gr(nd − nd−1, V),

{Vi }di=1 
→ (V1, V
⊥
1 , . . . , V

⊥
d−1)

(7)
is clearly an embedding. That the image of ε′ is closed follows from the same argument
used for ε.

For (v), consider the map

ρ : Flag(n1, . . . , nd ; V) → Gr(nd , V), {Vi }di=1 
→ Vd ,

which is clearly surjective and smooth. For any W ∈ Gr(nd , V), ρ−1(W) consists of
flags of the form

V
′
1 ⊆ V

′
2 ⊆ · · · ⊆ V

′
d−1 ⊆ W, dimV

′
i = ni , i = 1, . . . , d − 1.

In other words, the fiber ρ−1(W) ∼= Flag(n1, . . . , nd−1; W). ��

The fiber bundle structure in Proposition 3(v) may be recursively applied to get

Flag(n1, . . . , nd−1; nd) → Flag(n1, . . . , nd ; n) → Gr(nd , n),

Flag(n1, . . . , nd−2; nd−1) → Flag(n1, . . . , nd−1; nd) → Gr(nd−1, n),

and so on, ending in the well-known characterization of the Stiefel manifold as a
principal bundle over the Grassmannian

O(k) → V(k, n) → Gr(k, n).

In the next two sections, we will see how the flag manifold may be equipped
with extrinsic matrix coordinates and be represented as either homogeneous spaces
of matrices (Sect. 4) or manifolds of matrices (Sect. 5) that in turn give closed-form
analytic expressions for various differential geometric objects and operations needed
for optimization algorithms.
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4 Flagmanifolds as matrix homogeneous spaces

We will discuss three representations of the flag manifold as matrix homogeneous
spaces, i.e., where a flag is represented as an equivalence class of matrices:

Flag(n1, . . . , nd ; n) ∼= O(n)/
(
O(n1) × O(n2 − n1)

× · · · × O(nd − nd−1) × O(n − nd)
)
, (8)

Flag(n1, . . . , nd ; n) ∼= V(nd , n)/
(
O(n1) × O(n2 − n1) × · · · × O(nd − nd−1)

)
,

(9)

Flag(n1, . . . , nd ; n) ∼= SO(n)/S
(
O(n1) × O(n2 − n1)

× · · · × O(nd − nd−1) × O(n − nd)
)
. (10)

The characterization (8) is standard [13,36] and generalizes the well-known charac-
terization of the Grassmannian as Gr(k, n) ∼= O(n)/

(
O(k) × O(n − k)

)
whereas the

characterization (9) generalizes anotherwell-known characterization of theGrassman-
nian as Gr(k, n) ∼= V(k, n)/O(k). In the last characterization (10), SO(n) = {Q ∈
O(n) : det(Q) = 1} is the special orthogonal group and S

(
O(n1) × O(n2 − n1) ×

· · · ×O(nd − nd−1) ×O(n − nd)
)
, formally defined in Proposition 4, is the group of

unit-determinant block diagonal matrices with orthogonal blocks.
Nevertheless, we will soon see that it is desirable to describe Flag(n1, . . . , nd ; n) as

a homogeneous space G/H where G is a connected Lie group—note that O(n) is not
connected whereas V(nd , n) is not a group, so (8) and (9) do not meet this criterion.
With this in mind, we state and prove (10) formally.

Proposition 4 Let 0 < n1 < · · · < nd < n be d positive integers. The flag manifold
Flag(n1, . . . , nd ; n) is diffeomorphic to the homogeneous space

SO(n)/S
(
O(n1) × O(n2 − n1) × · · · × O(nd − nd−1) × O(n − nd)

)

where S
(
O(n1) × O(n2 − n1) × · · · × O(nd − nd−1) × O(n − nd)

)
is the subgroup

of unit-determinant block diagonal matrices with orthogonal blocks, i.e.,

⎡
⎣

Q1 0 ··· 0
0 Q2 ··· 0
...

...
. . .

...
0 0 ··· Qd+1

⎤
⎦ ∈ O(n), Qi ∈ O(ni − ni−1), i = 1, . . . , d + 1,

d+1∏
i=1

det(Qi ) = 1.

Proof Westartwith the characterization (8), i.e., in this proofwe assume ‘=’ in place of
‘∼=’ in (8).We claim that the required diffeomorphism τ is given as in the commutative
diagram below:

SO(n) O(n)

SO(n)/S
(
O(n1) × O(n2 − n1) × · · · × O(n − nd)

)
Flag(n1, . . . , nd ; n)

j

π ′ π

τ
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Here j is the inclusion of SO(n) in O(n), π and π ′ the respective quotient maps, and
τ the induced map. Since

SO(n) ∩ (O(n1) × O(n2 − n1) × · · · × O(n − nd)
)

= S
(
O(n1) × O(n2 − n1) × · · · × O(n − nd)

)
,

τ is injective. To show that it is surjective, let {Vi }di=1 ∈ Flag(n1, . . . , nd ; n) be a flag
represented by some A ∈ O(n), i.e., π(A) = {Vi }di=1. If det(A) = 1, then we already
have τ(π ′(A)) = {Vi }di=1 by commutativity of the diagram. If det(A) = −1, take any
A1 ∈ O(n1) with det(A1) = −1, set

B = A

⎡
⎢⎣

A1 0 · · · 0
0 In2−n1 · · · 0
...

...
. . .

...
0 0 · · · In−nd

⎤
⎥⎦ ∈ SO(n),

and observe that τ(π ′(B)) = π(B) = π(A). ��

4.1 Orthogonal coordinates for the flagmanifold

An immediate consequence of Proposition 4 is that the flag manifold is connected.
The characterization (10) says that a point on Flag(n1, . . . , nd ; n) may be represented
by the equivalence class of matrices

�Q� =
⎧
⎨
⎩Q

⎡
⎣

Q1 0 ··· 0
0 Q2 ··· 0
.
.
.

.

.

.
. . .

.

.

.
0 0 ··· Qd+1

⎤
⎦ : Qi ∈ O(ni − ni−1), i = 1, . . . , d + 1,

d+1∏
i=1

det Qi = 1

⎫
⎬
⎭ (11)

for some Q ∈ SO(n). We will call such a representation orthogonal coordinates for
the flag manifold.

The Lie algebra of S
(
O(n1) ×O(n2 − n1) × · · · ×O(n − nd)

)
is simply so(n1) ×

so(n2 − n1) × · · · × so(n − nd), which we will regard as a Lie subalgebra of block
diagonal matrices,

h =
⎧⎨
⎩

⎡
⎣

A1 0 ··· 0
0 A2 ··· 0
...

...
. . .

...
0 0 ··· Ad+1

⎤
⎦ ∈ so(n) : A1 ∈ so(n1), A2 ∈ so(n2 − n1), . . .

. . . , Ad+1 ∈ so(n − nd)

⎫⎬
⎭ . (12)

Let m be the natural complement of h in so(n),

m =

⎧⎪⎨
⎪⎩

⎡
⎢⎣

0 B1,2 ··· B1,d+1

−BT
1,2 0 ··· B2,d+1
...

...
. . .

...
−BT

1,d+1 −BT
2,d+1 ··· 0

⎤
⎥⎦ ∈ so(n) : Bi j ∈ R

(ni−ni−1)×(n j−n j−1),

1 ≤ i < j ≤ d + 1

⎫⎪⎬
⎪⎭

.

(13)

In particular, we have the direct sum decomposition so(n) = h⊕m as vector spaces.
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The groups O(n) and O(n1) × O(n2 − n1) × · · · × O(n − nd) have the same Lie
algebras as SO(n) and S

(
O(n1) ×O(n2 − n1) × · · · ×O(n − nd)

)
, namely, so(n) and

so(n1)× so(n2 − n1)×· · ·× so(n− nd) respectively. If e ∈ G is the identity element
ofG, then the tangent space of a homogeneous spaceG/H at any point is a translation
of the tangent space at �e� ∈ G/H , which depends only on the Lie algebras g and h
of G and H respectively, as

T�e�G/H � g/h,

a fact that we will use in the proof of Proposition 6.
As such we do not need to distinguish the two homogeneous space structures (8)

and (10) when we discuss geometric quantities associated with tangent spaces, e.g.,
geodesic, gradient, Hessian, parallel transport. In the sequel we will make free use of
this flexibility in switching between (8) and (10).

Proposition 5 Let h and m be as in (12) and (13) and H = O(n1) × O(n2 − n1) ×
· · ·×O(n−nd). Then the subspacem isAdH -invariant, i.e.,Ad(a)(X) ∈ m for every
a ∈ H and X ∈ m.

Proof We need to show that Ad(a)(X) ∈ m whenever a ∈ H and X ∈ m. For
notational simplicity, we assume d = 2. Let

a =
[

A1 0 0
0 A2 0
0 0 A3

]
and X =

[
0 B1,2 B1,3

−BT
1,2 0 B2,3

−BT
1,3 −BT

2,3 0

]
,

where Ai ∈ O(ni −ni−1), i = 1, 2, 3, and Bi j ∈ R
(ni−ni−1)×(n j−n j−1), 1 ≤ i < j ≤ 3.

Then Ad(a)(X) = aXa−1 = aXaT since a is an orthogonal matrix; and we have

aXaT =
[

A1 0 0
0 A2 0
0 0 A3

][ 0 B1,2 B1,3
−BT

1,2 0 B2,3

−BT
1,3 −BT

2,3 0

][
AT
1 0 0

0 AT
2 0

0 0 AT
3

]

=
[

0 A1B1,2AT
2 A1B1,3AT

3
−A2BT

1,2A
T
1 0 A2B2,3AT

3

−A3BT
1,3A

T
1 −A3BT

2,3A
T
2 0

]
∈ m

as required. ��

Wenow have all the ingredients necessary for deriving closed-form analytic expres-
sions for the tangent space, metric, geodesic, geodesic distance, and parallel transport
on a flag manifold in orthogonal coordinates. We begin with the representation of a
tangent space as a vector space of matrices.

Proposition 6 (Tangent space I) Let �Q� ∈ Flag(n1, . . . , nd ; n) = O(n)/
(
O(n1) ×

O(n2 − n1) × · · · × O(nd − nd−1) × O(n − nd)
)
be represented by Q ∈ O(n). Its
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tangent space at �Q� is given by

T�Q� Flag(n1, . . . , nd ; n) = {QB ∈ R
n×n : B ∈ m}

=

⎧⎪⎪⎨
⎪⎪⎩
Q

⎡
⎢⎢⎣

0 B1,2 ··· B1,d+1

−BT
1,2 0 ··· B2,d+1
...

...
. . .

...

−BT
1,d+1 −BT

2,d+1 ··· 0

⎤
⎥⎥⎦ ∈ R

n×n : Bi, j ∈ R
(ni−ni−1)×(n j−n j−1),

1 ≤ i < j ≤ d + 1

⎫⎪⎪⎬
⎪⎪⎭

.

In particular, the dimension of a flag manifold is given by

dim Flag(n1, . . . , nd ; n) =
d∑

i=1

(ni − ni−1)(n − ni ).

Proof Let M = Flag(n1, . . . , nd ; n). For Q = I , the identity matrix, this follow
from T�I�M � g/h � m. For Q arbitrary, the left translation LQ : M → M is a
diffeomorphism, which means that (dLQ)�I� : T�I�M → T�Q�M is an isomorphism.
The result then follows from (dLQ)�I�(X) = QX for all X ∈ T�I�M . ��

There are several ways to equip Flag(n1, . . . , nd ; n) with a Riemannian metric but
there is a distinguished choice that is given by a negative multiple of the Killing form
of so(n), although we will not need to introduce this concept.

Proposition 7 (Riemannian metric I) The metric g on Flag(n1, . . . , nd ; n) defined by

g�Q�(X ,Y ) = 1

2
tr(X TY ) (14)

for all X ,Y ∈ T�Q� Flag(n1, . . . , nd ; n) is an SO(n)-invariant metric. If we write

X = Q

⎡
⎢⎣

0 B1,2 ··· B1,d+1

−BT
1,2 0 ··· B2,d+1
...

...
. . .

...
−BT

1,d+1 −BT
2,d+1 ... 0

⎤
⎥⎦, Y = Q

⎡
⎢⎣

0 C1,2 ··· C1,d+1

−CT
1,2 0 ··· C2,d+1
...

...
. . .

...
−CT

1,d+1 −CT
2,d+1 ··· 0

⎤
⎥⎦ ∈ R

n×n,

where Bi j ,Ci j ∈ R
(ni−ni−1)×(n j−n j−1), 1 ≤ i < j ≤ d, then g may be expressed as

g�Q�(X ,Y ) =
∑

1≤i< j≤d+1

tr(BT
i jCi j ). (15)

Proof We will first need to establish an AdSO(n)-invariant inner product on so(n). It
is a standard fact [41] that bi-invariant metrics on a Lie group G are in one-to-one
correspondence with AdG-invariant inner products on its Lie algebra g. In our case,
G = SO(n), g = so(n), andAdSO(n) : SO(n) → GL(so(n)). Since SO(n) is compact,
by Proposition 2 it has a bi-invariantmetric, which corresponds to anAdSO(n)-invariant
inner product on so(n).
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When n �= 2, 4, so(n) is a simple Lie algebra and so the AdSO(n)-invariant inner
product is unique up to a scalar multiple. When n = 2, SO(2) is one-dimensional
and thus abelian, so the bi-invariant metric on SO(2) is unique up to a scalar. When
n = 4, SO(4) � SO(3) × SO(3) as Lie groups, so it has a two-dimensional family
of bi-invariant metrics. For all values of n, we may take our AdSO(n)-invariant inner
product (the choice is unique for all n �= 4) as

〈X ,Y 〉 := 1

2
tr(X TY ) (16)

for all X ,Y ∈ so(n).
Let G = SO(n) and H = S

(
O(n1) ×O(n2 − n1) × · · · ×O(n − nd)

)
. We will use

the characterization of a flagmanifold in (10), i.e., Flag(n1, . . . , nd ; n) = G/H . Since
m is a subspace of so(n), the restriction of 〈·, ·〉 in (16) to m, denoted by 〈·, ·〉m, is an
inner product on m. It is easy to verify that 〈·, ·〉m is AdH -invariant. Taken together
with Propositions 1, 2, and 5, we have that 〈·, ·〉m uniquely determines a G-invariant
metric g on G/H , as required. ��

Unsurprisingly the metric g in Proposition 7 coincides with the canonical metric on
Grassmannian (d = 1) introduced in [20]. It also follows fromTheorem2 that,with this
metric g, Flag(n1, . . . , nd ; n) is not merely a Riemannianmanifold but also a geodesic
orbit space. In fact, g is the only choice of a metric that makes Flag(n1, . . . , nd ; n) into
a geodesic orbit space [5].Wewill next derive explicit analytic expressions for geodesic
(Propositions 8 and 9), arclength (Corollary 1), geodesic distance (Proposition 10),
and parallel transport (Proposition 11).

Proposition 8 (Geodesic I) Let �Q� ∈ Flag(n1, . . . , nd ; n) = O(n)/
(
O(n1) × · · · ×

O(n−nd)
)
and g be the metric in (15). Every geodesic on Flag(n1, . . . , nd ; n) passing

through �Q� takes the form

�Q(t)� =
⎧⎨
⎩Q exp(t B)

⎡
⎣

Q1 0 ··· 0
0 Q2 ··· 0
...

...
. . .

...
0 0 ··· Qd+1

⎤
⎦ ∈ O(n) : Qi ∈ O(ni − ni−1), i = 1, . . . , d + 1

⎫⎬
⎭ ,

for some direction

B =
⎡
⎢⎣

0 B1,2 ··· B1,d+1

−BT
1,2 0 ··· B2,d+1
...

...
. . .

...
−BT

1,d+1 −BT
2,d+1 ··· 0

⎤
⎥⎦ ∈ R

n×n,
Bi j ∈ R

(ni−ni−1)×(n j−n j−1),

1 ≤ i < j ≤ d + 1
. (17)

Proof Since Flag(n1, . . . , nd ; n) with the metric g in Proposition 7 is a geodesic orbit
space, the result follows immediately from Theorem 3. ��
Corollary 1 (Arclength I) The arclength of a geodesic γ (t) = �Q(t)� passing through
Q in the direction B is given by

‖γ (t)‖ = t
[∑

1≤i< j≤d+1
tr(BT

i j Bi j )
]1/2 = t

√
tr(BTB)

2
,
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where B is as in (17).

Proof This follows from the definition of arclength

‖γ (t)‖ :=
∫ t

0

√
g�Q�(γ

′(x), γ ′(x)) dx

and the expressions for g in (14) and (15). ��
Proposition 9 (Geodesic II)Letγ beageodesic inFlag(n1, . . . , nd ; n) = O(n)/

(
O(n1)

× · · · × O(n − nd)
)
with γ (0) = �Q� for some Q ∈ O(n) and γ ′(0) = H ∈

T�Q� Flag(n1, . . . , nd ; n). Let QTH = V DV T with V ∈ O(n) and

D = diag

([
0 −λ1
λ1 0

]
, . . . ,

[
0 −λr
λr 0

]
, 0n−2r

)
∈ so(n), (18)

where 2r = rank(QTH) and λ1, . . . , λr are positive real numbers. Then γ (t) =
�UΣ(t)V T� where U = QV ∈ O(n) and

Σ(t) = diag

([
cos tλ1 − sin tλ1
sin tλ1 cos tλ1

]
, . . . ,

[
cos tλr − sin tλr
sin tλr cos tλr

]
, In−2r

)
∈ O(n). (19)

Proof By Proposition 8, the geodesic γ takes the form γ (t) = �Q exp(t B)� for some
B ∈ so(n) and Q ∈ O(n) representing γ (0). Hence we have H = γ ′(0) = QB and
QTH = B. Since B is a skew-symmetric and thus a normal matrix, by the spectral
theorem [7, Theorem 7.25], B = V DV T for some V ∈ O(n) and D of the form in
(18), with 2r = rank(B) = rank(QTH) and λ1, . . . , λr are positive reals as they are
singular values of B. Therefore,

Q exp(t B) = UΣ(t)V T,

where U = QV and Σ(t) is as in (19). ��
Proposition 10 (Geodesic distance) The geodesic distance with respect to the metric
g between �P�, �Q� ∈ Flag(n1, . . . , nd ; n) = O(n)/

(
O(n1) × · · · × O(n − nd)

)
is

d(�P�, �Q�) =
√∑r

i=1
λ2i , (20)

where λ1, . . . , λr are positive real numbers such that PTQ = VΣV T with V ∈ O(n)

and

Σ = diag

([
cos λ1 − sin λ1
sin λ1 cos λ1

]
, . . . ,

[
cos λr − sin λr
sin λr cos λr

]
, 0n−2r

)
.
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Proof By Proposition 3(iii), wemay regard Flag(n1, . . . , nd ; n) as a closed, and there-
fore compact, submanifold of Gr(n1, n) × · · · × Gr(nd , n). By Theorem 4, there is
a distance minimizing geodesic �P exp(t B)� connecting �P� and �Q�. By Corol-
lary 1, we get (20) with λ1, λ1, . . . , λr , λr the nonzero singular values of B. Lastly,
by Proposition 9, we get the decomposition PTQ = VΣV T for some V ∈ O(n). ��

Let m be as in (13). For B ∈ m, we define a map

ϕB : m → m, X 
→ 1

2
[B, X ]m := 1

2
projm([B, X ]), (21)

where projm : so(n) → m is the projection from so(n) = h ⊕ m to m. For example,
if d = 2 and

B =
⎡
⎣

0 B12 B13
−BT

12 0 B23
−BT

13 −BT
23 0

⎤
⎦ ∈ m, X =

⎡
⎣

0 X12 X13
−X T

12 0 X23
−X T

13 −X T
23 0

⎤
⎦ ∈ m,

where Bi j , Xi j ∈ R
(ni−ni−1)×(n j−n j−1), 1 ≤ i < j ≤ 3, then

ϕB(X) =
⎡
⎣

0 −B12X T
23 + X12BT

23 B11X23 − X11B23
X23BT

12 − B23X T
12 0 −B11X T

12 + X11BT
12−X T

23B
T
11 + BT

23X
T
11 X12BT

11 − B12X T
11 0

⎤
⎦ ∈ m.

Proposition 11 (Parallel transport I) Let B, X ∈ T�I� Flag(n1, . . . , nd ; n) ∼= m and
�Q� ∈ Flag(n1, . . . , nd ; n). The parallel transport of QX ∈ T�Q� Flag(n1, . . . , nd ; n)

along the geodesic �Q exp(t B)� is

X(t) = Q exp(t B)e−ϕt B (X), (22)

where e−ϕB : m → m, for ϕB as in (21), is defined by

e−ϕB =
∞∑
k=0

(−1)k

k! ϕk
B . (23)

Proof This follows from applying [47, Lemma 3.1] to Flag(n1, . . . , nd ; n). ��
For the d = 1 case, i.e., Flag(k; n) = Gr(k, n), it is straightforward to verify that

[B, X ]m = 0 for all B, X ∈ m. So the expression for parallel transport in (22) reduces
to X(t) = Q exp(t B)X , which is the well-known expression for parallel transport on
the Grassmannian [20].

4.2 Stiefel coordinates for the flagmanifold

We next discuss the characterization of a flagmanifold as a quotient of the Stiefel man-
ifold (9) and discuss its consequences. This characterization will give our coordinates
of choice for use in our optimization algorithms (see Sect. 6).
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Proposition 12 Let 0 < n1 < · · · < nd < n be d positive integers. The flag manifold
Flag(n1, . . . , nd ; n) is diffeomorphic to the homogeneous space

V(nd , n)/
(
O(n1) × O(n2 − n1) × · · · × O(nd − nd−1)

)
(24)

where V(nd , n) is the Stiefel manifold of orthonormal nd-frames in R
n as described

in Sect. 3.

Proof This follows from the standard characterization of V(nd , n) is a homogeneous
space of O(n), V(nd , n) ∼= O(n)/O(n − nd), together with (8). ��
For the rest of this article, we will regard the Stiefel manifold V(k, n) as the set
of all n × k matrices whose column vectors are orthonormal. With this identification,
Proposition 12 allows us to represent a flag {Vi }di=1 ∈ Flag(n1, . . . , nd ; n) by a matrix
Y = [y1, . . . , ynd ] ∈ R

n×nd with orthonormal y1, . . . , ynd ∈ R
n and where the first

ni of them span the subspace Vi , i = 1, . . . , d. This representation is not unique but
if Y ′ ∈ R

n×nd is another such matrix, then

Y ′ = Y

⎡
⎣

Q1 0 ··· 0
0 Q2 ··· 0
...

...
. . .

...
0 0 ··· Qd

⎤
⎦, Qi ∈ O(ni − ni−1), i = 1, . . . , d. (25)

Hence {Vi }di=1 ∈ Flag(n1, . . . , nd ; n) may be represented by the equivalence class of
matrices

�Y � =
⎧
⎨
⎩Y

⎡
⎣

Q1 0 ··· 0
0 Q2 ··· 0
...

...
. . .

...
0 0 ··· Qd

⎤
⎦ ∈ R

n×nd : Y ∈ V(nd , n), span{y1, . . . , yni } = Vi ,

Qi ∈ O(ni − ni−1), i = 1, . . . , d

⎫
⎬
⎭ .

(26)
We will call such a representation Stiefel coordinates for the flag manifold.

In the following, for any k < n, we write

In,k :=
[
Ik
0

]
∈ R

n×k,

i.e., the n × k matrix comprising the first k columns of the n × n identity matrix In .
Thus for any A = [a1, . . . , an] ∈ R

n×n , AIn,k = [a1, . . . , ak] ∈ R
n×k gives us the

first k columns of A.
For a flag {Vi }di=1, it is easy to convert between its orthogonal coordinates, i.e., �Q�

in (11) with Q ∈ O(n), and its Stiefel coordinates, i.e., �Y � in (26) with Y ∈ V(nd , n).
Given Q ∈ O(n), one just takes its first nd columns to get Y = QIn,nd ; note that
QIn,ni is automatically an orthonormal basis for the subspaceVi , i = 1, . . . , d. Given
Y ∈ V(nd , n), take any orthonormal basis Y⊥ ∈ V(n − nd , n) of the orthogonal
complement of im(Y ) to get Q = [Y ,Y⊥] ∈ O(n).

We now derive expressions for tangent space, metric, arclength, geodesic, and
parallel transport in Stiefel coordinates.
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Proposition 13 (Tangent space II)Let �Y � ∈ Flag(n1, . . . , nd ; n) = V(nd , n)/
(
O(n1)×

O(n2 − n1)×· · ·×O(nd − nd−1)
)
be represented by Y ∈ V(nd , n). Its tangent space

at �Y � is given by

T�Y � Flag(n1, . . . , nd ; n) = {[Y ,Y⊥]BIn,nd ∈ R
n×nd : B ∈ m},

where Y⊥ ∈ V(n − nd , n) is such that [Y ,Y⊥] ∈ O(n) and m is as in (13).

Proof The proof essentially follows from differentiating a curve τ(t) in Flag(n1, . . . ,
nd; n) with τ(0) = �Y � and noting that the tangent vector τ ′(0) is perpendicular to h
in (12), whose orthogonal complement is precisely m. ��
The description of T�Y � Flag(n1, . . . , nd ; n) in Proposition 13 is a parametric one (like
the description of the unit circle as {(cos θ, sin θ) : θ ∈ [0, 2π)}). We may also derive
an implicit description of T�Y � Flag(n1, . . . , nd ; n) (like the description of the unit

circle as {(x, y) : x2 + y2 = 1}).
Corollary 2 (Tangent space III) Let �Y � ∈ Flag(n1, . . . , nd ; n) = V(nd , n)/

(
O(n1) ×

O(n2−n1)×· · ·×O(nd −nd−1)
)
be represented by Y ∈ V(nd , n). Let Y be partition

as

Y = [Y1, . . . ,Yd ], Yi ∈ V(ni − ni−1, n), i = 1, . . . , d.

Then its tangent space at �Y � is given by

T�Y � Flag(n1, . . . , nd ; n) = {[X1, . . . , Xd ] ∈ R
n×nd : Xi ∈ R

n×(ni−ni−1),

Y T
i X j + X T

i Y j = 0, Y T
i Xi = 0, 1 ≤ i, j ≤ d}. (27)

Equivalently, the matrix [X1, . . . , Xd ] can be expressed as

[X1, · · · , Xd ] = [Y1, · · · ,Yd ,Y
⊥]

⎡
⎢⎢⎢⎣

0 B1,2 ··· B1,d
−BT

1,2 0 ··· B2,d
...

...
. . .

...
−BT

1,d −BT
2,d ··· 0

−BT
1,d+1 −BT

2,d+1 ··· −BT
d,d+1

⎤
⎥⎥⎥⎦,

where Y⊥ ∈ V(n−nd , n) is such that [Y ,Y⊥] ∈ O(n) and Bi j ∈ R
(ni−ni−1)×(n j−n j−1),

1 ≤ i < j ≤ d + 1.

Proof The calculation is straightforward and details may be found in [38]. Since
[Y1, . . . ,Yd ] ∈ V(nd , n) and Yi ∈ V(ni − ni−1, n), the Yi ’s are characterized by

Y T
i Yi = Ini−ni−1 , Y T

i Y j = 0, i �= j = 1, . . . , d. (28)

Differentiating (28) gives us the first relation in (27). On the other hand, by Propo-
sition 13 we notice that a tangent vector in T�Y � Flag(n1, . . . , nd ; n) is written as

[Y ,Y⊥]BIn,nd for some B ∈ m, from which we may easily verify the second relation
in (27). ��
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The implicit characterization of tangent vectors in (27), which also appears in [38], is
of course mathematically equivalent to the explicit characterizations in Propositions 6
and 13. Nevertheless, for the purpose of practical computations we require explicit
expressions and consequently we do not use (27) anywhere in our algorithms.

Comparing Propositions 6 and 13, for a tangent vector QB ∈ T�Q� Flag(n1, . . . ,
nd; n) in orthogonal coordinates Q ∈ O(n), its corresponding tangent vector in
Stiefel coordinates Y = QIn,nd ∈ V(nd , n) is simply given by QBIn,nd ∈
T�Y � Flag(n1, . . . , nd ; n). Conversely, [Y ,Y⊥]BIn,nd ∈ T�Y � Flag(n1, . . . , nd ; n) in
Stiefel coordinates corresponds to QB ∈ T�Q� Flag(n1, . . . , nd ; n) in orthogonal coor-

dinates where Q = [Y ,Y⊥]. Note that from the matrix BIn,nd , i.e., just the first nd
columns of B ∈ m, the full matrix B can be easily and uniquely recovered by its skew
symmetry.

The straightforward translation between orthogonal and Stiefel coordinate repre-
sentations of points and tangent vectors on a flag manifold allows us to immediately
deduce analogues of Propositions 7, 8, 11, and Corollary 1.

Proposition 14 (Riemannianmetric II)Themetric g at a point �Y � ∈ Flag(n1, . . . , nd ;
n) = V(nd , n)/

(
O(n1) × O(n2 − n1) × · · · × O(nd − nd−1)

)
is given by

g�Y �(W , Z) =
∑

1≤i< j≤d+1

tr(BT
i jCi j ), (29)

where W , Z ∈ T�Y � Flag(n1, . . . , nd ; n) are

W = [Y ,Y⊥]

⎡
⎢⎢⎢⎣

0 B1,2 ··· B1,d
−BT

1,2 0 ··· B2,d
...

...
. . .

...
−BT

1,d −BT
2,d ··· 0

−BT
1,d+1 −BT

2,d+1 ··· −BT
d,d+1

⎤
⎥⎥⎥⎦,

Z = [Y ,Y⊥]

⎡
⎢⎢⎢⎣

0 C1,2 ··· C1,d

−CT
1,2 0 ··· C2,d
...

...
. . .

...
−CT

1,d −CT
2,d ··· 0

−CT
1,d+1 −CT

2,d+1 ··· −CT
d,d+1

⎤
⎥⎥⎥⎦ ∈ R

n×nd .

Proposition 15 (Arclength II, Geodesics III) Let �Y � ∈ Flag(n1, . . . , nd ; n) =
V(nd , n)/

(
O(n1) × O(n2 − n1) × · · · × O(nd − nd−1)

)
and g be the metric in (29).

Every geodesic γ on Flag(n1, . . . , nd ; n) passing through �Y � takes the form

γ (t) = �Y (t)� =

⎧
⎪⎨
⎪⎩

[Y , Y⊥] exp(t B)

⎡
⎢⎣

Q1 0 ··· 0
0 Q2 ··· 0
.
.
.

.

.

.
. . .

.

.

.
0 0 ··· Qd
0 0 ··· 0

⎤
⎥⎦ ∈ V(nd , n) : Qi ∈ O(ni − ni−1),

i = 1, . . . , d

⎫
⎪⎬
⎪⎭

,

where [Y ,Y⊥] ∈ O(n) and B ∈ m. In particular, the arclength of γ (t) is

‖γ (t)‖ = t
[∑

1≤i< j≤d+1
tr(BT

i j Bi j )
]1/2

.
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Proposition 16 (Parallel transport II) Let �Y � ∈ Flag(n1, . . . , nd ; n) and

[Y ,Y⊥]BIn,nd , [Y ,Y⊥]X In,nd ∈ T�Y � Flag(n1, . . . , nd ; n).

The parallel transport of [Y ,Y⊥]X In,nd along the geodesic �[Y ,Y⊥] exp(t B)In,nd �
is given by

X(t) = [Y ,Y⊥] exp(t B)e−ϕt B (X)In,nd , (30)

with e−ϕt B defined as in (21) and (23).

While it is also straightforward to obtain analogues of Propositions 9 and 10 in Stiefel
coordinates, we omit them as the expressions are more involved and we will not need
them in the sequel.

5 Flagmanifolds as matrix manifolds

By Proposition 3(iii) and (iv), we see that a flag manifold may be regarded as a
submanifold of a product of Grassmannians. Since a Grassmannian can be represented
as a subset of matrices in R

n×n [37, Example 1.2.20],

Gr(k, n) ∼= {P ∈ R
n×n : P2 = P = PT, tr(P) = k}, (31)

so can a flag manifold; and we will discuss two different ways do this, corresponding
to (iii) and (iv) in Proposition 3:

Flag(n1, . . . , nd ; n) ⊆ Gr(n1, n) × Gr(n2, n) × · · · × Gr(nd , n),

Flag(n1, . . . , nd ; n) ⊆ Gr(n1, n) × Gr(n2 − n1, n) × · · · × Gr(nd − nd−1, n).

The correspondence in (31) is given by a map that takes a k-dimensional subspace
W ∈ Gr(k, n) to its orthogonal projector,

ε : Gr(k, n) → R
n×n, W 
→ WW T, (32)

whereW ∈ R
n×k is any orthonormal basis of W. Note that ifW ′ is another such n×k

matrix, then W ′ = WQ for some Q ∈ O(k) and so W ′W ′T = WW T and the map ε is
well-defined. It is also injective and its image is precisely the set on the right of (31).

5.1 Projection coordinates for the flagmanifold

We will construct our first analogue of (32) for the flag manifold. Let

ε : Flag(n1, . . . , nd ; n) → R
nd×nd , {Vi }di=1 
→ diag(V1V

T
1 , . . . , VdV

T
d ), (33)

where Vi ∈ R
n×ni is an orthonormal basis of Vi , i = 1, . . . , d, and the image is a

block-diagonal matrix in R
nd×nd with d blocks V1V T

1 , . . . , VdV T
d ∈ R

n×n . In fact, the
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map in (33) is essentially the map in (6) that we used to establish Proposition 3(iii)
except that we identify the Grassmannians with sets of projection matrices as in (31).

Proposition 17 The flag manifold Flag(n1, . . . , nd ; n) is diffeomorphic to

{P=diag(P1, . . . , Pd) ∈ R
nd×nd : P2

i = Pi = PT
i , tr(Pi )=ni , Pj Pi = Pi , i < j}.

(34)

Proof One may check that ε in (33) has its image contained in the set (34); and the
map that takes P = diag(P1, . . . , Pd) to the flag {im(Pi )}di=1 ∈ Flag(n1, . . . , nd ; n)

is its inverse. ��
We will call the representation in Proposition 17 projection coordinates for the flag
manifold. Unlike the orthogonal and Stiefel coordinates introduced earlier, which are
not unique, projection coordinates are unique. Let {Vi }di=1 ∈ Flag(n1, . . . , nd ; n)with

(a) orthogonal coordinates �Q� for some Q ∈ O(n);
(b) Stiefel coordinates �Y � for some Y ∈ V(nd , n);
(c) projection coordinates P as in (34).

We have seen how we may easily convert between orthogonal and Stiefel coordinates
after (26), we now see how they may be interchanged with projection coordinates just
as easily:

(a)→(c): Given Q = [q1, . . . , qn] ∈ O(n), let Qi = [q1, . . . , qni ] ∈ V(ni , n);
then Pi = Qi QT

i , i = 1, . . . , d.
(b)→(c): Given Y = [y1, . . . , ynd ] ∈ V(nd , n), let Yi = [y1, . . . , yni ] ∈ V(ni , n);
then Pi = YiY T

i , i = 1, . . . , d.
(c)→(b): Given P = diag(P1, . . . , Pd), let y1, . . . , yni be an orthonormal basis
of im(Pi ); then Yi = [y1, . . . , yni ] ∈ V(ni , n), i = 1, . . . , d.
(c)→(a): As above but appending an orthonormal basis ynd+1, . . . , yn of im(Pd)⊥
gives us Q = [y1, . . . , ynd , ynd+1, . . . , yn] ∈ O(n).

As is the case for the Grassmannian, the flag manifold has several extrinsic
coordinates systems with which differential geometric objects and operations have
closed-form analytic expressions and where one coordinate representation can be
transformed to another with relative ease. This flexibility to switch between coordi-
nate systems can be exploited in computations but as we will see next, it can also be
exploited in deriving the requisite analytic expressions.

Proposition 18 (Tangent spaces IV)Let P = diag(P1, . . . , Pd) ∈ Flag(n1, . . . , nd ; n)

as represented in (34). Then the tangent space is given by

TP Flag(n1, . . . , nd ; n) = {Z = diag(Z1, . . . , Zd ) ∈ R
nd×nd : Zi Pi + Pi Zi = Zi = Z T

i ,

tr(Zi ) = 0, Z j Pi + Pj Zi = Zi , i < j, i, j = 1, . . . , d.} (35)

Proof Let γ (t) be a curve in Flag(n1, . . . , nd ; n) as characterized by (34), i.e., γ :
(−1, 1) → R

nd×nd , t 
→ diag
(
P1(t), . . . , Pd(t)

)
where

Pi (t)
2 = Pi (t), Pi (t)

T = Pi (t), tr(Pi (t)) = ni , Pj (t)Pi (t)

= Pi (t), i < j, i, j = 1, . . . , d, (36)
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for all t ∈ (−1, 1). Taking derivatives of these relations at t = 0 gives the required
description. ��

Again the ease of translation from orthogonal and Stiefel coordinates to projec-
tion coordinates yields counterparts of Proposition 7–11 readily. We will just provide
expressions for geodesic and parallel transport as examples.

Proposition 19 (Geodesics IV) Let P = diag(P1, . . . , Pd) ∈ Flag(n1, . . . , nd ; n) be
as represented in (34) and Z = diag(Z1, . . . , Zd) ∈ TP Flag(n1, . . . , nd ; n) be as
represented in (35). Then there exist Y ∈ V(nd , n) and skew-symmetric B ∈ R

n×n

such that for Yi = Y In,ni , Bi = BIn,ni ∈ R
n×ni ,

Pi = YiY
T
i , Zi = Yi B

T
i + BiY

T
i , i = 1, . . . , d; (37)

and a geodesic P(t) passing through P in the direction Z takes the form

{diag(P1(t), . . . , Pd (t)
) ∈ R

nd×nd : Pi (t) = Yi (t)Yi (t)
T, Yi (t) = [Y , Y⊥] exp(t B)In,ni }.

(38)

Proof Thematrix Y is just P in Stiefel coordinates andmay be obtained from (c)→(b)
above. By Proposition 15, in Stiefel coordinates, the geodesic through �Y � in direction
[Y ,Y⊥]BIn,nd is

�[Y ,Y⊥] exp(t B)In,nd �.

By (b)→(c), Y and P are related by Pi = YiY T
i , i = 1, . . . , d, which upon differenti-

ation gives Zi = Yi BT
i + BiY T

i . The required expression (38) then follows. ��
The observant readermight have noticed that Bd+1 does not appear in (37)—the reason
is that since B is skew-symmetric, Bd+1 is uniquely determined by B1, . . . , Bd .

Proposition 20 (Parallel transport III)Let P, Z, Y , B, and P(t)be as inProposition 19.
Let Y⊥ ∈ V(n − nd , n) be such that [Y ,Y⊥] ∈ O(n) and set

Yi (t) = [Y , Y⊥] exp(t B)In,ni , Xi (t) = [Y , Y⊥] exp(t B)e−ϕt B (X)In,ni , i = 1, . . . , d. (39)

Then the parallel transport of the tangent vector Z along the geodesic P(t) is given
by

Z(t) = diag
(
Z1(t), . . . , Zd(t)

)
, Zi (t) = Yi (t)Xi (t)

T+Xi (t)Yi (t)
T, i = 1, . . . , d.

(40)

Proof As in the proof of Proposition 19, we obtain the corresponding projection coor-
dinates P = diag(P1, . . . , Pd), Pi = YiY T

i , Yi = Y In,ni , i = 1, . . . , d. Differentiating
these relations give a tangent vector Z = diag(Z1, . . . , Zd) ∈ TP Flag(n1, . . . , nd ; n)

in projection coordinates as

Zi = Yi X
T
i + XiY

T
i , i = 1, . . . , d,
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where X ∈ T�Y � Flag(n1, . . . , nd ; n) is the expression of the same tangent vector in
Stiefel coordinates as in Proposition 13 and Xi = X In,ni , i = 1, . . . , d. The required
expressions (39) and (40) then follow from the expression (30) for parallel transport
in terms of Stiefel coordinates Y . ��

5.2 Reduced projection coordinates for the flagmanifold

We discuss a variation of projection coordinates on flag manifolds based on Propo-
sition 3(iv). As in Sect. 5.1, if we identify the Grassmannians as sets of projection
matrices as in (31), then the map in (7) becomes

ε′ : Flag(n1, . . . , nd ; n) → R
nd×nd , {Vi }di=1 
→ diag(W1W

T
1 , . . . ,WdW

T
d), (41)

where column vectors of Wi ∈ R
n×(ni−ni−1) form an orthonormal basis of V

⊥
i−1, the

orthogonal complement ofVi−1 inVi , i = 1, . . . , d. This gives us another description
of Flag(n1, . . . , nd ; n) as a matrix manifold, an analogue of Proposition 17.

Proposition 21 The flag manifold Flag(n1, . . . , nd ; n) is diffeomorphic to

{R = diag(R1, . . . , Rd ) ∈ R
nd×nd : R2

i = Ri = RT
i , tr(Ri ) = ni − ni−1, Ri R j = 0, i < j}.

(42)

We call the representation in Proposition 21 reduced projection coordinates on the
flag manifold Flag(n1, . . . , nd ; n). Again, it is straightforward to translate between
the other three coordinates and reduced projection coordinates. This readily yields
expressions for metric, tangent space, geodesic, and parallel transport in reduced pro-
jection coordinates as before. We will state those for tangent space and metric as
examples.

Proposition 22 (Tangent spaces V) Let R = diag(R1, . . . , Rd) ∈ Flag(n1, . . . , nd ; n)

be as represented in (42). Then the tangent space is given by

TR Flag(n1, . . . , nd ; n) = {Z = diag(Z1, . . . , Zd ) ∈ R
nd×nd : Ri Zi + Zi Ri = Zi = Z T

i ,

tr(Zi ) = 0, Zi R j + Ri Z j = 0, 1 ≤ i < j ≤ d}. (43)

Propositions 21 and 22 give an alternative way to obtain the metric g in Proposi-
tion 7. Let gi be the standard metric on Gr(ni − ni−1, n), i = 1, . . . , d. Then it is
straightforward to verify that g is the pull-back of

∑d
i=1 gi via the embedding (7) in

Proposition 3(iv). This also gives us an expression for the metric in terms of reduced
projection coordinates.

Proposition 23 (Riemannian metric III) Let R = diag(R1, . . . , Rd) ∈ Flag(n1, . . . ,
nd; n) be as in (42). Let W = diag(W1, . . . ,Wd), Z = diag(Z1, . . . , Zd) ∈
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TR Flag(n1, . . . , nd ; n) be as in (43). Then there exist Vi , Ai , Bi ∈ R
n×(ni−ni−1),

i = 1, . . . , d, such that

Vi V
T
i = Ri , V T

i Vi = Ini−ni−1 , Vi A
T
i + Ai V

T
i = Wi ,

V T
i Ai = 0, Vi B

T
i + Bi V

T
i = Zi , V T

i Bi = 0, (44)

and the metric g is given by

gR(W , Z) =
d∑

i=1

tr(AT
i Bi ).

Proof As the Grassmannian is just a flag manifold with d = 1, all our earlier dis-
cussions about Stiefel and projection coordinates also apply to it. So for Wi , Zi ∈
TRi Gr(ni − ni−1, n) in projection coordinates, there exist Vi , Ai , Bi ∈ R

n×(ni−ni−1)

satisfying (44). The standard Riemannian metric gi on Gr(ni − ni−1, n) at Ri is then
given by gi (Wi , Zi ) = tr(AT

i Bi ) and thus we have

gR(W , Z) =
d∑

i=1

gi (Wi , Zi ) =
d∑

i=1

tr(AT
i Bi ).

��

6 Riemannian Gradient and Hessian over the flagmanifold

We will derive expressions for the Riemannian gradient and Riemannian Hessian
of a real-valued function on a flag manifold, the main ingredients of optimization
algorithms. Although in principle we may use any of the four extrinsic coordinate
systems introduced in the last two sections—orthogonal (as n×n orthogonalmatrices),
Stiefel (as n × nd orthonormal matrices), projection or reduced projection (as d-
tuples of n × n projection matrices) coordinates—Stiefel coordinates give the most
economical representation and we will use this as our coordinates of choice. So in the
following we will identify

Flag(n1, . . . , nd ; n) = V(nd , n)/
(
O(n1)×O(n2−n1)×· · ·×O(nd −nd−1)

)
. (45)

Our expressions for gradient and Hessian in Stiefel coordinates may of course be con-
verted to other coordinates—straightforward although the results may be notationally
messy.

Proposition 24 (Riemannian gradient) Let f : Flag(n1, . . . , nd ; n) → R be a smooth
function expressed in Stiefel coordinates Y ∈ V(nd , n). Define the n × nd matrix of
partial derivatives,

fY :=
[

∂ f

∂ yi j

]n,nd

i, j=1
. (46)
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Write Y = [Y1, . . . ,Yd ] where Yi ∈ R
n×(ni−ni−1) and fY = [ fY1 , . . . , fYd ] where

fYi is the n × (ni − ni−1) submatrix, i = 1, . . . , d. Then its Riemannian gradient at
�Y � ∈ Flag(n1, . . . , nd ; n) is given by ∇ f (�Y �) = [Δ1, . . . , Δd ] where

Δi = fYi −
(
YiY

T
i fYi +

∑
j �=i

Y j f
T
Y j
Yi
)
, i = 1, . . . , d. (47)

Proof For any X ∈ T�Y � Flag(n1, . . . , nd ; n), let Xa ∈ R
n×n be the unique skew-

symmetric matrix such that X = QXa In,nd , where Q ∈ O(n) is such that Y = QIn,nd .
Since the metric expressed in Stiefel coordinates (29) and expressed in orthogonal
coordinates (14) must be equal,

g�Y �

(∇ f (�Y �), X
) = g�Q�

(∇ f (�Y �)a, Xa
) = 1

2
tr(∇ f (�Y �)Ta Xa). (48)

By definition of Riemannian gradient (5), we also have

g�Y �(∇ f (�Y �), X) = 1

2
tr((QT fY )TXa). (49)

Comparing (48) and (49), we see that ∇ f (�Y �) is the projection of fY onto
T�Y � Flag(n1, . . . , nd ; n), i.e., fY = ∇ f (�Y �) + Z for some Z orthogonal to
T�Y � Flag(n1, . . . , nd ; n). We may take Z = [Z1, . . . , Zd ] to be

Zi := YiY
T
i fYi +

∑
j �=i

Y j f
T
Y j
Yi , i = 1, . . . , d,

and verify that because of (27), we indeed have fY − Z ∈ T�Y � Flag(n1, . . . , nd ; n)

and thus Z is orthogonal to T�Y � Flag(n1, . . . , nd ; n). ��
The Riemannian gradient∇ f may also be derived by solving an optimization problem
as in [38]. Note that if d = 1, (47) becomes ∇ f (�Y �) = Δ = fY − YY T fY , the well-
known expression for Riemannian gradient of Grassmannian in [20].

Proposition 25 (Riemannian Hessian) Let f : Flag(n1, . . . , nd ; n) → R be a smooth
function expressed in Stiefel coordinates Y ∈ V(nd , n) and let fY be as in (46). Then
its Riemannian Hessian ∇2 f (�Y �) at �Y � ∈ Flag(n1, . . . , nd ; n) is the symmetric
bilinear form given by

∇2 f (�Y �)(X , X ′) = fY ,Y (X , X ′)− 1

2

[
tr( f TY QBTQTX ′)+ tr( f TY QCTQTX)

)]
, (50)

for X , X ′ ∈ T�Y � Flag(n1, . . . , nd ; n), where

fY ,Y (X , X ′) :=
n∑

i,k=1

nd∑
j,l=1

∂2 f

∂ yi j∂ ykl
xi j x

′
kl , (51)

123



650 K. Ye et al.

Q ∈ O(n) is such that QIn,nd = Y , and B,C ∈ R
n×n are the unique skew-symmetric

matrices such that X = QBIn,nd , X
′ = QC In,nd respectively.

Proof By Proposition 15, a geodesic γ with γ ′(0) = X and γ (0) = �Y � takes the
form γ (t) = �Q exp(t B)In,nd � where Q ∈ O(n) is such that Y = QIn,nd and X =
QBIn,nd . Applying chain rule,

d

dt
f (γ (t)) = tr

(
f TY γ ′(t)

)
,

d2

dt2
f (γ (t)) = tr

(
γ ′(t)T f Tγ (t),γ (t)γ

′(t)
)+ tr

(
f TY γ ′′(t)

);

followed by evaluating at t = 0 gives

∇2 f (�Y �)(X , X) = d2

dt2
f (γ (t))

∣∣∣
t=0

= fY ,Y (X , X) − tr( f TY QBTQTX).

The required expression (50) then follows from (5) and (4). ��
If d = 1, (50) reduces to the well-known expression for Riemannian Hessian of the
Grassmannian [20, Sect. 2.5.4] since

∇2 f (�Y �)(X , X ′) = fY ,Y (X , X ′) − tr( f TY QBTQTX ′)
= fY ,Y (X , X ′) − tr( f TY Y (X ′)TX) = fY ,Y (X , X ′) − tr(X TX ′Y T fY ).

There is slight inconsistency in our definitions of fY and fYY to make these expres-
sions easily portable into computer codes. To be consistent with (51), we could define
fY as a linear form:

fY (X) =
n,nd∑
i, j=1

∂ f

∂ yi j
xi j

for X ∈ T�Y � Flag(n1, . . . , nd ; n). Alternatively, to be consistent with (46), we could
define fYY to be a hypermatrix of partials (this is not a 4-tensor, just a convenient way
to represent a 2-tensor):

fYY =
[

∂2 f

∂ yi j∂ ykl

]n,nd ,n,nd

i, j,k,l=1
.

7 Optimization algorithms on flagmanifolds

With analytic expressions for points, tangent vectors, metric, geodesics, parallel trans-
ports, Riemannian gradients andHessians in place, Riemannianmanifold optimization
algorithms are straightforward to derive from the usual ones. For example, for steepest
descent, instead of adding the negative of the gradient to the current iterate, we move
the current iterate along the geodesic with initial velocity vector given by the negative
of the gradient. Again, we may do this in any of the four coordinates system we have
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introduced although for the same reason in Sect. 6, we prefer the Stiefel coordinates.
Thus here we will assume the identification (45) as before.

We note that standard local convergence results in nonlinear optimization on
Euclidean space, e.g., those in [40], extend verbatim to Riemannian manifolds [22,
Theorems 4.3–4.7]. The difficulty of optimization on Riemannian manifolds is not in
establishing such convergence results, it is in getting closed-form computable expres-
sions for the various differential geometric operations involved in the optimization
algorithms.

The algorithms discussed below may be customized in many ways. For example,
while we will state Algorithms 1 and 2 with exact line search, any reasonable strategy
for choosing step size can be used in practice.

7.1 Steepest descent over a flagmanifold

We describe this in Algorithm 1. A point �Y � ∈ Flag(n1, . . . , nd ; n) is represented in
Stiefel coordinates, i.e., as a matrix Y ∈ R

n×nd , Y TY = I . As usual, Y⊥ ∈ R
n×(n−nd )

is such that X := [Y ,Y⊥] ∈ O(n). The Riemannian gradient ∇ f ∈ R
n×nd is given

by Proposition 24 and we set G = −∇ f to be the search direction. The exponential
map direction B ∈ R

n×n is uniquely obtained from BIn,nd = [Y ,Y⊥]TG, i.e., B is the
unique skew-symmetric matrix whose first nd columns is [Y ,Y⊥]TG. The next iterate
is then found along the geodesic determined by the current iterate and the direction
as in Proposition 15. Note in particular that Algorithm 1 does not involve parallel
transport.

Algorithm 1 Steepest descent in Stiefel coordinates
Require: �Y0� ∈ Flag(n1, . . . , nd ; n) with Y0 ∈ R

n×nd and Y T
0 Y0 = I ;

1: find Y⊥
0 ∈ R

n×(n−nd ) such that [Y0, Y⊥
0 ] ∈ O(n);

2: set X0 = [Y0, Y⊥
0 ];

3: for i = 0, 1, . . . do
4: set Gi = −∇ f (�Yi �); � gradient at �Yi � as in (47)
5: set Xi = [Yi , Y⊥

i ];
6: compute B̂ = XT

i Gi ;
7: set B ∈ R

n×n as Bi j = B̂i j for j ≤ nd ;
8: Bi j = −B̂ j i for j ≥ nd and i ≤ nd ;
9: Bi j = 0 otherwise;
10: minimize f

(
Xi exp(t B)In,nd

)
over t ∈ R; � tmin from exact line search

11: set Xi+1 = Xi exp(tminB);
12: end for
Ensure: �Yopt� = �Xopt In,nd �

7.2 Conjugate gradient over a flagmanifold

We present the conjugate gradient method in Algorithm 2. Unlike steepest descent,
conjugate gradient requires that we construct our new descent direction from the
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(k − 1)th and kth iterates, i.e., one needs to compare tangent vectors at two different
points on the manifold and the only way to do this is to parallel transport the two
tangent vectors to the same point. There is no avoiding parallel transport in conjugate
gradient.

As the expression for parallel transport in (30) indicates, we will need to compute

e−ϕt B (X) =
∞∑
k=1

(−1)k

k! ϕk
t B(X), ϕt B(X) = t

2
[B, X ]m.

The rapid decay of the exponential series allows us to to replace it by a finite sum,
reducing the task to recursively computing the iterated brackets and projection onto
m:

ϕk
t B(X) = ϕt B ◦ · · · ◦ ϕt B(X) =

( t
2

)k[B, [B, . . . , [B, X ]m . . . ]m]m.

As we had pointed out at the end of Sect. 4.1, this step is unnecessary for the Grass-
mannian as [B, X ]m = 0 if d = 1, i.e., for Flag(k; n) = Gr(k, n). A careful treatment
of the computation of e−ϕt B (X) requires more details than we could go into here and
is deferred to [32].

Algorithm 2 Conjugate gradient in Stiefel coordinates
Require: �Y0� ∈ Flag(n1, . . . , nd ; n) with Y0 ∈ R

n×nd and Y T
0 Y0 = I ;

1: find Y⊥
0 ∈ R

n×(n−nd ) such that [Y0, Y⊥
0 ] ∈ O(n);

2: set X0 = [Y0, Y⊥
0 ];

3: set G0 = −∇ f (�Y0�) and H0 = −G0; � gradient at �Y0� as in (47)
4: for i = 0, 1, . . . do
5: compute B̂ = XT

i Hi ;
6: set B ∈ R

n×n as Bi j = B̂i j for j ≤ nd ;
7: Bi j = −B̂ j i for j ≥ nd and i ≤ nd ;
8: Bi j = 0 otherwise;
9: minimize f

(
Xi exp(t B)In,nd

)
over t ∈ R; � tmin from exact line search

10: set Xi+1 = Xi exp(tminB);
11: set Yi+1 = Xi+1 In,nd ;

12: set Y⊥
i+1 = Xi+1 In,n−nd ;

13: set Gi+1 = −∇ f (�Yi+1�); � gradient at �Yi+1� as in (47)
14: find G̃i+1 ∈ R

n×(n−nd ) such that Ĝi+1 = [Gi+1, G̃i+1] is skew-symmetric;
15: procedure Descent(�Yi �, �Yi+1�,Gi , Hi ) � new descent direction at �Yi+1�

16: τHi = Xi exp(tminB)e−ϕtminB (B)In,nd ; � parallel transport of Hi as in (30)

17: τGi = Xi exp(tminB)e−ϕtminB (Ĝi )In,nd ; � parallel transport of Gi as in (30)
18: γi = g�Yi+1�

(Gi+1 − τGi ,Gi+1)/g�Yi �
(Gi ,Gi ); � g as in (29)

19: Hi+1 = −Gi+1 + γi τHi ;
20: end procedure
21: reset Hi+1 = −Gi+1 if i + 1 ≡ 0 mod (k + 1)(n − k);
22: end for
Ensure: �Yopt� = �Xopt In,nd �
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7.3 Newton and other algorithms over a flagmanifold

The closed-formanalytic expressions derived in this article permit one to readily extend
other optimization algorithms on Euclidean spaces to flag manifolds. For example, the
Newton search direction is given by the tangent vector X ∈ T�Y � Flag(n1, . . . , nd ; n)

such that

∇2 f (�Y �)(X , X ′) = g�Y �

(−∇ f (�Y �), X ′),

for every X ′ ∈ T�Y � Flag(n1, . . . , nd ; n), which gives us a system of linear equations
upon plugging in the expressions for Riemannian gradient in (47) and Riemannian
Hessian in (50).

Using the Newton search direction for Gi in Algorithm 1 then gives us New-
ton method on the flag manifold. In a similar vein, one may derive other standard
algorithms for unconstrained optimization, e.g., quasi-Newton method, accelerated
gradient descent, stochastic gradient descent, trust region methods, etc, for the flag
manifold. Nevertheless, given that the goal of our article is to develop foundational
material, we will leave these to future work [32].

8 Numerical experiments

We will test our algorithm for steepest descent on the flag manifold numerically.
As we explained in Sect. 7.2, the experiments for conjugate gradient algorithm is
more involved and is deferred to [32]. We run our numerical experiments on two
problems: (i) the principal flag problem in Sect. 8.1 is one for which the solution
may be determined in closed-form analytically, and thus it serves to demonstrate the
correctness of our algorithm, i.e., converges to the true solution; (ii) a variation of
the previous problem with a more complicated objective function to show that the
convergence behavior remains unchanged. In addition, neither problem can be solved
by simply treating them as nonlinear optimization problems with equality constraints
and applying standard nonlinear optimization algorithms.

In the followingwewill assume the identification in (45) and use Stiefel coordinates
throughout.

8.1 Principal flags

Let M ∈ R
n×n be symmetric. We seek the solution to

maximize tr(Y TMY )

subject to �Y � ∈ Flag(n1, . . . , nd ; n).
(52)

Here Y ∈ R
n×nd , Y TY = In , and the objective function is well-defined as a function

on the flag manifold: If we have Y and Y ′ with �Y � = �Y ′�, then they must be related
as in (25) and thus tr(Y TMY ) = tr(Y ′TMY ′).
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Fig. 1 Convergence trajectories for (52) on Flag(3, 7, 12; 60)

As we saw in Example 5, when M is a sample covariance matrix, the solution
to (52) is equivalent to PCA when we seek a complete flag, i.e., d = n − 1 and
ni = i , i = 1, . . . , n − 1. An advantage proffered by this approach is that if we
do not know the intrinsic dimension of the data set a priori, then finding the flag as
opposed to any particular subspace gives us the entire profile, showing how increasing
dimension accounts for an increasingly amount of variance. The problem in (52) is thus
a generalization of PCA, allowing us to seek any flag, not necessarily a complete one. It
may also be interpreted as finding subspaces of dimensions n1, n2−n1, . . . , nd −nd−1
that are independent and explain different levels of variance in the data set.

Figure 1 shows the convergence trajectories of steepest descent, i.e., Algorithm 1,
on the flag manifold Flag(3, 7, 12; 60), a 623-dimensional manifold. The symmetric
matrix M ∈ R

60×60 is generated randomly with standard normal entries. Since the
true solution of (52) may be determined in closed form—it is the sum of the k largest
eigenvalues of M—wemay therefore conclude that Algorithm 1 converges to the true
solution in around 80 iterations. Indeed the function values stabilize after as few as
10 iterations. At least for this problem, we see that the vanishing of the Riemannian
gradient serves as a viable stopping condition. In our implementation, our stopping
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Table 1 Distance to true
solution for (52) on
Flag(3, 9, 21; k)

k 30 40 50 60 70 80 90 100

Accuracy (×10−4) 2 8 64 32 4 87 20 15

Table 2 Elapsed time for (52) on Flag(3, 9, 21; k)
k 30 40 50 60 70 80 90 100

Elapsed Time 0.38 0.40 0.67 0.93 1.71 2.27 3.08 4.07

Table 3 Distance to true solution for (52) on Flag(2, . . . , 2k; 60)
k 1 2 3 4 5 6 7 8 9 10

Accuracy (×10−4) 1.4 3.4 3.4 8.6 2.8 18 19 5.1 9.3 11

Table 4 Elapsed time for (52) on Flag(2, . . . , 2k; 60)
k 1 2 3 4 5 6 7 8 9 10

Elapsed Time 0.54 0.81 0.79 0.96 1.05 0.91 1.20 1.06 1.18 1.12

conditions are determined by (i) Frobenius norm of Riemannian gradient, (ii) distance
between successive iterates, and (iii) number of iterations.

We perform extensive experiments beyond that in Fig. 1 by taking average of 100
instances of the problem (52) for various values of n1, . . . , nd . We tabulate our results
showing accuracy and speed in Tables 1–4. Tables 1 and 3 show that Algorithm 1
is robust across all dimensions of flags and ambient spaces that we tested. Tables 2
and 4 show that elapsed time taken for Algorithm 1 increases roughly linearly with
the dimension of the flag manifold (Table 5).

We emphasize that the two problems below:

maximize tr(Y TMY )

subject to �Y � ∈ Flag(3, 7, 12; 60),
maximize tr(Y TMY )

subject to �Y � ∈ Gr(12, 60)
(53)

will have entirely different optimizers even though tr(Y TMY ) takes the same value
on both Gr(12, 60) and Flag(3, 7, 12; 60) in Stiefel coordinates. The first thing to
observe is that even if a point on Flag(3, 7, 12; 60) and a point on Gr(12, 60) are
both represented by the same 60 × 12 orthonormal matrix, they will have entirely
different geometric meanings—the former is a sequence of three nested subspaces of

Table 5 Distance to true solution for (52) on Flag(2, . . . , 2k; 60)
k 1 2 3 4 5 6 7 8 9 10

Accuracy (×10−4) 1.4 3.4 3.4 8.6 2.8 18 19 5.1 9.3 11
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R
60 whereas the latter is merely a 12-dimensional subspace of R

60. The flag manifold
optimization problem captures this nested structure, which is much finer than the
subspace structure captured by the Grassmannian optimization problem.

Any optimization algorithm that correctly models these structures will produce dif-
ferent results for the two problems in (53) because the initial point to the flag manifold
optimization problem will have a nested subspace structure and any such algorithm
will preserve this structure in its iterates; on the other hand an optimization algorithm
for the Grassmannian neither requires its initial point to have a nested subspace struc-
ture nor preserve such a structure in its iterates. Mathematically, Flag(3, 7, 12; 60) is
a fiber bundle over Gr(12, 60) with fiber Flag(3, 7; 12), giving us a submersion

π : Flag(3, 7, 12; 60) → Gr(12, 60)

that collapses different equivalence classes in Flag(3, 7, 12; 60) into the same equiv-
alence class in Gr(12, 60).

8.2 Nonlinear eigenflags

This is a variation of the principal flag problem (52):

maximize
∑d

i=1 tr(Y
T
i MYi )2

subject to �Y1, . . . ,Yd� ∈ Flag(n1, . . . , nd ; n).
(54)

AgainM ∈ R
n×n is a symmetricmatrix and the flag is given in Stiefel coordinates Y =

[Y1, . . . ,Yd ] ∈ R
n×nd , Y TY = I , but partitioned into submatrices Yi ∈ R

n×(ni−ni−1),
Y T
i Yi = I , i = 1, . . . , d.More generally, the objective function in (54)may be replaced

by
∑d

i=1 fi
(
tr(Y T

i MYi )
)
with f1, . . . , fd ∈ C2(R). Choosing f1(x) = · · · = fd(x) =

x gives us (52) and choosing f1(x) = · · · = fd(x) = x2 gives us (54). Note that it will
take considerable effort to formulate a problem like (54) as a constrained optimization
problem in Euclidean space.

The convergence trajectories for Algorithm 1 applied to (54) are shown in Fig. 2.
The nonlinearity imposes a cost—it takes around 390 iterations to satisfy one of the
our stopping criteria, although the function values stabilize after around 60 iterations.
The jagged spikes seen in Fig. 2 are a result of iterates moving along a geodesic and
then jumping to another geodesic. So this is indicative of steepest descent following
a path that comprises multiple geodesics. A caveat is that unlike the principal flag
problem (52), we do not have a closed-form solution for (54) and thus we may only
guarantee convergence to a local minimizer, which is reflected in Fig. 2.

9 Conclusion

We end our article with a few parting thoughts and pointers for future work.
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Fig. 2 Convergence trajectories for (54) on Flag(3, 7, 12; 60)

9.1 Coordinates on a flagmanifold

We regard the four coordinate systems introduced in Sects. 4 and 5 as one of our main
contributions and would like to add a few words about them.

Even in R
n , one benefits from having a multitude of coordinate systems (polar,

bipolar, cylindrical, spherical, parabolic, etc) other than the Cartesian one. Integrals
difficult to evaluate in one coordinate systemmay be easily evaluated in another; differ-
ential equations impossible to solve in one coordinate systemmay be readily solved in
another. In convex optimization, geometric programming problems are usually formu-
lated in posynomial forms but algorithms are invariably applied to their convex forms
[15]; interchanging between two coordinate systems (y1, . . . , yn) = (ex1 , . . . , exn ) is
notmerely desirable but essential. Inmanifold optimization, algorithms for optimizing
a function over a Grassmannian come in at least three different coordinate systems,
where points are represented as equivalence classes of orthogonal matrices [20], as
equivalence classes of full-rank matrices [3], or as projection matrices [26].
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Even though we have only presented our algorithms in Sect. 7 in terms of Stiefel
coordinates, we expect every coordinate system introduced in this article to be useful
in its own way. For example, orthogonal coordinates allow us to represent flags as
equivalence classes of matrices in O(n) or SO(n), which has a group structure not
found in other coordinate systems, and in turn allow us to develop techniques (e.g.,
[27]) that we cannot easily do with other coordinate systems.

Projection and reduced projection coordinates allowus to represent flags asmatrices
as opposed to equivalence classes of matrices and this is useful if we want to define
a probability density on the flag manifold—from an optimization perspective this is
a first step towards probabilistic analysis of algorithms or randomized algorithms.
Take the simplest flag manifold, i.e., a Grassmannian, for example, the Langevin or
von Mises–Fisher distribution on Gr(k, n) [18] is given by the probability density
function

f (P | S) := 1

1F1
( 1
2 (k + 1); 1

2 (n + 1); S) exp
(
tr(SP)

)
,

where S ∈ R
n×n is a symmetric matrix, 1F1 is the confluent hypergeometric function

of the first kind of a matrix argument, and P ∈ R
n×n is a projection matrix as in (34)

or (42) with d = 1. It is not clear how this can even be written down in the other two
coordinate systems.

9.2 Optimization on a flagmanifold

For most of its history, continuous optimization has been concerned with optimizing
functions over the Euclidean spaceR

n ; but this has begun to change with the advent of
semidefinite programming [9] and orthogonality-constrained optimization [20], where
objective functions are naturally defined over the positive definite cone S

n
++, the Stiefel

manifold V(k, n), and the Grassmannian Gr(k, n). These developments have provided
us with the capacity to optimize over not just vectors but also covariances, frames, and
subspaces. The work in this article extends such capabilities to flags, which capture
nested structures in multilevel, multiresolution, or multiscale phenomena.

In future work [32], we hope to compare the performance of algorithms in different
coordinate systems on flag manifolds and investigate other computational issues that
have been deferred from this first study.
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