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What is a Matrixl

Question: What makes a matrix a matrix as opposed to merely
a 2-array of numbers?

Answer: The algebraic operations of matrix addition, scalar mul-
tiplication, and, most importantly, matrix multiplication:

1. A=la;], B=[b;] e R™*" X eR,
A4 B .= [aij + bij] and AA = [)\az-j].
2. A= [aw] S Rlxm,B = [b]k] e RMxX" AB .= [Czk] c RIX" where
n
Cik - — ijl az]bjk
We are so used to seeing these operations performed on 2-arrays

of numbers that we sometimes forget that they are defined by

us and not something that comes automatically with a 2-array.
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Tensors in a nutshelll

A matrix is an order-2 tensor.

An order-k tensor is simply a k-array of numbers with natural
generalizations of the aforementioned algebraic operations.

Caution: What physicists and geometers call tensors are really
tensor fields (ie. tensor-valued functions on manifolds). E.q.
stress tensor, moment-of-intertia tensor, Einstein tensor, metric
tensor, curvature tensor, Ricci tensor, etc.



T wo-sided matrix multiplicationl

Before coming to that, observe that matrix multiplication is a
special case of a more general algebraic operation: a matrix may
be simultaneously multiplied on both sides by two matrices.

Given A = [aj] € R™*", [ = [Eilj] c R™™ and L, = [élzk] e RS*™;

L1ALL =C

where C' = [¢;] € R"*® has entries

m n
_ 1,2
e = ), > lijlinajk-
j=1k=1

The result is independent of the order we perform the left and
right matrix multiplications, ie. L1(AL%Y) = (L1A)LL — a prop-
erty known as associativity.

Matrix-matrix multiplications (ie. AB, BA), matrix-vector multi-
plications (ie. Ax, y'Ax) are all special cases of this.



Order-3 Tensorsl

A tensor of order 3 is a 3-way array A = [[aijk]] c RIXmXn gn
which the following algebraic operations are defined:

1. Addition/Scalar Multiplication: for [[b;x]] € R&*™x", X € R,

[ai el +0bs 5] := lasj+bik]  and  Allajrll := [Aagill € RIxmxn

2. Multilinear Matrix Multiplication: for matrices L = [\;,] €
Rle,M p— [ILL]/]] E qum’N prm— [Vk?/k] E R’I“X’n’

(L7M7 N)A = I]:C’ilj’k/]] (= RquXT

where

[l m n
Citie =D D D AtV kQijk-
i=1j=1k=1



Tensors I

A tensor of order k and size (d1,...,d;) is a k-array of real num-
bers with two properties:

1. Addition/Scalar Multiplication: We may add two arrays of
the same size or multiply an array by a scalar.

2. Multilinear Matrix Multiplication: We may multiply an array
in each ‘mode’ by matrices.

An order k-array of size (d1,...,d;) is denoted by ﬂajlu_jk]]dl"”’dk

J1yeJg=1"
where the entries a;, . ; are understood to be real numbers.

Usually, we just write [aj;. ;1.

The set of all k-arrays of size (d1,...,d;) is denoted by by R41%xd,
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Quick example on the notationl

For k = 2, we have IIaZj]] i = " ER™XN. For example,

ail aio 3.511 —-100.231
[[aw]] =1 — |G21 a@22| = 34.435 0.000 c R3%2,
a3l a3 —46.566 23.278
_ l,m,n I xm X
For k = 3, we have [[az-jk]]” j—q1 € RXM*T For example,

240 @111 @121 G131 G141 | G112 G122 G132 (142
[[aijk]]i,g,;;zl = | a211 @221 @231 Q241 | @212 Q222 Aa232 a242
@311 G321 G331 G341 | G312 G322 G332 (342

35 -12 31 —-1.1|31 —-11 —-15 —-02
=34 00 44 01|45 03 —-45 7.2 | € R3*4x2
65 -02 —-46 08|46 07 —-66 12

The above array should be viewed as a 3-array where the left
slab [a;;1] is laying on top of the right slab |a;;2].



Property 1: Vector space structurel

Addition/Scalar Multiplication: We may add two arrays of the
same size or multiply an array by a scalar — by performing the
operations coordinatewise, ie.

AA = [[Aajy 4],

for A= [aj,. ;I,B = [bj,. ;] € RX>d X R,

Property 1 says that R91%XXdy js 3 vector space of dimension
dy---dy.

10



Property 2: Multilinear structurel

Multilinear Matrix Multiplication: We may multiply an array in
each ‘mode’ by matrices.

For an order-k tensor A = [aj, ;] € R4X >4 and matrices

7“1><d1 —_ TkXdk
|eR e S Lp = [Zk:]k]éR

Ly = [t i1J1
Li)A and is defined by

the multiplication is written as (Lq,...,
(Ll,...,Lk)A: C

where C = [l¢;;.. 4, ] € R"1*" %"k has entries

Ciy...4 Z Z 6@1]1 %Jkajl---jk'

Jj1=1 =1

Property 2 distinguishes R41XXdk from being simply a vector
space of dimension djp ---dg. It is the reason why, for instance,
RiIxXmXn (grder-3 tensors) is different from R™X" (matrices) or

Rimn (vectors).
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Examples: Orders 2 and 3'

Example. For A ¢ R™*" (Lq,Ly)A is just left and right multi-
plication by matrices:

(L1,Lo)A = L1ALS = L1(ALS) = (L1 A) LS.

This is equivalent to multiplying every column vector of A by L4
and then every row vector of the result by L>. These operations
can be done in any order. We may multiply every row of A by
Lo first and then multiply every column of the result by L1.

Example. For A € Rixmxn (1. [, L3)A is equivalent to mul-
tiplying every horizontal slabs of A by L4, every lateral slabs of
the result by Lo, and then every frontal slabs of the result by L3:

B+ [L1Alee |- LlApco: : (S-1)
C «— :LQBolo T LQBOQO: ) (5_2)
(L1,L2, L3)A « [L3Cee1 | -+ | L3Coer]; (S-3)

As before, (S-1), (S-2), (S5-3) may be performed in any order.
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Outer productl

The outer product of k vectors, x! = (z1,... »‘Uc]il)t e R ... xF=
(=%, ... ,a:flk)t c R% is an order-k tensor of size (dy,...,ds):

x!@ - @xf:= |Ix7jl1 : xfk]] e R X Xdy,

The outer product of k vector spaces, R ... R%, is simply

RN @ ... @ R% := spanp{x! @ --- @ x" | x! e RN, ... xF e R%}.

By definition, R @ ... @ R% is a subspace of the vector space
RA1X--Xdy Counting dimensions, we see immediately that

R ... @ R%* = RI1XXdy,
This leads to an alternative definition of tensors.
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Property 2’': Outer product structurel

The fact that R4 @ ... @ R%& = RI1XXdr tells us that every
AcR1 ®... 9 R% may be written as

-
A=Y xlo -oxk
a=1
for some X‘&ERdj (a=1,...,7;7=1,...,k).

This is exactly what gives a tensor its multilinear structure. Given
L1 eRrixdi [, ¢ RTexdk,

.
(Li,...,Lp)A= Y Lixt® - o LxE

a=1

So the multilinear structure (Property 2) and outer product
structure (Property 2') are one and the same thing. We could
have instead defined a tensor as one that satisfies Properties 1
and 2" — a k-array that can be decomposed into a sum of outer

products of k vectors.
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Matrix rankl

A € R™*"  rank(A) may be defined in either one of the three
(among other) ways:

e outer product rank: rank(A) = r iff there exists x1,...,x, €
R™, y1,...,yr € R™ such that

A=x1Q0y1+ - +xQyr
and r is minimal over all such decompositions.

e row rank: rank(A) = r iff
dim(spangp{Aie,---,Ame}) =T
where A;, € R™ denotes the ith row vector of A.
e column rank: rank(A) = r iff

dim(spang{Ae1,...,Aen}t) =7

where A,; € R™ denotes the jth column vector of A.
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Order-3 tensor rankl

For an order-3 tensor A € RIXMXn \we have

e outer product rank: rankg(A) = r iff there exists x4, ..

R! yei,...,yr € R™, yq1....,yr € R" such that

A:X1®Y1®Z1+“‘+XT®YT®ZT

and r is minimal over all such decompositions.
e 1-slab rank: ranky(A) = rq iff

dim(spanp{Aiee;---;Ajee}) =71
where A,q,e € R™*" denotes the ith 1-slab of A.

e 2-slab rank: ranko(A) = ro iff

dim(spanp{Aeie;:--, Aeme}) =172
where A,j, € RIX™ denotes the jth 2-slab of A.

L Xp €
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e 3-slab rank: rankz(A) = r3 iff

dim(spanp{Aeei,-- -, Aeen}) =173
where Ag,;. € RIX™ denotes the kth 3-slab of A.

e trilinear rank: rankg(A) = (r1,7r2,73).

Note: In general, rank{(A) # ranks(A) # rankz(A) # rankg(A).

17



Tensor Rankl

A € RixXdy  Different notions of tensor ranks:

e outer product rank: rankg(A) = r iff there exists X‘,Z c RY,
7 =1,...,k, such that

.
A= ZX}@---@X?
i=1
and r is minimal over all such decompositions.

e multilinear rank of A is defined as

rankm(A) = (rankq(A),...,rankg(A))

e p-slab rank (p=1,...,k): ranky(A) = rp iff
dim(spanR{A.....l....., SO Ao---odpo---o}) —Tp

where A,...eie...e € RI1X " XdpX-Xdp denotes the ith p-slab of A,
an order-(k — 1) tensor.
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Why no bilinear rankI

When k£ = 2, then 1-slab = row, 2-slab = column, bilinear rank
of a matrix A € R™*X" is simply

rankg(A) = (rowrank(A), colrank(A)) = (rank(A),rank(A)).

When k > 3, rankp(A) # rankqs(A) # rankg(A) in general (for
pFq).
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Outer product decompositionl

Let A € RIX™X" and rankg(A) = r. The outer product or Can-
decomp/Parafac decomposition of A is

r
A= Z Xa ®YVa X Zq.

a=1
In other words,
.
Ajjk — Z LiaYjafko
a=1
for some xo = (Z10,---,%10)" € R ya = (Wia, - -5 yma)t € R™,
Zo = (210, -, 2na)! ER™, a=1,...,r.

The vectors Xq,ya, Za are sometimes regarded as column vectors
of matrices X = [x1,...,%x/] € RX" YV = [yq1,...,yr] € RM*T,
Z =z1,...,2zr] € R"XT,
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Multilinear decompositionl

Let A € RIX™X" gnd rankgm(A) = (r1,70,73). Multilinear or
Tucker decomposition of A is

A= (X,Y,Z)C.

In other words,

Aiik — y Y yz Lial¥iB%kyCaBy

a=1p=1~v=1

for some full-rank matrices X = [z;,] € R*"™, Y = [y;4] € R™*"2,
Z = [zp,] € R"*"3, and core tensor C = [c,g,] € R"1772%73,

X,Y,Z may be chosen to have orthonormal columns.

For matrices, this is just the L1 DL, or Q1 RQ%L decompositions.
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Norms and inner productsl

In order to discuss approximations, we need to define a norm on
Rd1 X Xdp

The most convenient one to use is the Frobenius norm, || - ||z,
defined by

dq dy,
2 2
Ilaj,..; 07 = > - > a5, .

J1=1 g=1

for [a; e RA1xxdy

el

It is the norm associated with the trace inner product, (-, )tr,
defined by

(Lajy..5. 0| 064,51 Z Z ajy...51041 i

Jj1=1  gp=1

for [aj,.. ;. 1, [bj,..j,] € RI X4 Thus [|A|% = (A | A)y
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Outer product approximationl

A Candecomp/Parafac or outer product model has the following
form

.
aijk = D Tia¥jaZka T+ €ijk
a=1

where E = [e;;.] € RIXmXn denotes the (unknown) error.

To minimize the error, we want an outer product approximation

.
argminf|A — ) Xa ® Ya ® zallp

a=1
where the minimum is taken over all matrices X = [xq1,...,Xr] €
RIXT Y = [yq,...,yr] € R™XT Z = [zq,...,2,] € RPXT,

In short, we want an optimal solution B = argmin ||A — Bl .
rankg(B)<r
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Multilinear approximationl

A Tucker or multilinear model has the following form

r2 T3

r1
Gijk = D D D Tia¥j3%k~Capy T €ijk
a=1p=1~v=1

where E = [e;;x] € R™*™X™ denotes the (unknown) error.

To minimize the error, we want a multilinear approximation
argmin||A — (X, Y, Z2)C||g
where minimum is taken over all full-rank matrices X € R!X71,

Y e RMXr2 7 ¢ R"%"3 and tensor C &€ R"1X"2X7T3

In short, we want an optimal solution
By = argmin ankg(B)<(r1,r2.r3) 14 — BllF-

24



Outer product decomposition: analytical chemistryl

Application to fluorescence spectral analysis by Bro.

a;;. = fluorescence emission intensity at wavelength A?m of ith
sample excited with light at wavelength /\gx. Get 3-way data
A = [[aijk]] c Rixmxn.

Decomposing A into a sum of outer products,

A=x1Qy1®21 + - +X Qyr ® zr.
vield the true chemical factors responsible for the data.

e r: number of pure substances in the mixtures,

o Xoo = (x14,.--,x],). relative concentrations of ath substance
in samples 1,...,1,

e Vo = (Y14, ---,Yma). €Xxcitation spectrum of ath substance,

o 7o = (214, .-, 2na). €mission spectrum of ath substance.
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Multilinear decomposition: computer visionl

Application to facial recognition (TensorFaces) by Vasilescu and
Terzopoulos. Facial image database of p male subjects pho-
tographed in g poses, r illuminations, s expressions, and stored
as a grayscale image with t pixels.

a;jil, = drayscale level of of the image of ¢th person
photographed in jth pose, with [th expression, under kth illumi-
nation level. Get 5-way data array A = [[a;;pm,]l € RPXIXTXsXL,

Let multilinear decomposition of A be

A — (V7 W7 X? Y? Z)C7

matrices V. W, X, Y, Z chosen to have orthonormal columns.

The column vectors of VW, X.,Y,Z are the ‘principal compo-
nents’ or ‘parameterizing factors’ of the spaces of male subjects,
poses, illuminations, expressions, and images respectively. The

tensor C' governs the interactions between these factors.
26



Properties of matrix rankI

. Rank of A € R™*" easy to determine (Gaussian Elimination)

. Optimal rank-r approximation to A € R™X™ always exist
(Eckart-Young Theorem)

. Optimal rank-r approximation to A € R™*" easy to find (Sin-
gular Value Decomposition)

. Pick A € R™X"™ at random, then A has full rank with proba-
bility 1, ie. rank(A) = min{m,n}

. rank(A) from a non-orthogonal rank-revealing decomposition
(e.g. A = LlDLtz) and rank(A) from an orthogonal rank-
revealing decomposition (e.g. A = QlRQtQ) are equal

. Let A be a matrix with real entries. Then rank(A) is the
same whether we regard A as an element of R™*"™ or as an
element of C™Mxn
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Outer product rank vs multilinear rankI

Every statement on the preceding slide is false for the outer
product rank of order-k tensors, k£ > 3.

Every statement on the preceding slide is true for the multilinear
rank of order-k tensors, k£ > 3.

In the next two slides we will spell these out explicitly for order-3
tensors. The restriction to order-3 tensors is strictly for nota-
tional simplicity. All statements generalize to order-k tensors for

any k > 3.
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Properties of outer product rankl

. Computing rankg(A) for A € RIX™MXn js NP-hard

. For some A € RP>™*" argmin o py<ll4 — B|F does not
have a solution

. When argmin ,n. ()< 4 — Bl|p does have a solution, com-
puting the solution is an NP-complete problem in general

. For some I, m,n, if we sample A € RIXmMXn gt random, there
is no r such that rankg(A) = r with probability 1

. An outer product decomposition of A € RIXMXn \ith orthog-
onality constraints on X,Y,Z will in general require a sum
with more than rankg(A) number of terms

. Let A be a 3-array with real entries. Then rankg(A) can take
different values depending on whether we regard A € REXmXxn
or A ¢ Clxmxn

29



Properties of multilinear rankI

. Computing rankg(A) for A € REXmXn js easy
. Solution to argmin ,ni . (BY<(ry,r.r3)lA — BllF always exist

. Solution to argmin,ni. (BY<(rq,re,r3) A — BllF €asy to find

. Pick A € RIXmXn gt random, then A has
rankm(A) = (min(l, mn), min(m,In), min(n,Im))
with probability 1
CIf A € RIXMXn has rankgm(A) = (r1,70,73). Then there exist
full-rank matrices X € RIX"1, Y € RmX"2, Z ¢ R"*"3 and core

tensor C € R"*X"2X"3 sych that A = (X,Y,2)C. X,Y,Z may
be chosen to have orthonormal columns

. Let A be a matrix with real entries. Then rankg(A) is the
same whether we regard A as an element of R{X™MX7 or a5 an
element of Clxmxn
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Generalization to higher orderl

e It is straight forward to generalize all statements on the last

two slides to order-k tensors for any k > 3; we give two
examples:

e Statement 2 for outer product rank:

. d1x---%Xd .
For some A € R***%, argmin ani . (B)<rllA — Bllp does
not have a solution

e Statement 4 for multilinear rank:

— Pick A € R91XxXdi gt random, then A has

rankg(A) = (min(dy,dz - -dg), ..., min(dg,d1 - -dg_1))
with probability 1. The p-th slab rank above is just
min(dp,dl---c?p---dk)

31



What about ‘row rank = column rank’l

At first glance, this is one property of matrix rank that doesn’t
seem to generalize to multilinear rank. Actually, it does in a
more subtle way. We use the order-3 case as illustration.

Let A € RIXmMX"  Recall that we have defined the p-slab ranks:
ranki1(A) = dim(spanp{Ajee | i = 1,...,1}),
ranko(A) = dim(spang{Adeje | =1,...,m}
rankz(A) = dim(spanp{Aeer | k =1,...,n}).

We may also define the (p,g)-slab ranks:

ranks 3(A) = dim(spang{Aex | =1,...,mk=1,...,n}),
ranky 3(A) = dim(spanp{Aer |1 =1,...,[;k=1,...,n}),
ranky o(A) = dim(spang{4;je |t =1,...,1;j =1,...,m}).

It is easy to see that

ranky(A) = rankp 3(A4),
ranko(A) = rankq 3(A4),
rankz(A) = ranky 2(A).
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Higher level trilinear rankI

T he 1st level trilinear rank for an order-3 tensor is what we simply
called trilinear rank earlier:

rankéa(A) = (ranky(A),ranks(A),rankz(A))
The 2nd level trilinear rank for an order-3 tensor is:
rank%(A) = (rankp 3(A),ranky 3(A),ranky 2(A)).

Hence the result at the end of the previous slide may be restated
for A € RIXmXn 35 simply

rankéﬂ(A) = ranké(A).

Note that for A € RMXn = R1XmXn this reduces to

(1,rowrank(A), colrank(A)) = (1, colrank(A), rowrank(A)),
and thus rowrank(A) = colrank(A).
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Higher level multilinear rankI

Let A € R41X%Xdk For any {p1,....,pr C{1,...,k}, p1 < --- < pp,
we may define (p1,...,p;)-slab rank accordingly.

The (’;)—tuple of (p1,...,p;)-slab ranks gives the ith level multi-
linear rank, fori=1,...,k— 1.

May show: The [th level multilinear rank is equal to the (k—-1)th
level multilinear rank, [ =1,...,k— 1.
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Appendix 1: Some technical propertiesl

o Let A, B e RlxXdy gnd X\, p € R. Let Ly € R"1Xd1 | [, €
R7&Xdk, Then

(L1,..., L) (M +puB) = XL, ..., Lp)A+ p(Ly, ..., Lg)B.
o Let A € RlaxXdy et L1 € Ri1*d1 [, € R%>*%, and
My e RS1x7T1 M, € R%*"k. Then
(My,...,M)(L1,...,Lp)A = (M1Lq,...,MiLy)A

where M;L; € RSi%Xdi js simply the matrix-matrix product of
Mi and Li-

o Let A e RUX~Xdk and \,p € R. Let Ly e R"*d1 L, M; €
R7%% ... L, € Rx*%  Then

(L]_,...,)\Lj—|—/LMj,...,Lk)A:
)\(Ll,...,Lj,...,Lk)A—I—,u(L]_,...,Mj,...,Lk)A.
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Appendix 2: NP problemsl

NP is the set of problems for which a proposed solution can
be verified or rejected in polynomial time

A problem is NP-hard if an algorithm to solve it in polyno-
mial time would make it possible to solve all NP problems in
polynomial time

NP-complete is the class of problems which are both NP-hard
and themselves members of NP

NP-hard problems are at least as hard as (possibly harder
than) any other NP (and thus NP-complete) problems

The bottom line is that NP-hard and NP (including NP-
complete) problems are difficult to solve — no known polynomial-
time algorithm exists for finding the solution
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