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Overview

• definition

• ranks

• decompositions

• norms and inner products

• approximations

• hyperdeterminants

• covariance and contravariance

• contraction products

• multilinear functions

• eigenvalues and singular values

• technical stuff best left to the end
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What is a Matrix

Question: What makes a matrix a matrix as opposed to merely

a 2-array of numbers?

Answer: The algebraic operations of matrix addition, scalar mul-

tiplication, and, most importantly, matrix multiplication:

1. A = [aij], B = [bij] ∈ Rm×n, λ ∈ R,

A + B := [aij + bij] and λA := [λaij].

2. A = [aij] ∈ Rl×m, B = [bjk] ∈ Rm×n, AB := [cik] ∈ Rl×n where

cik :=
∑n

j=1
aijbjk.

We are so used to seeing these operations performed on 2-arrays

of numbers that we sometimes forget that they are defined by

us and not something that comes automatically with a 2-array.
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Tensors in a nutshell

A matrix is an order-2 tensor.

An order-k tensor is simply a k-array of numbers with natural

generalizations of the aforementioned algebraic operations.

Caution: What physicists and geometers call tensors are really

tensor fields (ie. tensor-valued functions on manifolds). E.g.

stress tensor, moment-of-intertia tensor, Einstein tensor, metric

tensor, curvature tensor, Ricci tensor, etc.
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Two-sided matrix multiplication

Before coming to that, observe that matrix multiplication is a

special case of a more general algebraic operation: a matrix may

be simultaneously multiplied on both sides by two matrices.

Given A = [ajk] ∈ Rm×n, L1 = [`1ij] ∈ Rr×m and L2 = [`2lk] ∈ Rs×n:

L1ALt
2 = C

where C = [cil] ∈ Rr×s has entries

cil =
m∑

j=1

n∑
k=1

`1ij`
2
lkajk.

The result is independent of the order we perform the left and

right matrix multiplications, ie. L1(ALt
2) = (L1A)Lt

2 — a prop-

erty known as associativity.

Matrix-matrix multiplications (ie. AB, BA), matrix-vector multi-

plications (ie. Ax, ytAx) are all special cases of this.
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Order-3 Tensors

A tensor of order 3 is a 3-way array A = [[aijk]] ∈ Rl×m×n on

which the following algebraic operations are defined:

1. Addition/Scalar Multiplication: for [[bijk]] ∈ Rl×m×n, λ ∈ R,

[[aijk]]+[[bijk]] := [[aijk+bijk]] and λ[[aijk]] := [[λaijk]] ∈ Rl×m×n

2. Multilinear Matrix Multiplication: for matrices L = [λi′i] ∈
Rp×l, M = [µj′j] ∈ Rq×m, N = [νk′k] ∈ Rr×n,

(L, M, N)A := [[ci′j′k′]] ∈ Rp×q×r

where

ci′j′k′ :=
l∑

i=1

m∑
j=1

n∑
k=1

λi′iµj′jνk′kaijk.
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Tensors

A tensor of order k and size (d1, . . . , dk) is a k-array of real num-

bers with two properties:

1. Addition/Scalar Multiplication: We may add two arrays of

the same size or multiply an array by a scalar.

2. Multilinear Matrix Multiplication: We may multiply an array

in each ‘mode’ by matrices.

An order k-array of size (d1, . . . , dk) is denoted by [[aj1...jk
]]
d1,...,dk
j1,...,jk=1,

where the entries aj1...jk
are understood to be real numbers.

Usually, we just write [[aj1...jk
]].

The set of all k-arrays of size (d1, . . . , dk) is denoted by by Rd1×···×dk.
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Quick example on the notation

For k = 2, we have [[aij]]
m,n
i,j=1 ∈ Rm×n. For example,

[[aij]]
3,2
i,j=1 =

a11 a12

a21 a22

a31 a32

 =

 3.511 −100.231
34.435 0.000
−46.566 23.278

 ∈ R3×2.

For k = 3, we have [[aijk]]
l,m,n
i,j,k=1 ∈ Rl×m×n. For example,

[[aijk]]
3,4,2
i,j,k=1 =

 a111 a121 a131 a141

a211 a221 a231 a241

a311 a321 a331 a341

∣∣∣∣∣∣
a112 a122 a132 a142

a212 a222 a232 a242

a312 a322 a332 a342


=

 3.5 −1.2 3.1 −1.1
3.4 0.0 4.4 0.1
6.5 −0.2 −4.6 0.8

∣∣∣∣∣∣
3.1 −1.1 −1.5 −0.2
4.5 0.3 −4.5 7.2
4.6 0.7 −6.6 1.2

 ∈ R3×4×2.

The above array should be viewed as a 3-array where the left

slab [aij1| is laying on top of the right slab |aij2].
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Property 1: Vector space structure

Addition/Scalar Multiplication: We may add two arrays of the

same size or multiply an array by a scalar — by performing the

operations coordinatewise, ie.

A + B := [[aj1...jk
+ bj1...jk

]],

λA := [[λaj1...jk
]],

for A = [[aj1...jk
]], B = [[bj1...jk

]] ∈ Rd1×···×dk, λ ∈ R.

Property 1 says that Rd1×···×dk is a vector space of dimension

d1 · · · dk.
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Property 2: Multilinear structure

Multilinear Matrix Multiplication: We may multiply an array in
each ‘mode’ by matrices.

For an order-k tensor A = [[aj1...jk
]] ∈ Rd1×···×dk and matrices

L1 = [`1i1j1
] ∈ Rr1×d1, . . . , Lk = [`k

ikjk
] ∈ Rrk×dk,

the multiplication is written as (L1, . . . , Lk)A and is defined by

(L1, . . . , Lk)A = C

where C = [[ci1...ik]] ∈ Rr1×···×rk has entries

ci1...ik =
d1∑

j1=1

· · ·
dk∑

jk=1

`1i1j1
· · · `k

ikjk
aj1...jk

.

Property 2 distinguishes Rd1×···×dk from being simply a vector
space of dimension d1 · · · dk. It is the reason why, for instance,
Rl×m×n (order-3 tensors) is different from Rlm×n (matrices) or
Rlmn (vectors).
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Examples: Orders 2 and 3

Example. For A ∈ Rm×n, (L1, L2)A is just left and right multi-

plication by matrices:

(L1, L2)A = L1ALt
2 = L1(ALt

2) = (L1A)Lt
2.

This is equivalent to multiplying every column vector of A by L1

and then every row vector of the result by L2. These operations

can be done in any order. We may multiply every row of A by

L2 first and then multiply every column of the result by L1.

Example. For A ∈ Rl×m×n, (L1, L2, L3)A is equivalent to mul-

tiplying every horizontal slabs of A by L1, every lateral slabs of

the result by L2, and then every frontal slabs of the result by L3:

B ← [L1A1•• | · · · | L1Ap••]; (S-1)

C ← [L2B•1• | · · · | L2B•q•]; (S-2)

(L1, L2, L3)A← [L3C••1 | · · · | L3C••r]; (S-3)

As before, (S-1), (S-2), (S-3) may be performed in any order.
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Outer product

The outer product of k vectors, x1 = (x1
1, . . . , x1

d1
)t ∈ Rd1, . . . ,xk =

(xk
1, . . . , xk

dk
)t ∈ Rdk is an order-k tensor of size (d1, . . . , dk):

x1 ⊗ · · · ⊗ xk := [[x1
i1

. . . xk
ik
]] ∈ Rd1×···×dk.

The outer product of k vector spaces, Rd1, . . . , Rdk, is simply

Rd1 ⊗ · · · ⊗ Rdk := spanR{x1 ⊗ · · · ⊗ xk | x1 ∈ Rd1, . . . ,xk ∈ Rdk}.

By definition, Rd1 ⊗ · · · ⊗ Rdk is a subspace of the vector space

Rd1×···×dk. Counting dimensions, we see immediately that

Rd1 ⊗ · · · ⊗ Rdk = Rd1×···×dk.

This leads to an alternative definition of tensors.
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Property 2’: Outer product structure

The fact that Rd1 ⊗ · · · ⊗ Rdk = Rd1×···×dk tells us that every
A ∈ Rd1 ⊗ · · · ⊗ Rdk may be written as

A =
r∑

α=1

x1
α ⊗ · · · ⊗ xk

α

for some xj
α ∈ Rdj (α = 1, . . . , r; j = 1, . . . , k).

This is exactly what gives a tensor its multilinear structure. Given
L1 ∈ Rr1×d1, . . . , Lk ∈ Rrk×dk,

(L1, . . . , Lk)A =
r∑

α=1

L1x
1
α ⊗ · · · ⊗ Lkx

k
α.

So the multilinear structure (Property 2) and outer product
structure (Property 2’) are one and the same thing. We could
have instead defined a tensor as one that satisfies Properties 1
and 2’ — a k-array that can be decomposed into a sum of outer
products of k vectors.
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Matrix rank

A ∈ Rm×n. rank(A) may be defined in either one of the three
(among other) ways:

• outer product rank: rank(A) = r iff there exists x1, . . . ,xr ∈
Rm, y1, . . . ,yr ∈ Rn such that

A = x1 ⊗ y1 + · · ·+ xr ⊗ yr

and r is minimal over all such decompositions.

• row rank: rank(A) = r iff

dim(spanR{A1•, . . . , Am•}) = r

where Ai• ∈ Rn denotes the ith row vector of A.

• column rank: rank(A) = r iff

dim(spanR{A•1, . . . , A•n}) = r

where A•j ∈ Rm denotes the jth column vector of A.
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Order-3 tensor rank

For an order-3 tensor A ∈ Rl×m×n, we have

• outer product rank: rank⊗(A) = r iff there exists x1, . . . ,xr ∈
Rl, y1, . . . ,yr ∈ Rm, y1, . . . ,yr ∈ Rn such that

A = x1 ⊗ y1 ⊗ z1 + · · ·+ xr ⊗ yr ⊗ zr

and r is minimal over all such decompositions.

• 1-slab rank: rank1(A) = r1 iff

dim(spanR{A1••, . . . , Al••}) = r1

where Ai•• ∈ Rm×n denotes the ith 1-slab of A.

• 2-slab rank: rank2(A) = r2 iff

dim(spanR{A•1•, . . . , A•m•}) = r2

where A•j• ∈ Rl×n denotes the jth 2-slab of A.
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• 3-slab rank: rank3(A) = r3 iff

dim(spanR{A••1, . . . , A••n}) = r3

where A••k ∈ Rl×m denotes the kth 3-slab of A.

• trilinear rank: rank�(A) = (r1, r2, r3).

Note: In general, rank1(A) 6= rank2(A) 6= rank3(A) 6= rank⊗(A).
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Tensor Rank

A ∈ Rd1×···×dk. Different notions of tensor ranks:

• outer product rank: rank⊗(A) = r iff there exists xj
i ∈ Rdj,

j = 1, . . . , k, such that

A =
r∑

i=1

x1
i ⊗ · · · ⊗ xk

i

and r is minimal over all such decompositions.

• multilinear rank of A is defined as

rank�(A) = (rank1(A), . . . , rankk(A))

• p-slab rank (p = 1, . . . , k): rankp(A) = rp iff

dim(spanR{A•···•1•···•, . . . , A•···•dp•···•}) = rp

where A•···•i•···• ∈ Rd1×···×d̂p×···×dk denotes the ith p-slab of A,
an order-(k − 1) tensor.
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Why no bilinear rank

When k = 2, then 1-slab = row, 2-slab = column, bilinear rank

of a matrix A ∈ Rm×n is simply

rank�(A) = (rowrank(A), colrank(A)) = (rank(A), rank(A)).

When k ≥ 3, rankp(A) 6= rankq(A) 6= rank⊗(A) in general (for

p 6= q).
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Outer product decomposition

Let A ∈ Rl×m×n and rank⊗(A) = r. The outer product or Can-

decomp/Parafac decomposition of A is

A =
r∑

α=1

xα ⊗ yα ⊗ zα.

In other words,

aijk =
r∑

α=1

xiαyjαzkα

for some xα = (x1α, . . . , xlα)t ∈ Rl, yα = (y1α, . . . , ymα)t ∈ Rm,

zα = (z1α, . . . , znα)t ∈ Rn, α = 1, . . . , r.

The vectors xα,yα, zα are sometimes regarded as column vectors

of matrices X = [x1, . . . ,xr] ∈ Rl×r, Y = [y1, . . . ,yr] ∈ Rm×r,

Z = [z1, . . . , zr] ∈ Rn×r.
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Multilinear decomposition

Let A ∈ Rl×m×n and rank�(A) = (r1, r2, r3). Multilinear or

Tucker decomposition of A is

A = (X, Y, Z)C.

In other words,

aijk =
r1∑

α=1

r2∑
β=1

r3∑
γ=1

xiαyjβzkγcαβγ

for some full-rank matrices X = [xiα] ∈ Rl×r1, Y = [yjβ] ∈ Rm×r2,

Z = [zkγ] ∈ Rn×r3, and core tensor C = [[cαβγ]] ∈ Rr1×r2×r3.

X, Y, Z may be chosen to have orthonormal columns.

For matrices, this is just the L1DLt
2 or Q1RQt

2 decompositions.
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Norms and inner products

In order to discuss approximations, we need to define a norm on

Rd1×···×dk.

The most convenient one to use is the Frobenius norm, ‖ · ‖F ,

defined by

‖[[aj1...jk
]]‖2F =

d1∑
j1=1

· · ·
dk∑

jk=1

a2
j1...jk

.

for [[aj1...jk
]] ∈ Rd1×···×dk.

It is the norm associated with the trace inner product, 〈·, ·〉tr,
defined by

〈[[aj1...jk
]] | [[bj1...jk

]]〉tr :=
d1∑

j1=1

· · ·
dk∑

jk=1

aj1...jk
bj1...jk

for [[aj1...jk
]], [[bj1...jk

]] ∈ Rd1×···×dk. Thus ‖A‖2F = 〈A | A〉tr.
22



Outer product approximation

A Candecomp/Parafac or outer product model has the following

form

aijk =
r∑

α=1

xiαyjαzkα + eijk

where E = [[eijk]] ∈ Rl×m×n denotes the (unknown) error.

To minimize the error, we want an outer product approximation

argmin‖A−
r∑

α=1

xα ⊗ yα ⊗ zα‖F

where the minimum is taken over all matrices X = [x1, . . . ,xr] ∈
Rl×r, Y = [y1, . . . ,yr] ∈ Rm×r, Z = [z1, . . . , zr] ∈ Rn×r.

In short, we want an optimal solution B∗⊗ = argmin
rank⊗(B)≤r

‖A−B‖F .
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Multilinear approximation

A Tucker or multilinear model has the following form

aijk =
r1∑

α=1

r2∑
β=1

r3∑
γ=1

xiαyjβzkγcαβγ + eijk

where E = [[eijk]] ∈ Rl×m×n denotes the (unknown) error.

To minimize the error, we want a multilinear approximation

argmin‖A− (X, Y, Z)C‖F
where minimum is taken over all full-rank matrices X ∈ Rl×r1,

Y ∈ Rm×r2, Z ∈ Rn×r3 and tensor C ∈ Rr1×r2×r3.

In short, we want an optimal solution

a B∗� = argminrank�(B)≤(r1,r2,r3)
‖A−B‖F .
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Outer product decomposition: analytical chemistry

Application to fluorescence spectral analysis by Bro.

aijk = fluorescence emission intensity at wavelength λem
j of ith

sample excited with light at wavelength λex
k . Get 3-way data

A = [[aijk]] ∈ Rl×m×n.

Decomposing A into a sum of outer products,

A = x1 ⊗ y1 ⊗ z1 + · · ·+ xr ⊗ yr ⊗ zr.

yield the true chemical factors responsible for the data.

• r: number of pure substances in the mixtures,

• xα = (x1α, . . . , xlα): relative concentrations of αth substance
in samples 1, . . . , l,

• yα = (y1α, . . . , ymα): excitation spectrum of αth substance,

• zα = (z1α, . . . , znα): emission spectrum of αth substance.
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Multilinear decomposition: computer vision

Application to facial recognition (TensorFaces) by Vasilescu and
Terzopoulos. Facial image database of p male subjects pho-
tographed in q poses, r illuminations, s expressions, and stored
as a grayscale image with t pixels.

aijklm = grayscale level of mth pixel of the image of ith person
photographed in jth pose, with lth expression, under kth illumi-
nation level. Get 5-way data array A = [[aijklm]] ∈ Rp×q×r×s×t.

Let multilinear decomposition of A be

A = (V, W, X, Y, Z)C,

matrices V, W, X, Y, Z chosen to have orthonormal columns.

The column vectors of V, W, X, Y, Z are the ‘principal compo-
nents’ or ‘parameterizing factors’ of the spaces of male subjects,
poses, illuminations, expressions, and images respectively. The
tensor C governs the interactions between these factors.
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Properties of matrix rank

1. Rank of A ∈ Rm×n easy to determine (Gaussian Elimination)

2. Optimal rank-r approximation to A ∈ Rm×n always exist

(Eckart-Young Theorem)

3. Optimal rank-r approximation to A ∈ Rm×n easy to find (Sin-

gular Value Decomposition)

4. Pick A ∈ Rm×n at random, then A has full rank with proba-

bility 1, ie. rank(A) = min{m, n}

5. rank(A) from a non-orthogonal rank-revealing decomposition

(e.g. A = L1DLt
2) and rank(A) from an orthogonal rank-

revealing decomposition (e.g. A = Q1RQt
2) are equal

6. Let A be a matrix with real entries. Then rank(A) is the

same whether we regard A as an element of Rm×n or as an

element of Cm×n
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Outer product rank vs multilinear rank

Every statement on the preceding slide is false for the outer

product rank of order-k tensors, k ≥ 3.

Every statement on the preceding slide is true for the multilinear

rank of order-k tensors, k ≥ 3.

In the next two slides we will spell these out explicitly for order-3

tensors. The restriction to order-3 tensors is strictly for nota-

tional simplicity. All statements generalize to order-k tensors for

any k ≥ 3.
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Properties of outer product rank

1. Computing rank⊗(A) for A ∈ Rl×m×n is NP-hard

2. For some A ∈ Rl×m×n, argminrank⊗(B)≤r‖A − B‖F does not

have a solution

3. When argminrank⊗(B)≤r‖A−B‖F does have a solution, com-

puting the solution is an NP-complete problem in general

4. For some l, m, n, if we sample A ∈ Rl×m×n at random, there

is no r such that rank⊗(A) = r with probability 1

5. An outer product decomposition of A ∈ Rl×m×n with orthog-

onality constraints on X, Y, Z will in general require a sum

with more than rank⊗(A) number of terms

6. Let A be a 3-array with real entries. Then rank⊗(A) can take

different values depending on whether we regard A ∈ Rl×m×n

or A ∈ Cl×m×n
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Properties of multilinear rank

1. Computing rank�(A) for A ∈ Rl×m×n is easy

2. Solution to argminrank�(B)≤(r1,r2,r3)
‖A−B‖F always exist

3. Solution to argminrank�(B)≤(r1,r2,r3)
‖A−B‖F easy to find

4. Pick A ∈ Rl×m×n at random, then A has

rank�(A) = (min(l, mn),min(m, ln),min(n, lm))

with probability 1

5. If A ∈ Rl×m×n has rank�(A) = (r1, r2, r3). Then there exist
full-rank matrices X ∈ Rl×r1, Y ∈ Rm×r2, Z ∈ Rn×r3 and core
tensor C ∈ Rr1×r2×r3 such that A = (X, Y, Z)C. X, Y, Z may
be chosen to have orthonormal columns

6. Let A be a matrix with real entries. Then rank�(A) is the
same whether we regard A as an element of Rl×m×n or as an
element of Cl×m×n
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Generalization to higher order

• It is straight forward to generalize all statements on the last

two slides to order-k tensors for any k ≥ 3; we give two

examples:

• Statement 2 for outer product rank:

– For some A ∈ Rd1×···×dk, argminrank⊗(B)≤r‖A − B‖F does

not have a solution

• Statement 4 for multilinear rank:

– Pick A ∈ Rd1×···×dk at random, then A has

rank�(A) = (min(d1, d2 · · · dk), . . . ,min(dk, d1 · · · dk−1))

with probability 1. The p-th slab rank above is just

min(dp, d1 · · · d̂p · · · dk)
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What about ‘row rank = column rank’

At first glance, this is one property of matrix rank that doesn’t
seem to generalize to multilinear rank. Actually, it does in a
more subtle way. We use the order-3 case as illustration.

Let A ∈ Rl×m×n. Recall that we have defined the p-slab ranks:

rank1(A) = dim(spanR{Ai•• | i = 1, . . . , l}),
rank2(A) = dim(spanR{A•j• | j = 1, . . . , m})
rank3(A) = dim(spanR{A••k | k = 1, . . . , n}).

We may also define the (p, q)-slab ranks:

rank2,3(A) = dim(spanR{A•jk | j = 1, . . . , m; k = 1, . . . , n}),
rank1,3(A) = dim(spanR{Ai•k | i = 1, . . . , l; k = 1, . . . , n}),
rank1,2(A) = dim(spanR{Aij• | i = 1, . . . , l; j = 1, . . . , m}).

It is easy to see that

rank1(A) = rank2,3(A),

rank2(A) = rank1,3(A),

rank3(A) = rank1,2(A).
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Higher level trilinear rank

The 1st level trilinear rank for an order-3 tensor is what we simply

called trilinear rank earlier:

rank1
�(A) = (rank1(A), rank2(A), rank3(A))

The 2nd level trilinear rank for an order-3 tensor is:

rank2
�(A) = (rank2,3(A), rank1,3(A), rank1,2(A)).

Hence the result at the end of the previous slide may be restated

for A ∈ Rl×m×n as simply

rank1
�(A) = rank2

�(A).

Note that for A ∈ Rm×n = R1×m×n, this reduces to

(1, rowrank(A), colrank(A)) = (1, colrank(A), rowrank(A)),

and thus rowrank(A) = colrank(A).
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Higher level multilinear rank

Let A ∈ Rd1×···×dk. For any {p1, . . . , pl} ⊂ {1, . . . , k}, p1 < · · · < pk,

we may define (p1, . . . , pl)-slab rank accordingly.

The
(
k
l

)
-tuple of (p1, . . . , pl)-slab ranks gives the lth level multi-

linear rank, for l = 1, . . . , k − 1.

May show: The lth level multilinear rank is equal to the (k−l)th

level multilinear rank, l = 1, . . . , k − 1.
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Appendix 1: Some technical properties

• Let A, B ∈ Rd1×···×dk and λ, µ ∈ R. Let L1 ∈ Rr1×d1, . . . , Lk ∈
Rrk×dk. Then

(L1, . . . , Lk)(λA + µB) = λ(L1, . . . , Lk)A + µ(L1, . . . , Lk)B.

• Let A ∈ Rd1×···×dk. Let L1 ∈ Rr1×d1, . . . , Lk ∈ Rrk×dk, and

M1 ∈ Rs1×r1, . . . , Mk ∈ Rsk×rk. Then

(M1, . . . , Mk)(L1, . . . , Lk)A = (M1L1, . . . , MkLk)A

where MiLi ∈ Rsi×di is simply the matrix-matrix product of

Mi and Li.

• Let A ∈ Rd1×···×dk and λ, µ ∈ R. Let L1 ∈ Rr1×d1, . . . , Lj, Mj ∈
Rrj×dj , . . . , Lk ∈ Rrk×dk. Then

(L1, . . . , λLj + µMj, . . . , Lk)A =

λ(L1, . . . , Lj, . . . , Lk)A + µ(L1, . . . , Mj, . . . , Lk)A.

35



Appendix 2: NP problems

• NP is the set of problems for which a proposed solution can

be verified or rejected in polynomial time

• A problem is NP-hard if an algorithm to solve it in polyno-

mial time would make it possible to solve all NP problems in

polynomial time

• NP-complete is the class of problems which are both NP-hard

and themselves members of NP

• NP-hard problems are at least as hard as (possibly harder

than) any other NP (and thus NP-complete) problems

• The bottom line is that NP-hard and NP (including NP-

complete) problems are difficult to solve — no known polynomial-

time algorithm exists for finding the solution
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