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Long term goal

Numerical Multilinear Algebra: Theory, Algorithms and Appli-

cations of Tensor Computations

• Develop a collection of standard computational methods for

higher order tensors that parallel the methods that have been

developed for order-2 tensors, ie. matrices

• Develop the mathematical foundations to facilitate this goal

• Applications
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Motivation

Past 50 years, Numerical Linear Algebra played crucial role in:

• the statistical analysis of two-way data,

• the numerical solution of partial differential equations arising
from vector fields,

• the numerical solution of second-order optimization methods.

Next step — develop Numerical Multilinear Algebra for:

• the statistical analysis of multi-way data,

• the numerical solution of partial differential equations arising
from tensor fields,

• the numerical solution of higher-order optimization methods.
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Outer product approximation

A Candecomp/Parafac or outer product model has the following

form

aijk =
r∑

α=1

xiαyjαzkα + eijk

where E = [[eijk]] ∈ Rl×m×n denotes the (unknown) error.

To minimize the error, we want an outer product approximation

argmin‖A−
r∑

α=1

xα ⊗ yα ⊗ zα‖F

where the minimum is taken over all matrices X = [x1, . . . ,xr] ∈
Rl×r, Y = [y1, . . . ,yr] ∈ Rm×r, Z = [z1, . . . , zr] ∈ Rn×r.

In short, we want an optimal solution

B∗⊗ = argmin
rank⊗(B)≤r

‖A−B‖F .

5



Alternating least squares

Even when an optimal solution B∗⊗ to argminrank⊗(B)≤r‖A−B‖F
exists, B∗⊗ is not easy to compute since the objective function is

non-convex.

A widely used strategy is a nonlinear Gauss-Seidel algorithm,

better known as the Alternating Least Squares algorithm:

Algorithm: ALS for optimal rank-r approximation

initialize X(0) ∈ Rl×r, Y (0) ∈ Rm×r, Z(0) ∈ Rn×r;
initialize s(0), ε > 0, k = 0;
while ρ(k+1)/ρ(k) > ε;

X(k+1) ← argminX̄∈Rl×r‖T −
∑r

α=1x̄
(k+1)
α ⊗ y(k)

α ⊗ z(k)
α ‖2F ;

Y (k+1) ← argminȲ ∈Rm×r‖T −
∑r

α=1x
(k+1)
α ⊗ ȳ(k+1)

α ⊗ z(k)
α ‖2F ;

Z(k+1) ← argminZ̄∈Rn×r‖T −
∑r

α=1x
(k+1)
α ⊗ y(k+1)

α ⊗ z̄(k+1)
α ‖2F ;

ρ(k+1) ← ‖
∑r

α=1[x
(k+1)
a ⊗ y(k+1)

α ⊗ z(k+1)
α − x(k)

α ⊗ y(k)
α ⊗ z(k)

α ]‖2F ;
k ← k + 1;

6



Word of caution

A sequence (θk)
∞
k=1 is said to converge if limk→∞ θk exists.

An iterative algorithm for solving a particular problem is said to

converge if the sequence of iterates (θk)
∞
k=1 is convergent and

limk→∞ θk is the solution to that problem.

The sequence of iterates generate by ALS may be a convergent

sequence but the ALS is not convergent as an algorithm for

finding the optimal PARAFAC solution.

Pitfall: An algorithm that monotonically decreases the objective

function must converge to the infimum/minimum of the func-

tion. (Not necessary, eg. fk = f(θk) = 2+ 1
k and f∗ = infD f = 1.
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Some history

f polynomial in variables x = (x1, . . . , xN). Suppose f : RN → R
non-negative valued, ie. f(x) ≥ 0 for all x ∈ RN .

Question: Can we write f as a sum of squares of polynomials,
ie. p1, . . . , pM such that

f(x) =
M∑

j=1

pj(x)2 ?

Answer (Hilbert): Not in general, eg. f(w, x, y, z) = w4+x2y2+
y2z2 + z2x2 − 4xyzw.

Hilbert’s 17th Problem: Can we write f as a sum of squares
of rational functions, ie. p1, . . . , pM and q1, . . . , qM such that

f(x) =
M∑

j=1

(
pj(x)

qj(x)

)2

?

Answer (Artin): Yes!
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SDP-based algorithm

Observation 1:

F (x11, . . . , znr) = ‖A−
∑r

α=1xα ⊗ yα ⊗ zα‖2F
=
∑l,m,n

i,j,k=1

(
aijk −

∑r
α=1xiαyjαzkα

)2
is a polynomial of total degree 6 (resp. 2k for order k-tensors)

in variables x11, . . . , znr.

Recent breakthroughs in multivariate polynomial optimization

[Lasserre 2001], [Parrilo 2003] [Parrilo-Sturmfels 2003] show

that the non-convex problem

argminF (x11, . . . , znr)

may be relaxed to a convex problem (thus global optima is gu-

ranteed) which can in turn be solved using SDP.
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How it works

Observation 2: If F − λ can be expressed as a sum of squares of

polynomials

F (x11, . . . , znr)− λ =
n∑

i=1

Pi(x11, . . . , znr)
2,

then λ is a global lower bound for F , ie.

F (x11, . . . , znr) ≥ λ

for all x11, . . . , znr ∈ R.

Simple strategy: Find the largest λ∗ such that F − λ∗ is a sum

of squares. Then λ∗ is often minF (x11, . . . , znr).

Write v = (1, x11, . . . , znr, . . . , xl1ym1zn1, . . . , z6
nr)

t, the D-tuple of

monomials of total degree ≤ 6, where

D :=
(r(l + m + n) + 3

3

)
.
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Write F (x11, . . . , znr) = αtv where α = (α1, . . . , αD) ∈ RD are the

coefficients of the respective monomials.

Since deg(F ) is even, F may also be written as

F (x11, . . . , znr) = vtMv

for some M ∈ RD×D. So

F (x11, . . . , znr)− λ = vt(M − λE11)v

where E11 = e1e
t
1 ∈ RD×D.

Observation 3: The rhs is a sum of squares iff M − λE11 is

positive semi-definite (since M − λE11 = BtB).

Hence we have

minimize −λ
subjected to vt(S + λE11)v = F,

S � 0.



This is an SDP problem

minimize 0 ◦ S − λ
subjected to S ◦B1 + λ = α1,

S ◦Bk = αk, k = 2, . . . , D
S � 0, λ ∈ R.

This problem can be solved in polynomial time. Like all SDP-

based algorithms, the SPD duality produces a certificate that

tells us whether we have arrived at a globally optimal solution.

The duality gap, ie. difference between the values of the primal

and dual objective functions, is 0 at a global minima.



Reducing the complexity

Complexity: For rank-r approximations to order-k tensors A ∈
Rd1×···×dk,

D =
(r(d1 + · · ·+ dk) + k

k

)
is large even for moderate di, r and k.

Sparsity to the rescue: The polynomials that we are interested

in are always sparse (eg. for k = 3, only terms of the form xyz

or x2y2z2 or uvwxyz appear). This can be exploited.
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Newton polytope

Newton polytope of a polynomial f is the convex hull of the

powers of the monomials in f .

Example. The Newton polytope of the polynomial f(x, y) =

3.67x4y10+−2.03x3y3+5.74x3−20.1y2−7.23 is the convex hull

of the points (4,10), (3,3), (3,0), (2,0), (0,0) in R2.

Example. The Newton polytope of the polynomial f(x, y, z) =

1.7x4y6z2 + 7.4x3z5 − 3.0y4 + 0.1yz2 is the convex hull of the

points (4,6,2), (3,0,5), (0,4,0), (0,1,2) in R3.

Theorem (Reznick). If f(x) =
∑m

i=1 pi(x)2, then the powers of

the monomials in pi must lie in 1
2 Newton(f).
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PARAFAC polynomial

The Newton polytope for a polynomial of the form

f(x11, . . . , znr) = −λ +
l,m,n∑

i,j,k=1

aijk −
r∑

α=1

xiαyjαzkα

2

is spanned by 1 and monomials of the form x2
iαy2

jαz2
kα (ie. mono-

mials of the form xiαyjαzkα and xiαyjαzkαxiβyjβzkβ may all be

dropped).

So if f(x11, . . . , znr) =
∑N

j=1 pj(x11, . . . , znr)2, then only 1 and

monomials of the form xiαyjαzkα may occur in p1, . . . , pN .

In other words, we have reduced the size of the problem from(
r(l+m+n)+3

3

)
to rlmn + 1.
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Global convergence issues

If polynomials of the form

−λ +
l,m,n∑

i,j,k=1

aijk −
r∑

α=1

xiαyjαzkα

2

can always be written as a sum of polynomials (we don’t know),

then the SDP algorithm for optimal low-rank tensor approxima-

tion will always converge globally.

Numerical experiments performed by Parrilo on general polyno-

mials yield λ∗ = minF in all cases.
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Ill-posedness of PARAFAC: existence

Well known to practitioners in multiway data analysis, the prob-

lem argminrank⊗(B)≤r‖A−B‖F may not have an optimal solution

when r ≥ 2, k ≥ 3. In fact

Theorem (L. and Golub, 2004). For tensors of any order

k ≥ 3 and with respect to any choice of norm on Rd1×···×dk,

there exists an instance A ∈ Rd1×···×dk such that A fails to have

an optimal rank-r approximation for some r ≥ 2. On the other

hand, an optimal solution always exist for k = 2 and r = 1.

In the next slide, we give an explicit example.
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Example

x,y two linearly independent vectors in R2. Consider the order-3
tensor in R2×2×2,

A := x⊗ x⊗ x + x⊗ y ⊗ y + y ⊗ x⊗ y.

A has rank 3: straight forward.

A has no optimal rank-2 approximation: consider sequence {Bn}∞n=1
in R2×2×2,

Bn := x⊗ x⊗ (x− ny) +
(
x +

1

n
y
)
⊗
(
x +

1

n
y
)
⊗ ny,

Clear that rank⊗(Bn) ≤ 2 for all n. By multilinearity of ⊗,

Bn = x⊗ x⊗ x− nx⊗ x⊗ y + nx⊗ x⊗ y

+ x⊗ y ⊗ y + y ⊗ x⊗ y +
1

n
y ⊗ y ⊗ y = A +

1

n
y ⊗ y ⊗ y.

For any choice of norm on R2×2×2,

‖A−Bn‖ =
1

n
‖y ⊗ y ⊗ y‖ → 0 as n→∞.
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Quick but flawed fix

Current way to force a solution: perturb the problem by small
ε > 0 and find approximate solution x∗i (ε),y

∗
i (ε) ∈ Rdi (i = 1,2,3)

with

‖A− x∗1(ε)⊗ y∗1(ε)⊗ z∗1(ε)− x∗2(ε)⊗ y∗2(ε)⊗ z∗2(ε)‖
= ε + inf

xi,yi∈Rdi
‖A− x1 ⊗ y1 ⊗ z1 − x2 ⊗ y2 ⊗ z2‖.

Serious numerical problems due to ill-conditioning (a phenomenon
often referred to as degeneracy or swamp in Chemometrics and
Psychometrics).

Reason? Rule of thumb in Computational Math:

A well-posed problem near to an ill-posed one is ill-conditioned.

So, even if we may perturb an ill-posed problem slightly to get a
well-posed one, the perturbed problem will more often than not
be ill-conditioned.
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Weak solutions to PARAFAC

Theorem (de Silva and L., 2004). Let l, m, n ≥ 2. Let A ∈
Rl×m×n with rank⊗(A) = 3. A is the limit of a sequence Bn ∈
Rl×m×n with rank⊗(Bn) ≤ 2 if and only if

A = x1 ⊗ y1 ⊗ z1 + x2 ⊗ y1 ⊗ z2 + x2 ⊗ y2 ⊗ z1

where {x1,x2}, {y1,y2}, {z1, z2} are linearly independent sets in

Rl, Rm, and Rn respectively.

With this, we can overcome the ill-posedness of argminrank⊗(B)≤r‖A−
B‖F by replacing rank⊗ with closedrank⊗, defined by

{A | closedrank⊗(A) ≤ r} = {A | rank⊗(A) ≤ r}.

For order-3 tensor, it follows from the theorem that

{A ∈ Rl×m×n | closedrank⊗(A) ≤ 2} =

{x1 ⊗ y1 ⊗ z1 + x2 ⊗ y1 ⊗ z2 + x2 ⊗ y2 ⊗ z1 | xi ∈ Rl,yi ∈ Rm, zi ∈ Rn}
∪ {x1 ⊗ y1 ⊗ z1 + x2 ⊗ y2 ⊗ z2 | xi ∈ Rl,yi ∈ Rm, zi ∈ Rn}

18



Ill-posedness of PARAFAC: uniqueness

Note that in PARAFAC:

argmin‖A−
∑r

α=1
xα ⊗ yα ⊗ zα‖F ,

we are really interested in minimizer X∗ = [x∗1, . . . ,x∗r] ∈ Rl×r,

Y ∗ = [y∗1, . . . ,y∗r] ∈ Rm×r, Z∗ = [z∗1, . . . , z∗r] ∈ Rn×r rather than the

minimum value.

If X∗, Y ∗, Z∗ is a minimizer, then so is X∗D1, Y ∗D2, Z∗D3 for any

diagonal D1, D2, D3 ∈ Rr×r with D1D2D3 = I.

In fact, the SDP method will not work if there is an infinite

number of possible minimizers.

Right now, we impose constraints (eg. requiring ‖yα‖ = ‖zα‖ =

1) to get uniqueness up to signs but every additional constraint

increases the complexity of the problem.
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