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Long term goal I

Numerical Multilinear Algebra: T heory, Algorithms and Appli-
cations of Tensor Computations

e Develop a collection of standard computational methods for
higher order tensors that parallel the methods that have been
developed for order-2 tensors, ie. matrices

e Develop the mathematical foundations to facilitate this goal

e Applications



Motivation |

Past 50 years, Numerical Linear Algebra played crucial role in:

e the statistical analysis of two-way data,

e the numerical solution of partial differential equations arising
from vector fields,

e the numerical solution of second-order optimization methods.
Next step — develop Numerical Multilinear Algebra for:

e the statistical analysis of multi-way data,

e the numerical solution of partial differential equations arising
from tensor fields,

e the numerical solution of higher-order optimization methods.
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Outer product approximationl

A Candecomp/Parafac or outer product model has the following
form

r
Aiik — Z LiaYjarka + Cijk

a=1

where E = [e;;x] € RI*™X™ denotes the (unknown) error.
To minimize the error, we want an outer product approximation

.
argminf|A — ) Xa ® ya ® zallp

a=1
where the minimum is taken over all matrices X = [x1,...,Xy] €
RXT Y = [yq,...,yr] € RMXT Z = [zq,...,2,] € RPXT.

In short, we want an optimal solution

Bg = argmin ||A— Blp.
rankg(B)<r



Alternating least squaresl

Even when an optimal solution Bg to argmin ;.. (y<,|A — BllF
exists, Bg@ IS not easy to compute since the objective function is
non-convex.

A widely used strategy is a nonlinear Gauss-Seidel algorithm,
better known as the Alternating Least Squares algorithm:

Algorithm: ALS for optimal rank-r approximation

initialize X ¢ Rixr y(0) ¢ Rmxr 7(0) ¢ Rnxr:

initialize (9, ¢ > 0,k = 0;

while p+1) /pk) > ¢
XE+HD  argmin g g

T oS _ D g 0 g 0|2,
YEHD  argming cgo || T — Za_laz((f"'l) T "(k"'l) UL 2
z(k+1) argmin z g || T — Er lx((yk:—i-l) Ry (k—i-l) R —(k+1)||2
p(k—i—l) - ||Z _1[ (k+1) Ry (k—l-l) ® z (k+1) (k?) ® y(k) ® Z(k)]HF;

k—k+4+1;




Word of caution |

A sequence (0;)72 is said to converge if limy_,,, 0 exists.

An iterative algorithm for solving a particular problem is said to
converge if the sequence of iterates (Hk)gozl is convergent and
limg_, ., 05 is the solution to that problem.

The sequence of iterates generate by ALS may be a convergent
sequence but the ALS is not convergent as an algorithm for
finding the optimal PARAFAC solution.

Pitfall: An algorithm that monotonically decreases the objective
function must converge to the infimum/minimum of the func-
tion. (Not necessary, eg. fy = f(6y) =2+ and f* =infp f = 1.



Some history l

f polynomial in variables x = (z1,...,z5). Suppose f:RY - R
non-negative valued, ie. f(x) > 0 for all x € RV.

Question: Can we write f as a sum of squares of polynomials,
ie. p1,...,ppr Such that

M
fx) =Y pi(x)? 7

J=1
Answer (Hilbert): Not in general, eg. f(w,z,y, z) = w*+z2y2+
y2z2 + 2222 — dxyzw.

Hilbert’'s 17th Problem: Can we write f as a sum of squares

of rational functions, ie. p1,...,pp and q1,...,q)7 Such that
M 2
p;(x)
=3 (12)
j=1 q](X)

Answer (Artin): Yes!



SDP-based algorithm I

Observation 1:

F(211,- -5 2nr) = |A = X7 _1Xa @ Ya ® za|%

[,mmn 2
— Zi,j,k:]_ (aijk: - Zgzlwiayjazka)

is a polynomial of total degree 6 (resp. 2k for order k-tensors)
in variables x11,..., znr.

Recent breakthroughs in multivariate polynomial optimization
[Lasserre 2001], [Parrilo 2003] [Parrilo-Sturmfels 2003] show
that the non-convex problem

argmin F(x11,..., 2nr)

may be relaxed to a convex problem (thus global optima is gu-
ranteed) which can in turn be solved using SDP.



How it worksl

Observation 2: If FF— X can be expressed as a sum of squares of
polynomials

mn
F(xlla'”azn’l") — A= Z Pi(fU]_]_,...,an)Q,
i=1
then X\ is a global lower bound for F, ie.

F(CU]_]_,...,ZTLT) Z)\

Simple strategy: Find the largest A\* such that FF — A* is a sum

of squares. Then \* is often min F(x11,...,2nr).
Write v = (1,211, -, 2nr, - -, T[1Ym1Znl, - - - » 25.)t, the D-tuple of
monomials of total degree < 6, where
Do rl+m-+n)+3
= ( . )
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Write F(z11,...,2nr) = alv where a = (a1, ...,ap) € RP are the
coefficients of the respective monomials.

Since deg(F') is even, F' may also be written as

F(CC]_]_, .. .,an) — VtMV

for some M ¢ RPxD 5o

F(z11,---,2nr) = A=V (M — XE11)v

where F11 = eletl e RP*D,

Observation 3: The rhs is a sum of squares iff M — AFEq1 is
positive semi-definite (since M — AE11 = B'B).

Hence we have

minimize —\
subjected to v!(S + \Ej1)v = F,
S > 0.



This is an SDP problem

minimize 0o S — A\
subjected to SoBi+ A= aq,
SoBkzak, ]CZQ,...,D
S >0, A eR.

This problem can be solved in polynomial time. Like all SDP-
based algorithms, the SPD duality produces a certificate that
tells us whether we have arrived at a globally optimal solution.

The duality gap, ie. difference between the values of the primal
and dual objective functions, is O at a global minima.



Reducing the complexityl

Complexity: For rank-r approximations to order-k tensors A €
Rd1 X Xdj
T(d1+°°°+dk)+k)
k
is large even for moderate d;, »r and k.

p=(

Sparsity to the rescue: The polynomials that we are interested
in are always sparse (eg. for k = 3, only terms of the form zyz
or z2y2z2 or wvwzyz appear). This can be exploited.
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Newton polytopel

Newton polytope of a polynomial f is the convex hull of the
powers of the monomials in f.

Example. The Newton polytope of the polynomial f(xz,y) =
3.672%104+ —2.0323y3 4+ 5.7423 — 20.1y2 — 7.23 is the convex hull
of the points (4,10),(3,3),(3,0),(2,0),(0,0) in R2.

Example. The Newton polytope of the polynomial f(x,vy,z) =
1.72%y%22 + 7.4232° — 3.0y* + 0.1y22 is the convex hull of the
points (4,6,2),(3,0,5),(0,4,0),(0,1,2) in R3.

Theorem (Reznick). If f(x) = Z;ﬁ:lpi(x)Q, then the powers of
the monomials in p; must lie in 5 Newton(f).
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PARAFAC polynomial l

The Newton polytope for a polynomial of the form

[,mmn r 2
f(x11,--- 2nr) = =X+ Z Qiik — Z LiaYjorka

1,7,k=1 a=1

is spanned by 1 and monomials of the form :Umy]azk,a (ie. mono-
mials of the form z;,¥Yjnzka AN Tin¥jnZkaTigy;szkg May all be
dropped).

SO |f f(xll,.. Zn'r') — Z 1p](x11,...,an)2, theﬂ Oﬂ|y 1 and
monomials of the form z;ay;a2ke May OCCUr in pi,...,pN-

In other words, we have reduced the size of the problem from
(T(l_l_mg_n)—'_?’) to rimn + 1.
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Global convergence issuesl

If polynomials of the form

[m,n r 2
—A+ Z Aiik — Z LiaYjafka

i,5,k=1 a=1
can always be written as a sum of polynomials (we don’t know),

then the SDP algorithm for optimal low-rank tensor approxima-
tion will always converge globally.

Numerical experiments performed by Parrilo on general polyno-
mials vield A* = min F' in all cases.
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Ill-posedness of PARAFAC: existencel

Well known to practitioners in multiway data analysis, the prob-

lem argmin ani, (B)<r 4 — Bl[p may not have an optimal solution
when r > 2, k > 3. In fact

Theorem (L. and Golub, 2004). For tensors of any order
k > 3 and with respect to any choice of norm on R%1X~Xdg
there exists an instance A € R41X"Xdk such that A fails to have
an optimal rank-r approximation for some r > 2. On the other
hand, an optimal solution always exist for k =2 and r = 1.

In the next slide, we give an explicit example.
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Examplel

x,y two linearly independent vectors in R2. Consider the order-3
tensor in R2x2X2

A=xXxRXRIX+XQYRYVF+YRIXRY.
A has rank 3: straight forward.

A has no optimal rank-2 approximation: consider sequence {Bn}>2 4
in RQXQXQ

Bnp i =x®x® (x—ny) + <X—I—%y> ®<X—I—%y) ® ny,
Clear that rankg(Byr) < 2 for all n. By multilinearity of ®,
B =XxQ@xXxQX—nNXRIXQYy +nxXQxQYy
+x®y®y+y®><®y+%y®y®y=A+%y®y®y-
For any choice of norm on R2X2x2
|4~ Bul = ly®y®yl—0  asn— oo
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Quick but flawed fixl

Current way to force a solution: perturb the problem by small
e > 0 and find approximate solution x}(e),y (e) € R% (i = 1,2, 3)
with

A =x1(e) ®y1(e) ®21(e) — x5(e) ®y3(e) ® z5(e) ||

=e+ inf [[A-Xx1Qy1®21 —X0QYy2® zo||.
x;,y; ER%

Serious numerical problems due to ill-conditioning (a phenomenon
often referred to as degeneracy or swamp in Chemometrics and
Psychometrics).

Reason? Rule of thumb in Computational Math:
A well-posed problem near to an ill-posed one is ill-conditioned.

So, even if we may perturb an ill-posed problem slightly to get a
well-posed one, the perturbed problem will more often than not

be ill-conditioned.
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Weak solutions to PARAFAC'

Theorem (de Silva and L., 2004). Let I,m,n > 2. Let A ¢
RIXmXn \with rankg(A) = 3. A is the limit of a sequence By €
RIXmXn \with rankg(Br) < 2 if and only if

A=Xx1Ry1®21 +X2QYy1 ®zZ2 + X2 Qy2 ® 21

where {x1,x2}, {y1,y¥2}, {z1,2zo} are linearly independent sets in
R! R™, and R™ respectively.

With this, we can overcome the ill-posedness of argmin yni. (B)<rllA—
B||g by replacing rankg with closedrankg, defined by

{A | closedrankg(A) <r} ={A | rankg(A) <r}.

For order-3 tensor, it follows from the theorem that

{A € RX™x" | closedrankg(A) < 2} =
(X1Qy1 021 + X Qy1 @2+ %X ®y:®21 | x; € Ry, € R™ z; € R"}
U{x1®y1 021 +x®y>2®2 | x; € Rl y; € R™, z; € R"}
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Ill-posedness of PARAFAC: uniquenessl

Note that in PARAFAC:

argmin||A — Z;zl Xa ® Ya ® Zal| F

we are really interested in minimizer X* = [x%,...,x}] € R/*",
Y*=[yi,...,ys] e R™*", Z* =[z},...,z;] € R"*" rather than the
Mminimum value.

If X*, Y* Z* is a minimizer, then so is X*D1,Y*D»>, Z* D3 for any
diagonal Dq, D5, D3 € R"*" with D1D>D3 = 1I.

In fact, the SDP method will not work if there is an infinite
number of possible minimizers.

Right now, we impose constraints (eg. requiring ||ya|| = ||zal| =
1) to get uniqueness up to signs but every additional constraint

increases the complexity of the problem.
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