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an Equivariant Neural
Network?
Lek-Heng Lim and Bradley J. Nelson

We explain equivariant neural networks, a notion under-
lying breakthroughs in machine learning from deep con-
volutional neural networks for computer vision [KSH12]
to AlphaFold 2 for protein structure prediction [JEP+21],
without assuming knowledge of equivariance or neural
networks. The basic mathematical ideas are simple but are
often obscured by engineering complications that come
with practical realizations. We extract and focus on the
mathematical aspects, and limit ourselves to a cursory
treatment of the engineering issues at the end. We also in-
clude some materials with machine learning practitioners
in mind.

Let 𝕍 and 𝕎 be sets, and 𝑓∶ 𝕍 → 𝕎 a function. If a
group 𝐺 acts on both 𝕍 and𝕎, and this action commutes
with the function 𝑓:

𝑓(𝑥 ⋅ 𝑣) = 𝑥 ⋅ 𝑓(𝑣) for all 𝑣 ∈ 𝕍, 𝑥 ∈ 𝐺,
then we say that 𝑓 is 𝐺-equivariant. The special case where
𝐺 acts trivially on 𝕎 is called 𝐺-invariant. Linear equi-
variant maps are well-studied in representation theory and
continuous equivariant maps are well-studied in topology.
The novelty of equivariant neural networks is that they
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are usually nonlinear and sometimes discontinuous, even
when 𝕍 and 𝕎 are vector spaces and the actions of 𝐺 are
linear.

Equivariance is ubiquitous in applications where sym-
metries in the input space 𝕍 produce symmetries in the
output space𝕎. We consider a simple example. An image
may be regarded as a function 𝑣∶ ℝ2 → ℝ3, with each pixel
𝑝 = (𝑝1, 𝑝2) ∈ ℝ2 assigned some RGB color (𝑟, 𝑔, 𝑏) ∈ ℝ3.
A simplifying assumption here is that pixels and colors can
take values in a continuum. Let 𝕍 = 𝕎 be the set of all
images. Let the group 𝐺 = {1, 𝑥} ≅ ℤ/2ℤ act on 𝕍 via
top-bottom reflection, i.e., 𝑥 ⋅ 𝑣 is the image whose value at
(𝑝1, 𝑝2) is 𝑣(𝑝1, −𝑝2). Let 𝜎∶ ℝ3 → ℝ3,

𝜎(𝑟, 𝑔, 𝑏) = {(0, 0, 0) if 𝑟 = 𝑔 = 𝑏 = 0,
(255, 255, 255) otherwise.
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Here (0, 0, 0) and (255, 255, 255) are the RGB encodings
for pitch black and pure white respectively. So the map
𝑓∶ 𝕍 → 𝕍, 𝑓(𝑣) = 𝜎 ∘ 𝑣 transforms a color image into a
black-and-white image. It does not matter whether we do
a top-bottom reflection first or remove color first, the re-
sult is always the same, i.e., 𝑓(𝑥 ⋅ 𝑣) = 𝑥 ⋅ 𝑓(𝑣) for all 𝑣 ∈ 𝕍.
Hence the decoloring map 𝑓 is 𝐺-equivariant.

Our choice of an image with left-right symmetry
presents another opportunity to illustrate the notion. If
we choose coordinates so that the vertical axis passes
through the center of the butterfly image, then as a func-
tion 𝑣∶ ℝ2 → ℝ3, it is invariant under the action of
𝐻 = {1, 𝑠} ≅ ℤ/2ℤ on ℝ2 via 𝑠(𝑝1, 𝑝2) = (−𝑝1, 𝑝2), i.e.,
𝑣(𝑠 ⋅𝑝) = 𝑣(𝑝). Note that the 𝐺-equivariance of 𝑓 has noth-
ing to do with this.

A takeaway of these examples is that nonlinear and dis-
continuous functions may very well be equivariant. How-
ever, the best known context for discussing equivariant
maps is when 𝑓 is an intertwining operator, i.e., a linear
map between vector spaces 𝕍 and 𝕎 equipped with a lin-
ear action of 𝐺. In this case, an equivalent formulation
of 𝐺-equivariance takes the following form: Given linear
representations of 𝐺 on 𝕍 and 𝕎, i.e., homomorphisms
𝜌1 ∶ 𝐺 → GL(𝕍) and 𝜌2 ∶ 𝐺 → GL(𝕎), a linear map
𝑓∶ 𝕍 → 𝕎 is said to be 𝐺-equivariant if

𝑓(𝜌1(𝑥)𝑣) = 𝜌2(𝑥)𝑓(𝑣) for all 𝑣 ∈ 𝕍, 𝑥 ∈ 𝐺. (1)

Intertwining operators preserve eigenvalues and, when 𝐺
is a Lie group, the action of its Lie algebra, properties that
are crucial to their use in physics [BH10].

Nevertheless the restriction to linear maps is unneces-
sary. The de Rham problem asks if 𝕍 = 𝕎 = ℝ𝑛 and
𝑓∶ ℝ𝑛 → ℝ𝑛 is merely required to be a homeomorphism,
then does condition (1) imply that 𝑓must be a linearmap?
De Rham conjectured this to be the case but it was dis-
proved in [CS81], launching a fruitful study of nonlinear
similarity, i.e., nonlinear homeomorphisms 𝑓 with

𝑓𝜌1(𝑥)𝑓−1 = 𝜌2(𝑥) for all 𝑥 ∈ 𝐺,

in algebraic topology and algebraic K-theory. More gen-
erally, equivariant continuous maps under continuous
group actions have been thoroughly studied in equivari-
ant topology [May96].

An equivariant neural network [CW16] is an equi-
variant map 𝑓 constructed from alternately composing
equivariant linear maps with nonlinear ones like the de-
coloring map above. That neural networks can be readily
made equivariant is a consequence of two straightforward
observations:

(i) the composition of two 𝐺-equivariant functions
𝑓∶ 𝕍 → 𝕎, 𝑔∶ 𝕌 → 𝕍 is 𝐺-equivariant;

(ii) the linear combination of two 𝐺-equivariant func-
tions 𝑓, 𝑔∶ 𝕍 → 𝕎 is 𝐺-equivariant;

even when 𝑓, 𝑔 are nonlinear. Although an equivariant
neural network is nonlinear, it uses intertwining operators
as building blocks, and (1) plays a key role. In some ap-
plications like the wave function on p. 622, the input 𝕍 or
possibly some hidden layers may not be vector spaces; for
simplicity we assume that they are and their 𝐺-actions are
linear.

In machine learning applications, the map 𝑓 is learned
from data. A major advantage of requiring equivariance
in a neural network 𝑓 is that it allows one to greatly nar-
row down the search space for the parameters that define
𝑓. To demonstrate this, we begin with a simplified case
that avoids group representations. A feed-forward neural
network is a function 𝑓∶ ℝ𝑛 → ℝ𝑛 obtained by alternately
composing affine maps 𝛼𝑖 ∶ ℝ𝑛 → ℝ𝑛, 𝑖 = 1, … , 𝑘, with a
nonlinear function 𝜎∶ ℝ𝑛 → ℝ𝑛, i.e.,

ℝ𝑛 𝛼1−−→ ℝ𝑛 𝜍−→ ℝ𝑛 𝛼2−−→ ℝ𝑛 𝜍−→ ⋯ 𝜍−→ ℝ𝑛 𝛼𝑘−−→ ℝ𝑛,

giving 𝑓 = 𝛼𝑘∘𝜎∘𝛼𝑘−1∘⋯∘𝜎∘𝛼2∘𝜎∘𝛼1. The depth, also known
as the number of layers, is 𝑘 and the width, also known as
the number of neurons, is 𝑛. The simplifying assumption,
which will be dropped later, is that our neural network has
constant width throughout all layers. The nonlinear func-
tion 𝜎 is called an activation, with the ReLU (rectified linear
unit) function 𝜎(𝑡) ≔ max(𝑡, 0) for 𝑡 ∈ ℝ a standard choice.
In a slight abuse of notation, the activation is extended to
vector inputs 𝑣 = (𝑣1, … , 𝑣𝑛) ∈ ℝ𝑛 by evaluating coordi-
natewise

𝜎(𝑣) = (𝜎(𝑣1), … , 𝜎(𝑣𝑛)). (2)

In this sense, 𝜎∶ ℝ𝑛 → ℝ𝑛 is called a pointwise nonlinear-
ity. The affine function is defined by 𝛼𝑖(𝑣) = 𝐴𝑖𝑣 + 𝑏𝑖 for
some𝐴𝑖 ∈ ℝ𝑛×𝑛 called theweightmatrix and some 𝑏𝑖 ∈ ℝ𝑛

called the bias vector. We do not include a bias 𝑏𝑘 in the
last layer.

Although convenient, it is somewhat misguided to
lump the bias and weight together in an affine function.
Each bias 𝑏𝑖 is intended to serve as a threshold for the acti-
vation 𝜎 and should be part of it, detached from the weight
𝐴𝑖 that transforms the input. If one would like to incorpo-
rate translations, one may do so by going up one dimen-
sion, observing that [ 𝐴 𝑏

0 1 ][ 𝑣1 ] = [ 𝐴𝑣+𝑏1 ]. Hence, a better,
but mathematically equivalent, description of 𝑓 would be
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as the composition

ℝ𝑛 𝐴1−−→ ℝ𝑛
𝜍𝑏1−−→ ℝ𝑛 𝐴2−−→ ℝ𝑛

𝜍𝑏2−−→ ⋯
𝜍𝑏𝑘−1−−−−→ ℝ𝑛 𝐴𝑘−−→ ℝ𝑛

wherewe identify𝐴𝑖 ∈ ℝ𝑛×𝑛 with the linear operatorℝ𝑛 →
ℝ𝑛, 𝑣 ↦ 𝐴𝑖𝑣, and for any 𝑏 ∈ ℝ𝑛 we define 𝜎𝑏 ∶ ℝ𝑛 → ℝ𝑛

by 𝜎𝑏(𝑣) = 𝜎(𝑣 + 𝑏) ∈ ℝ𝑛. We will drop the composition
symbol ∘ to avoid clutter and write

𝑓 = 𝐴𝑘𝜎𝑏𝑘−1𝐴𝑘−1⋯𝜎𝑏2𝐴2𝜎𝑏1𝐴1
as if it were a product of matrices. For example, with the
aforementioned ReLU as 𝜎,

𝜎−𝜃(𝑡) = max(𝑡 − 𝜃, 0) = {𝑡 − 𝜃 𝑡 ≥ 𝜃,
0 𝑡 < 𝜃,

(3)

and 𝜃 ∈ ℝ plays the role of a threshold for activation as
was intended in [Ros58, p. 392] and [MP43, p. 120].

A major computational issue with neural networks is
the large number of unknown parameters, namely the
𝑘𝑛2+(𝑘−1)𝑛 entries of the weights and biases, that have to
be fit with data, especially for wide neural networks where
𝑛 is large. To get an idea of the numbers involved in re-
alistic situations, 𝑛 may be on the order of millions of
pixels for image-based tasks, whereas 𝑘 is typically 10 to
50 layers deep. Computational cost aside, one may not
have enough data to fit so many parameters. Thus, many
successful applications of neural networks require that we
identify, based on the problem at hand, an appropriate
low-dimensional subset of ℝ𝑛×𝑛 from which we will find
our weights 𝐴1, … , 𝐴𝑘. For example, for a signal processing
problem, we might restrict 𝐴1, … , 𝐴𝑘 to be Toeplitz matri-
ces; the convolutional neural networks for image recogni-
tion in [KSH12], an article that launched the deep learn-
ing revolution, essentially restrict 𝐴1, … , 𝐴𝑘 to so called
block-Toeplitz–Toeplitz-block or BTTB matrices. For 1D
inputs with a single channel, i.e., inputs from ℝ𝑛, a general
weight matrix requires 𝑛2 parameters, whereas a Toeplitz
one just needs 𝑛 parameters and an 𝑚-banded Toeplitz
one requires just 𝑚. For 2D inputs with 𝑐 channels such
as color images, i.e., inputs from ℝ𝑐𝑛2 , a general weight
matrix would have required a staggering 𝑐2𝑛4 parameters,
whereas a BTTB one just needs 𝑐2𝑛2, and an 𝑚 × 𝑚 local
BTTB one requires just 𝑐2𝑚2. These are all simplified ver-
sions of the convolutional layers in a convolutional neural
networks, which are a quintessential example of equivari-
ant neural networks [CW16], and in fact every equivariant
neural network may be regarded as a generalized convolu-
tional neural network in an appropriate sense [KT18].

To see how equivariance naturally restricts the range of
possible 𝐴1, … , 𝐴𝑘, let 𝐺 ⊆ ℝ𝑛×𝑛 be a matrix group. Then
𝑓∶ ℝ𝑛 → ℝ𝑛 is 𝐺-equivariant if

𝑓(𝑋𝑣) = 𝑋𝑓(𝑣) for all 𝑣 ∈ ℝ𝑛, 𝑋 ∈ 𝐺; (4)

and an equivariant neural network is simply a feed-
forward neural network 𝑓∶ ℝ𝑛 → ℝ𝑛 that satisfies (4). The

key to its construction is just that

𝑓(𝑋𝑣) = 𝐴𝑘𝜎𝑏𝑘−1𝐴𝑘−1⋯𝜎𝑏2𝐴2𝜎𝑏1𝐴1𝑋𝑣
= 𝑋(𝑋−1𝐴𝑘𝑋)(𝑋−1𝜎𝑏𝑘−1𝑋)(𝑋−1𝐴𝑘−1𝑋)

⋯ (𝑋−1𝐴2𝑋)(𝑋−1𝜎𝑏1𝑋)(𝑋−1𝐴1𝑋)𝑣
= 𝑋𝐴′𝑘𝜎′𝑏𝑘−1𝐴

′
𝑘−1⋯𝜎′𝑏2𝐴

′
2𝜎′𝑏1𝐴

′
1𝑣

and the last expression equals 𝑋𝑓(𝑣) if we have

𝐴′𝑖 = 𝑋−1𝐴𝑖𝑋 = 𝐴𝑖, 𝜎′𝑏𝑖 = 𝑋−1𝜎𝑏𝑖𝑋 = 𝜎𝑏𝑖 (5)

for all 𝑖 = 1, … , 𝑘, and for all 𝑋 ∈ 𝐺. The condition on the
right is satisfied by any pointwise nonlinearity that takes
the form in (3), i.e., 𝑏𝑖 ∈ ℝ𝑛 has all coordinates equal to
some 𝜃 ∈ ℝ; we will elaborate on this later. The condition
on the left limits the possible weights for 𝑓 to a (generally)
much smaller subspace of matrices that commute with all
elements of𝐺. Finding this subspace (in fact a subalgebra)
of intertwining operators,

{𝐴 ∈ ℝ𝑛×𝑛 ∶ 𝐴𝑋 = 𝑋𝐴 for all 𝑋 ∈ 𝐺}, (6)

is a well-studied problem in group representation theory;
a general purpose approach is to compute the null space
of a matrix built from the generators of 𝐺 and, if continu-
ous, its Lie algebra [FWW21]. We caution the reader that
𝐺 will generally be a very low-dimensional subset of ℝ𝑛×𝑛,
as will become obvious from our example below in (8). It
will be pointless to pick, say, 𝐺 = SO(𝑛) as the set in (6)
will then be just {𝜆𝐼 ∈ ℝ𝑛×𝑛 ∶ 𝜆 ∈ ℝ}, clearly too small
to serve as meaningful weights for any neural network. In-
deed, 𝐺 will usually be a homomorphic image of a repre-
sentation 𝜌∶ 𝐺 → GL(𝑛), i.e., the image 𝜌(𝐺) will play the
role of𝐺 in (6). In any case, we will need to bring in group
representations to address a different issue.

In general, neural networks have different width 𝑛𝑖 in
each layer:

ℝ𝑛0
𝐴1−−→ ℝ𝑛1

𝜍𝑏1−−→ ℝ𝑛1
𝐴2−−→ ℝ𝑛2

𝜍𝑏2−−→ ⋯

⋯
𝜍𝑏𝑘−1−−−−→ ℝ𝑛𝑘−1

𝐴𝑘−−→ ℝ𝑛𝑘

with 𝐴𝑖 ∈ ℝ𝑛𝑖−1×𝑛𝑖 , 𝑖 = 1, … , 𝑘, 𝑏𝑖 ∈ ℝ𝑛𝑖 , 𝑖 = 1, … , 𝑘−1. The
simplified case treated above assumes that 𝑛0 = 𝑛1 = ⋯ =
𝑛𝑘 = 𝑛. It is easy to accommodate this slight complication
by introducing group representations to equip every layer
with its own homomorphic copy of 𝐺. Instead of fixing 𝐺
to be some subgroup of GL(𝑛), 𝐺may now be any abstract
group but we introduce a homomorphism

𝜌𝑖 ∶ 𝐺 → GL(𝑛𝑖), 𝑖 = 0, 1, … , 𝑘,
in each layer, and replace the equivariant condition (5)
with the more general (1), i.e.,

𝜌𝑖(𝑥)−1𝐴𝑖𝜌𝑖−1(𝑥) = 𝐴𝑖, 𝜌𝑖(𝑥)−1𝜎𝑏𝑖𝜌𝑖(𝑥) = 𝜎𝑏𝑖
or, equivalently,

𝐴𝑖𝜌𝑖−1(𝑥) = 𝜌𝑖(𝑥)𝐴𝑖, 𝜎𝑏𝑖𝜌𝑖(𝑥) = 𝜌𝑖(𝑥)𝜎𝑏𝑖 (7)
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for all 𝑥 ∈ 𝐺. In case (7) evokes memories of Schur’s
Lemma, we would like to stress that the representations
𝜌𝑖 are in general very far from being irreducible and that
the map 𝜎𝑏𝑖 is nonlinear. Indeed the scenario described by
Schur’s Lemma is undesirable for equivariant neural net-
works: As we pointed out earlier, we do not want to restrict
our weight matrices to the form 𝐴𝑖 = 𝜆𝐼 or a direct sum of
these.

We summarize our discussion with a formal definition.

Definition 1. Let 𝐴𝑖 ∈ ℝ𝑛𝑖−1×𝑛𝑖 , 𝑖 = 1, … , 𝑘, 𝑏𝑖 ∈ ℝ𝑛𝑖 ,
𝑖 = 1, … , 𝑘 − 1, and 𝜎∶ ℝ → ℝ be a continuous function.
Let 𝐺 be a group and 𝜌𝑖 ∶ 𝐺 → GL(𝑛𝑖), 𝑖 = 0, … , 𝑘, be its
representations. The 𝑘-layer feed-forward neural network
𝑓∶ ℝ𝑛0 → ℝ𝑛𝑘 given by

𝑓(𝑣) = 𝐴𝑘𝜎𝑏𝑘−1𝐴𝑘−1⋯𝜎𝑏2𝐴2𝜎𝑏1𝐴1𝑣
is a 𝐺-equivariant neural network with respect to 𝜌0, … , 𝜌𝑘
if (7) holds for all 𝑥 ∈ 𝐺. Here 𝜎𝑏 ∶ ℝ𝑛𝑖 → ℝ𝑛𝑖 , 𝜎𝑏(𝑣) =
𝜎(𝑣 + 𝑏), is a pointwise nonlinearity as in (2).

A word of caution is in order here. What we call a neural
network [MP43], i.e., the alternate composition of activa-
tions with affine maps, is sometimes also called a multi-
layer perceptron [Ros58]; a standard depiction is shown in
Figure 1. When it is fit with data, one would invariably
feed its output into a loss function and that is usually not
equivariant; or one might chain together multiple units of
multilayer perceptrons into larger frameworks like autoen-
coders, generative adversarial networks, transformers, etc,
that contain other nonequivariant components. In the lit-
erature, the term “neural network” sometimes refers to the
entire framework collectively. In our article, it just refers
to the multilayer perceptron—this is the part that is equi-
variant.

Wewill use an insightful toy example as illustration. Let
𝕍 = (ℝ3)𝑚 = ℝ3𝑚 be the set of possible positions of 𝑚
unit-weight masses,𝕎 = ℝ3, and 𝑓 ∶ 𝕍 → 𝕎 compute the
center of mass

𝑓(𝑦1, … , 𝑦𝑚) =
1
𝑚

𝑚
∑
𝑖=1

𝑦𝑖 (8)

with 𝑦1, … , 𝑦𝑚 ∈ ℝ3. We use the same system of coordi-
nates for each copy of ℝ3 in 𝕍 and 𝕎. If we work in a dif-
ferent coordinate system, the position of the center ofmass
remains unchanged but its coordinates will change accord-
ingly. For simplicity, we consider a linear change of coor-
dinates, represented by the action of a matrix 𝑋 ∈ GL(3)
on each point in ℝ3. By linearity,

𝑓(𝑋(𝑦1, … , 𝑦𝑚)) =
1
𝑚

𝑚
∑
𝑖=1

𝑋𝑦𝑖 = 𝑋𝑓(𝑦1, … , 𝑦𝑚),

so 𝑓 is GL(3)-equivariant. Since each mass has the same
unit weight, 𝑓 is also invariant under permutations of
the input points. Let 𝜋 ∈ 𝑆𝑚, which acts on 𝕍 via

𝜋(𝑦1, … , 𝑦𝑚) = (𝑦𝜋(1), … , 𝑦𝜋(𝑚)) and acts trivially on 𝕎 via
𝜋(𝑦) = 𝑦. As the sum in (8) is permutation invariant,

𝑓(𝜋(𝑦1, … , 𝑦𝑚)) = 𝜋𝑓(𝑦1, … , 𝑦𝑚),

so 𝑓 is 𝑆𝑚-invariant. Combining our two group actions,
we see that 𝑓 is (GL(3) × 𝑆𝑚)-equivariant. Note that the
group here is 𝐺 = GL(3) × 𝑆𝑚, which has much lower di-
mension than GL(𝕍) = GL(3𝑚) for large𝑚. This is typical
in equivariant neural networks.

In this simple example, we not only know 𝑓 but have an
explicit expression for it. In general, there are many func-
tions that we know should be equivariant or invariant to
certain group actions, but for which we do not know any
simple closed-form expression; and this is where it helps
to assume that 𝑓 is given by some neural network whose
parameters could be determined by fitting it with data, or,
if it is used as an ansatz, by plugging into some differential
or integral equations. A simple data-fitting example is pro-
vided by semantic segmentation in images, which seeks to
classify pixels as belonging to one of several types of ob-
jects. If we rotate or mirror an image, we expect that pixel
labels should follow the pixels. A more realistic version
of the center of mass example would be a molecule repre-
sented by positions of its atoms, which comes up in chem-
ical property or drug response predictions. Here we want
equivariance with respect to coordinate transformations,
but we wish to preserve pairwise distances between atoms
and chirality, so the natural group to use is SO(3) [KLT18]
or the special Euclidean group SE(3) [WGW+18,FWFW20].
The much-publicized protein structure prediction engine
of DeepMind’s AlphaFold 2 relies on an SE(3)-equivariant
neural network and an SE(3)-invariant attention module
[JEP+21]. In [TEW+21], SE(3)-equivariant convolution is
used to improve accuracy assessments of RNA structure
models.

Another straightforward example comes from computa-
tional quantum chemistry, where one seeks a solution to
a Schrödinger equation: if we write 𝑣𝑖 ∈ ℝ3 × {−1/2, 1/2},
then the wave function of𝑚 identical spin-1/2 fermions is
antisymmetric, i.e.,

𝑓(𝑣𝜋(1), 𝑣𝜋(2), … , 𝑣𝜋(𝑚)) = (−1)sgn(𝜋)𝑓(𝑣1, 𝑣2, … , 𝑣𝑚)

for all 𝜋 ∈ 𝑆𝑚. In other words, the increasingly popular an-
tisymmetric neural networks [HSN20] are 𝑆𝑚-equivariant
neural networks. Even without going into the details, the
reader could well imagine that restricting to neural net-
works that are antisymmetric is a savings from having to
consider all possible neural networks. More esoteric exam-
ples in particle physics call for Lorentz groups of various
stripes like O(1, 3), O+(1, 3), SO(1, 3), or SO+(1, 3), which
are used in Lorentz-equivariant neural networks to identify
top quarks in data from high-energy physics experiments
[BAO+20].
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Figure 1. A 𝑘-layer 𝜎-activated feed-forward neural network, also known as a multilayer perceptron.

We now discuss the equivariant condition for pointwise
nonlinearities 𝑋−1𝜎𝑏𝑋 = 𝜎𝑏. It is instructive to look at a
simple numerical example. Suppose we apply a pointwise
nonlinearity 𝜎 and a permutation matrix 𝑋 given by

𝜎(𝑡) = {+1 𝑡 ≥ 3.0,
−1 𝑡 < 3.0,

𝑋 = [
0 1 0
0 0 1
1 0 0

] ,

to a vector 𝑣 = (2.1, 3.4, 0.2) ∈ ℝ3. We see that 𝜎(𝑋𝑣) =
𝑋𝜎(𝑣):

[
2.1
3.4
0.2

]
𝑋−→ [

3.4
0.2
2.1

]
𝜍−−→ [

+1
−1
−1

]
𝑋−1
−−−→ [

−1
+1
−1

]

which clearly holds more generally, i.e., 𝑋−1𝜎𝑋 = 𝜎 for
any permutation matrix 𝑋 and any pointwise nonlinearity
𝜎. The bottom line is that the permutationmatrix𝑋 = 𝜌(𝜋)
comes from a representation 𝜌 ∶ 𝑆𝑛 → GL(𝑛); and since
𝜋 ∈ 𝑆𝑛 acts on the indices of 𝑣 and 𝜎∶ ℝ𝑛 → ℝ𝑛 acts on the
values of 𝑣, the two actions are always independent of each
other. More generally, it is easy to see that if we include a
bias term 𝑏 ∈ ℝ𝑛, then 𝜎𝑏 ∶ ℝ𝑛 → ℝ𝑛 is 𝑆𝑛-equivariant
as long as 𝑏 has all coordinates equal [CW16]. This does
not necessarily hold for more general 𝑏: Take the example
above and set the bias to be 𝑏 = (−1, 0, 0).

[
2.1
3.4
0.2

]
𝑋−→ [

3.4
0.2
2.1

]
𝜍𝑏−−→ [

−1
−1
−1

]
𝑋−1
−−−→ [

−1
−1
−1

]

but 𝜎𝑏(𝑣) = 𝜎(𝑣 + 𝑏) = (−1,+1, −1). So 𝑋−1𝜎𝑏𝑋 ≠ 𝜎𝑏.
Going beyond pointwise nonlinearity is a nontrivial issue
and is crucial when the neural network requires more than
just 𝑆𝑛-equivariance. We will say a few words about this
below.

The mathematical ideas that we have described are all
fairly straightforward. Indeed the technical challenges in
equivariant neural networks aremostly about getting these
mathematical ideas to work in real-life situations, what we
have swept under the “engineering complications” rug. We
will discuss a few of these but as engineering complications
go, they invariably depend on the problem at hand and
every case is different.

The butterfly image example presented at the beginning
already concealed several difficulties. While we have as-
sumed that images are functions 𝑣∶ ℝ2 → ℝ3, in real life
they are sampled on a grid, i.e., pixels are discrete, and
a more realistic model would be 𝑣∶ ℤ2 → ℝ3. Instead
of a straightforward SO(2)-equivariance as one might ex-
pect for imaging problems, one instead finds discussions
of equivariance [CW16] with respect to wallpaper groups
like

𝐺1 = {[
1 0 𝑚1
0 1 𝑚2
0 0 1

] ∈ ℝ3×3 ∶ 𝑚1, 𝑚2 ∈ ℤ}

for translation in ℤ2; or

𝐺2 = {[
cos(𝑘𝜋/2) −sin(𝑘𝜋/2) 𝑚1
sin(𝑘𝜋/2) cos(𝑘𝜋/2) 𝑚2

0 0 1
] ∈ ℝ3×3 ∶

𝑘 = 0, 1, 2, 3; 𝑚1, 𝑚2 ∈ ℤ}

that augments 𝐺1 with right-angle rotations; or

𝐺3 = {[ (−1)
𝑗 cos(𝑘𝜋/2) (−1)𝑗+1 sin(𝑘𝜋/2) 𝑚1

sin(𝑘𝜋/2) cos(𝑘𝜋/2) 𝑚2
0 0 1

] ∈ ℝ3×3 ∶

𝑘 = 0, 1, 2, 3;
𝑗 = 0, 1; 𝑚1, 𝑚2 ∈ ℤ}

that further augments 𝐺2 with reflections. The reason for
these choices is that they have to send pixels to pixels.
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There is also the important issue of aliasing [Zha19].
When pixels are discrete, rotation will involve interpola-
tion, and pointwise nonlinearities introduce higher order
harmonics that produce aliasing and break equivariance
[FW21]. This can happen even with discrete translations
like those in the groups 𝐺1, 𝐺2, 𝐺3 above for standard con-
volutional neural networks. Dealing with aliasing and
choosing equivariant activations that do not compromise
expressive power [MFSL19] are important problems that
cannot be underemphasized; and dealing with these issues
constitute a mainstay of the research and development in
equivariance neural networks.

In reality the pixels of an image are not just discrete but
also finite in number. So instead of 𝑣∶ ℤ2 → ℝ3, a 𝑝-pixel
image is more accurately a function 𝑣∶ {𝑥1, … , 𝑥𝑝} → ℝ3

on some discrete finite subset of points 𝑥1, … , 𝑥𝑝 ∈ ℝ2.
Since these 𝑝 points are fixed, we may conveniently regard
𝑣 ∈ ℝ𝑝 ⊕ℝ𝑝 ⊕ℝ𝑝 with each copy of ℝ𝑝 representing one
of three color channels. In such cases the output of each
layer should not be treated simply as a vector space ℝ𝑛𝑖

but a direct sum ℝ𝑛𝑖 = ℝ𝑝1 ⊕ ⋯ ⊕ ℝ𝑝𝑚 , with 𝑝1, … , 𝑝𝑚
depending on 𝑖 and 𝑛𝑖 = 𝑝1 +⋯+ 𝑝𝑚. The weight matrix
𝐴𝑖 ∶ ℝ𝑛𝑖−1 → ℝ𝑛𝑖 would then have a corresponding block
structure and the representation 𝜌𝑖 ∶ 𝐺 → GL(𝑛𝑖) takes the
form 𝜌𝑖 =⨁𝑚

𝑗=1 𝜌𝑖𝑗 with 𝜌𝑖𝑗 ∶ 𝐺 → GL(𝑝𝑗).
For molecular structure prediction problems, in

[FWFW20, TEW+21], the input is a collection of points
𝑦1, … , 𝑦𝑚 augmented with various information in addition
to location coordinates, giving the input layer ℝ𝑛0 a direct
sum structure ℝ𝑝1 ⊕ ⋯ ⊕ ℝ𝑝𝑚 that propagates through
later layers. Just to give a flavor of what is involved, in
[TEW+21], the inputs 𝑦1, … , 𝑦𝑚 are atom positions in a
model of an RNA molecule, with an encoding of atom
type, and the output is an estimate of the root mean
square error of the model’s structure; in one example in
[FWFW20], the inputs 𝑦1, … , 𝑦𝑚 encode position, velocity,
and charge of 𝑚 particles, and the output is an estimate
of the location and velocity of each particle after some
amount of time. In both examples, the function 𝑓 that
maps inputs to outputs has no known expression but is
known to be equivariant with respect to SE(3), i.e., transla-
tions and rotations of the coordinate system. The weight
matrix 𝐴 ∶ ℝ𝑞1 ⊕⋯⊕ℝ𝑞𝑚 → ℝ𝑝1 ⊕⋯⊕ℝ𝑝𝑚 has a block
structure 𝐴 = [𝐴𝑖𝑗]𝑚𝑖,𝑗=1, 𝐴𝑖𝑗 ∈ ℝ𝑝𝑖×𝑞𝑗 , and is equivariant if
each block 𝐴𝑖𝑗 ∶ ℝ𝑞𝑗 → ℝ𝑝𝑖 is equivariant. Equivariance
constrains each block𝐴𝑖𝑗 to depend entirely on the relative
input locations 𝑦𝑖 − 𝑦𝑗, and the permitted matrices can be
expressed in terms of radial kernels, spherical harmonics,
and Clebsch–Gordan coefficients [WGW+18].

The engineering aspects of equivariant neural networks
are many and varied. While we have selectively discussed
a few that are more common and mathematical in nature,
we have also ignored many that are specific to the appli-
cation at hand and often messy. We avoided most jargon
used in the original literature as it tends to be mathemat-
ically imprecise or application specific. Nevertheless, we
stress that equivariant neural networks are ultimately used
in an engineering context and a large part of their success
has to do with overcoming real engineering challenges.
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neural-network solution of the electronic Schrödinger equation,
Nat. Chem. 12 (2020), 891–897.

624 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 70, NUMBER 4



What is. . .

[JEP+21] John Jumper, Richard Evans, Alexander Pritzel,
Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn
Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna
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