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Basic Idea I: Geometric Sparsityl

Notion of geometric sparsity — accounting for sparse matrix rep-
resentation of linear maps using underlying geometry of problem.

A geometrically sparse matrix with a scale parameter rg has the
following form modulo row- and column-permutations:

-




Strongly filtered matrix. block triangular where the diagonal
blocks are themselves block decomposed.



Basic Idea II: Decomposing Strongly Filtered Matricesl

The block structure of strongly filtered matrices suggests natural
algorithms for LU and QR decomposition.
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Basic Idea III: Multiscale Characterl

The ‘remaining’ submatrix on the bottom right is geometrically
sparse with a larger scale parameter r1 > rg.
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The same process may be repeated to this submatrix.



Geometrically Sparse Matricesl

‘Definition’ (Wilkinson). A sparse matrix is any matrix with
enough zeros that it pays to take advantage of them.

Attempt to give a more concrete definition that accounts for
how the sparseness arise.

Definition. A matrix A = (a;;) € R™*" is geometrically sparse
with scale parameter r if there exist maps ¢ : {1,...,m} — X and
Y {1,...,n} — X maps sending row and column indices of A into
a metric space (X,d) so that a;; = 0 whenever d(¢(i),¥(j5)) > r.



Slogan Il

Conjecture. Sparse matrices that arise from physical problems
are naturally geometrically sparse or perturbations of geometri-
cally sparse matrices.

The metric space (X, d) is suggested by the problem at hand.



Examplesl

A banded with bandwidth 2¢ 4+ 1:
X = Z or R with usual metric |- |, a;; = 0 if |[¢ — j] > £.

A = diag[Aq,..., An] block diagonal (with square blocks):
X ={1,...,n} with discrete metric §, a;; = 0 if 6(x(7),©(j)) > 0.

X X X
X X
A= X

X
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X X X
X = 81 with usual (Riemannian) metricon circled, ¢ : {1,...n} —

Sl i (cos(2ri/n),sin(2xi/n)), a;; = 0 if d(e(i), () > 1.




Examples: Computational Topologyl

> simplicial complex embedded in R". To compute Hy(X), need
to find null space of boundary map

O : Cp(X) — Cp_1(X2),
k .
[’UO,...,’Uk] = Z<_1)Z[v07“'76i7"°7vk]'
1=0

Basis for Cr.(X): k-simplices;

basis for C,,_1(X): (k — 1)-simplices;

X = R™

p: label each k-simplex by its barycenter;

. label each (k — 1)-simplex by its barycenter;
¢ = maximal diameter of any simplex of 2.

Then the matrix representation of 9, is geometrically sparse with
scale ¢ (likewise for the Laplacian A := 69 + 99).



Examples: Numerical PDEI

Finite Difference Methods: discrete approximations of partial
differential operators are geometrically sparse.

Finite Element Methods: stiffness matrices in Galerkin's method
are geometrically sparse.



Cech complexI

X a space, U = {Uaq}oea @ covering of X.

Nerve of the covering is an abstract simplicial complex:

vertex «—— Uqg #= I
edge «— UaNUg# <

Also called Cech complex and denoted by C(U).

C(U) is an ‘approximation’ of X topologically: for nice spaces
X, may choose U so that C(U/) is homotopy equivalent to X (in
particular H«(X) = H.(C(U)).
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Sparse Matricesl

‘Definition’ (Wilkinson). A sparse matrix is any matrix with
enough zeros that it pays to take advantage of them.

Main savings in using sparse matrix algorithms and data struc-
tures come in:

time — avoid floating point operations on zero entries;
memory — avoid storing zero entries.

In decomposing a sparse matrix A, e.g. A= LU or A = QR, we

would like to ensure that the corresponding factors L, U, Q, R
are similarly sparse.
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LU and QR Decompositionsl

A e RmMXn \Want to determine, in a numerically stable fashion,
the decompositions

P1AP, = LU or P1AP> = QR

where L lower-triangular; U, R upper-triangular; ¢ orthogonal;
P1, P> permutations.

LU — Gaussian elimination with complete pivoting

QR — similar, with rotations and reflections in place of elemen-
tary transformations
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Engineering Applicationsl

Example. Numerical solutions of partial differential equations
typically involve one of the following techniques:

Finite Difference Schemes — approximate the partial differential
operators by finite difference operators and then solve the result-
ing system of equations;

Finite Element Methods — decompose the domain of interest
into simpler pieces (e.g. triangulation); approximate the solution
by linear combinations of simpler functions supported on these
pieces (e.g. splines) and then solve the system of equations com-
ing from the variational formulation of the PDE.

When the PDE is linear, the linear system of equations vields a
geometrically sparse matrix.

13



Using the FEM'

We solve —V - (cVu) +au = f with Dirichlet boundary conditions
u = 0 on the straight edges and Neumann boundary conditions
cOu/0v = —5 on the circular arcs. Delaunay triangulation algo-
rithm yields:

1

0.8

0.6

0.4

0.2

0_

-0.2f

_0.4F

-0.6

14



0.8F T
22/ 60/ \ 7
0.6F 21 \/ 55 i
24 6125
0.4+ o)<54 i
02r WA Ty T 46 2?;0 _
47
3999 Blod 1210134\ /75\ /5 18\14
I 92/ \93/59 .
58 K, 99 [68,X89/91 > 7372551\ 35| 31 < 13/5.19g2
0.2 65/71\ /20| 96 K L0780 | 6382167 86/28 .
8 X7 97,/ \90 /<81/,\37/<8878 \og Ag7/\77/ , 33
o4l 0 95 K 30/g\ /33 \ 35\ /36N /44\| 50173\ /76\ / 49 |
' 2614 15/\ 48
2\ /17\ /6
0.6 T
0.8} T
_1 | | | | |
1.5 1 ~0.5 0 0.5 1

A Mesh Ordering Strategyl

15

1.5



