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A spectroscopic motivation

Spectroscopy: Measurements of spectrum, ie. light absorption
or emission of a specimen as a function of energy.

Typical specimen contains 1013 to 1016 light absorbing entities
or chromophores (molecules, amino acids, etc).

Beer’s law: A(λ) = − log(I1/I0) = ε(λ)c. A = absorbance,
I1/I0 = fraction of the intensity of light of wavelength λ that
passes through the specimen, c = concentration of chromophores.

With multiple chromophores (f = 1, . . . , r) and wavelengths (i =
1, . . . , m) and specimens/experimental conditions (j = 1, . . . , n),

A(λi, sj) =
∑r

f=1
εf(λi)cf(sj).

Bilinear model aka factor analysis: Am×n = Em×rCr×n rank-
revealing factorization or, rather, low-rank approximation

min‖Am×n − Em×rCr×n‖
in the presence of noise. Origin of the “spectrum” of matrix.
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Text mining

Text mining is the spectroscopy of documents.

Specimens = documents; chromophores = terms.

Absorbance = inverse document frequency:

A(ti) = − log
(∑

j
χ(fij)/n

)
.

Concentration = term frequency: fij.

∑
j χ(fij)/n = fraction of documents containing ti.

A ∈ Rm×n term-document matrix. A = QR = UΣV t rank-
revealing factorizations.

Bilinear model aka vector space model. Due to Gerald Salton
and colleagues: SMART (system for the mechanical analysis and
retrieval of text).
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Bilinear model

Bilinear model works on ‘two-way’ data: measurements on object
i (genomes, chemical samples, images, webpages, consumers,
etc) yield a vector ai ∈ Rn where n = number of features of i.

A collection of m such objects, A = [a1, . . . , am] may be regarded
as an m-by-n matrix. E.g. gene × microarray matrices in bioin-
formatics, terms × documents matrices in text mining, facial
images × individuals matrices in computer vision.

Various matrix techniques may be applied to extract useful in-
formation: QR, EVD, SVD, NMF, CUR, compressed sensing
techniques, etc.

Examples of bilinear models: vector space model, factor analysis,
principal component analysis, latent semantic indexing, PageR-
ank, EigenFaces.

Some problems: factor indeterminacy — A = XY rank-revealing
factorization not unique; unnatural for k-way data when k > 2.
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All you need to know about tensors

A set of multiply indexed real numbers A = JaijkKl,m,n
i,j,k=1 ∈ Rl×m×n

on which the following algebraic operations are defined:

1. Addition/Scalar Multiplication: for JbijkK ∈ Rl×m×n, λ ∈ R,

JaijkK+JbijkK := Jaijk+bijkK and λJaijkK := JλaijkK ∈ Rl×m×n

2. Multilinear Matrix Multiplication: for matrices L = [λi′i] ∈
Rp×l, M = [µj′j] ∈ Rq×m, N = [νk′k] ∈ Rr×n,

(L, M, N) ·A := Jci′j′k′K ∈ Rp×q×r

where

ci′j′k′ :=
∑l

i=1

∑m

j=1

∑n

k=1
λi′iµj′jνk′kaijk.

Think of A as 3-dimensional array of numbers. (L, M, N) · A as
multiplication on ‘3 sides’ by matrices L, M, N . Generalizes to
arbitrary order k. If k = 2, ie. matrix, then (M, N) ·A = MAN t.
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Aside: mathematician’s definition

U, V, W vector spaces. Think of U ⊗ V ⊗W as the vector space

of all formal linear combinations of terms of the form u⊗ v⊗w,∑
αu⊗ v ⊗w,

where α ∈ R,u ∈ U,v ∈ V,w ∈W.

One condition: ⊗ decreed to have the multilinear property

(αu1 + βu2)⊗ v ⊗w = αu1 ⊗ v ⊗w + βu2 ⊗ v ⊗w,

u⊗ (αv1 + βv2)⊗w = αu⊗ v1 ⊗w + βu⊗ v2 ⊗w,

u⊗ v ⊗ (αw1 + βw2) = αu⊗ v ⊗w1 + βu⊗ v ⊗w2.

Up to a choice of bases on U, V, W , A ∈ U ⊗ V ⊗ W can be

represented by a 3-way array A = JaijkKl,m,n
i,j,k=1 ∈ Rl×m×n.
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Aside: physicists’ definition

“What are tensors?” ≡ “What kind of physical quantities can

be represented by tensors?”

Usual answer: if they satisfy some ‘transformation rules’ under

a change-of-coordinates.

Change-of-basis theorem for tensors. Two representations

A, A′ of A in different bases are related by

(L, M, N) ·A = A′

with L, M, N respective change-of-basis matrices (non-singular).

Pitfall: tensor fields (roughly, tensor-valued functions on mani-

folds) often referred to as tensors — stress tensor, piezoelectric

tensor, moment-of-inertia tensor, gravitational field tensor, met-

ric tensor, curvature tensor.
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Segre outer product

If U = Rl, V = Rm, W = Rn, Rl⊗Rm⊗Rn may be identified with
Rl×m×n if we define ⊗ by

u⊗ v ⊗w = JuivjwkKl,m,n
i,j,k=1.

A tensor A ∈ Rl×m×n is said to be decomposable if it can be
written in the form

A = u⊗ v ⊗w

for some u ∈ Rl,v ∈ Rm,w ∈ Rn. For order 2, u⊗ v = uvt.

In general, any A ∈ Rl×m×n may be written as a sum of decom-
posable tensors

A =
∑r

i=1
λiui ⊗ vi ⊗wi.

May be written as a multilinear matrix multiplication:

A = (U, V, W ) · Λ.

U ∈ Rl×r, V ∈ Rm×r, W ∈ Rn×r and diagonal Λ ∈ Rr×r×r.
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Tensor ranks

Matrix rank. A ∈ Rm×n

rank(A) = dim(spanR{A•1, . . . , A•n}) (column rank)

= dim(spanR{A1•, . . . , Am•}) (row rank)

= min{r | A =
∑r

i=1uiv
t
i} (outer product rank).

Multilinear rank. A ∈ Rl×m×n. rank�(A) = (r1(A), r2(A), r3(A))
where

r1(A) = dim(spanR{A1••, . . . , Al••})
r2(A) = dim(spanR{A•1•, . . . , A•m•})
r3(A) = dim(spanR{A••1, . . . , A••n})

Outer product rank. A ∈ Rl×m×n.

rank⊗(A) = min{r | A =
∑r

i=1ui ⊗ vi ⊗wi}

In general, rank⊗(A) 6= r1(A) 6= r2(A) 6= r3(A). Original defini-
tion due to Frank L. Hitchcock (1927).
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Outer product rank is difficult

Matrix: A ∈ Rm×n, easy to compute rank⊗(A).

Theorem (Håstad). Computing rank⊗(A) for A ∈ Rl×m×n is an

NP-hard problem.

Matrix: A ∈ Rm×n ⊂ Cm×n, rank(A) is the same whether we

regard it as a real matrix or a complex matrix.

Theorem (Bergman). For A ∈ Rl×m×n ⊂ Cl×m×n, rank⊗(A) is

base field dependent.

Matrix: A ∈ Rm×n, maximal rank⊗(A) is min{m, n}.

Maximal outer product rank known only in very special cases:

T.D. Howell, “Global properties of tensor rank,” Linear Algebra

Appl., 22 (1978), pp. 9–23.
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Outer product rank is useful

P. Bürgisser, M. Clausen, and M.A. Shokrollahi, Algebraic com-
plexity theory, Springer-Verlag, Berlin, 1996.

For A = (aij), B = (bjk) ∈ Rn×n,

AB =
∑n

i,j,k=1
aikbkjEij =

∑n

i,j,k=1
ϕik(A)ϕkj(B)Eij

where Eij = eie
t
j ∈ Rn×n. Let

T =
∑n

i,j,k=1
ϕik ⊗ ϕkj ⊗ Eij.

O(n2+ε) algorithm for multiplying two n×n matrices gives O(n2+ε)
algorithm for solving system of n linear equations [Strassen 1969].

Conjecture. log2(rank⊗(T )) ≤ 2 + ε.

Best known result. O(n2.376) [Coppersmith-Winograd 1987;
Cohn-Kleinberg-Szegedy-Umans 2005].
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Outer product decomposition in spectroscopy

Application to fluorescence spectral analysis by Rasmus Bro.

aijk = fluorescence emission intensity at wavelength λem
j of ith

sample excited with light at wavelength λex
k . Get 3-way data

A = JaijkK ∈ Rl×m×n.

Decomposing A into a sum of outer products,

A = x1 ⊗ y1 ⊗ z1 + · · ·+ xr ⊗ yr ⊗ zr.

yield the true chemical factors responsible for the data.

• r: number of pure substances in the mixtures,

• xα = (x1α, . . . , xlα): relative concentrations of αth substance
in samples 1, . . . , l,

• yα = (y1α, . . . , ymα): excitation spectrum of αth substance,

• zα = (z1α, . . . , znα): emission spectrum of αth substance.
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Multilinear model: CANDECOMP/PARAFAC

In the noisy case, want

argminxα,yα,zα

∥∥∥A−∑r

α=1
xα ⊗ yα ⊗ zα

∥∥∥.
M ∈ Rm×n. spark(M) = size of minimal linearly dependent subset

of column vectors [Donoho and Elad].

X = [x1, . . . ,xr], Y = [y1, . . . ,yr], Z = [z1, . . . , zr].

Theorem (Kruskal). Decomposition is unique up to scaling if

spark(X) + spark(Y ) + spark(Z) ≥ 2r − 1.

Avoids factor indeterminacy under mild conditions.

13



Multilinear decomposition in bioinformatics

Application to cell cycle studies by Alter and Omberg. Collection
of gene-by-microarray matrices A1, . . . , Al ∈ Rm×n obtained under
varying oxidative stress.

aijk = expression level of jth gene in kth microarray under ith
stress. Get 3-way data array A = JaijkK ∈ Rl×m×n.

Get multilinear decomposition of A

A = (X, Y, Z) · C,

to get orthogonal matrices X, Y, Z and core tensor C by applying
SVD to various ’flattenings’ of A.

Column vectors of X, Y, Z are the ‘principal components’ or ‘pa-
rameterizing factors’ of the spaces of stress, genes, and microar-
rays respectively. C governs interactions between these factors.

Noisy case: approximate by discarding small cijk (Tucker Model).
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Fundamental problem of multiway data analysis

Let A be a tensor, symmetric tensor, or nonnegative tensor.
Solve

argminrank(B)≤r‖A−B‖

where rank may be outer product rank, multilinear rank, sym-
metric rank (for symmetric tensors), or nonnegative rank (non-
negative tensors).

Example. Given A ∈ Rd1×d2×d3, find ui,vi,wi, i = 1, . . . , r, that
minimizes

‖A− u1 ⊗ v1 ⊗w1 − u2 ⊗ v2 ⊗w2 − · · · − ur ⊗ vr ⊗ zr‖.
or C ∈ Rr1×r2×r3 and Li ∈ Rdi×ri that minimizes

‖A− (L1, L2, L3) · C‖.

Example. Given A ∈ Sk(Cn), find ui, i = 1, . . . , r, that minimizes

‖A− u⊗k
1 − u⊗k

2 − · · · − u⊗k
r ‖.
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Decompositional approach to data analysis

More generally, F = C, R, R+, Rmax (max-plus algebra), R[x1, . . . , xn]

(polynomial rings), etc.

Dictionary, D ⊂ FN , not contained in any hyperplane. Let D2 =

union of bisecants to D, D3 = union of trisecants to D, . . . ,

Dr = union of r-secants to D.

Define D-rank of A ∈ FN to be min{r | A ∈ Dr}.

If ϕ : FN × FN → R is some measure of ‘nearness’ between pairs

of points (eg. norms, Bregman divergences, etc), we want to

find a best low-rank approximation to A:

argmin{ϕ(A, B) | D-rank(B) ≤ r}.
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Segre variety and secant varieties

The set of all decomposable tensors is known as the Segre variety

in algebraic geometry. It is a closed set (in both the Euclidean

and Zariski sense) as it can be described algebraically:

Seg(Rl, Rm, Rn) = {A ∈ Rl×m×n | A = u⊗ v ⊗w} =

{A ∈ Rl×m×n | ai1i2i3aj1j2j3 = ak1k2k3
al1l2l3, {iα, jα} = {kα, lα}}

Tensors that have rank > 1 are elements on the higher secant

varieties of S = Seg(Rl, Rm, Rn). Eg. a tensor has rank 2 if it sits

on a secant line through two points in S but not on S, rank 3

if it sits on a secant plane through three points in S but not on

any secant lines, etc.
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Feature revelation

Get low-rank approximation

A ≈ α1 ·B1 + · · ·+ αr ·Br ∈ Dr.

Bi ∈ D reveal features of the dataset A.

Note that another way to say ‘best low-rank’ is ‘sparsest possi-

ble’.

Example. D = {A | rank⊗(A) ≤ 1}, ϕ(A, B) = ‖A − B‖F — get

usual PARAFAC.

Example. D = {A | rank�(A) ≤ (1,1,1)}, ϕ(A, B) = ‖A − B‖F
— get Tucker Model.

Example. D = {A | rank�(A) ≤ (r1, r2, r3)} (an algebraic set),

ϕ(A, B) = ‖A−B‖F — get De Lathauwer model.
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Simple lemma

Lemma (de-Silva, L.). Let r ≥ 2 and k ≥ 3. Given the norm-
topology on Rd1×···×dk, the following statements are equivalent:

(a) The set Sr(d1, . . . , dk) := {A | rank⊗(A) ≤ r} is not closed.

(b) There exists a sequence An, rank⊗(An) ≤ r, n ∈ N, converg-
ing to B with rank⊗(B) > r.

(c) There exists B, rank⊗(B) > r, that may be approximated
arbitrarily closely by tensors of strictly lower rank, ie.

inf{‖B −A‖ | rank⊗(A) ≤ r} = 0.

(d) There exists C, rank⊗(C) > r, that does not have a best
rank-r approximation, ie.

inf{‖C −A‖ | rank⊗(A) ≤ r}

is not attained (by any A with rank⊗(A) ≤ r).
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Non-existence of best low-rank approximation

Let xi,yi ∈ Rdi, i = 1,2,3. Let

A := x1 ⊗ x2 ⊗ y3 + x1 ⊗ y2 ⊗ x3 + y1 ⊗ x2 ⊗ x3

and for n ∈ N,

An := x1 ⊗ x2 ⊗ (y3 − nx3) +
(
x1 +

1

n
y1

)
⊗

(
x2 +

1

n
y2

)
⊗ nx3.

Lemma (de Silva, L). rank⊗(A) = 3 iff xi,yi linearly indepen-

dent, i = 1,2,3. Furthermore, it is clear that rank⊗(An) ≤ 2

and

lim
n→∞An = A.

[Based on an exercise in D. Knuth, The art of computer pro-

gramming, 2, 3rd Ed., Addison-Wesley, Reading, MA, 1997.]
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Outer product approximations are ill-behaved

Such phenomenon can and will happen for all orders > 2, all

norms, and many ranks:

Theorem 1 (de Silva, L). Let k ≥ 3 and d1, . . . , dk ≥ 2. For any

s such that 2 ≤ s ≤ min{d1, . . . , dk} − 1, there exist A ∈ Rd1×···×dk

with rank⊗(A) = s such that A has no best rank-r approximation

for some r < s. The result is independent of the choice of norms.

For matrices, the quantity min{d1, d2} will be the maximal pos-

sible rank in Rd1×d2. In general, a tensor in Rd1×···×dk can have

rank exceeding min{d1, . . . , dk}.

Tensor rank can jump over an arbitrarily large gap:

Theorem 2 (de Silva, L). Let k ≥ 3. Given any s ∈ N, there

exists a sequence of order-k tensor An such that rank⊗(An) ≤ r

and limn→∞An = A with rank⊗(A) = r + s.
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Tensors that fail to have best low-rank approximations are not

rare — they occur with non-zero probability:

Theorem 3 (de Silva, L). Let µ be a measure that is positive or

infinite on Euclidean open sets in Rd1×···×dk. There exists some

r ∈ N such that

µ({A | A does not have a best rank-r approximation}) > 0.

All results apply verbatim to approximations of matrices by sums

of Kronecker product of matrices, eg. recent work by G. Beylkin,

W. Hackbush, B. Khoromskij, E. Tyrtyshnikov, C. Van Loan.



Message

That the best rank-r approximation problem for tensors has no

solution poses serious difficulties.

It is incorrect to think that if we just want an ‘approximate

solution’, then this doesn’t matter.

If there is no solution in the first place, then what is it that are

we trying to approximate? ie. what is the ‘approximate solution’

an approximate of?
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Weak solutions

For a tensor A that has no best rank-r approximation, we will

call a C ∈ {A | rank⊗(A) ≤ r} attaining

inf{‖C −A‖ | rank⊗(A) ≤ r}

a weak solution. In particular, we must have rank⊗(C) > r.

It is perhaps surprising that one may completely parameterize all

limit points of order-3 rank-2 tensors:

Theorem 4 (de Silva, L.) Let d1, d2, d3 ≥ 2. Let An ∈ Rd1×d2×d3

be a sequence of tensors with rank⊗(An) ≤ 2 and

lim
n→∞An = A,

where the limit is taken in any norm topology. If the limiting

tensor A has rank higher than 2, then rank⊗(A) must be exactly 3
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and there exist pairs of linearly independent vectors x1,y1 ∈ Rd1,

x2,y2 ∈ Rd2, x3,y3 ∈ Rd3 such that

A = x1 ⊗ x2 ⊗ y3 + x1 ⊗ y2 ⊗ x3 + y1 ⊗ x2 ⊗ x3.

In particular, a sequence of order-3 rank-2 tensors cannot ‘jump

rank’ by more than 1.



SURVEY OF OTHER RESULTS

• SYMMETRIC TENSORS

• NONNEGATIVE TENSORS

• ALGORITHMS

• MULTILINEAR SPECTRAL THEORY
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Symmetric tensors

An order-k cubical tensor Jai1···ikK ∈ Rn×···×n is symmetric if

aiσ(1)···iσ(k)
= ai1···ik, i1, . . . , ik ∈ {1, . . . , n},

for all permutations σ ∈ Sk. Sk(Rn) is the set of all order-k
symmetric tensors. Write y⊗k := y ⊗ · · · ⊗ y (k times).

Examples. Higher order derivatives of multivariate functions.
Moments and cumulants of random vector x = (X1, . . . , Xn):

mk(x) =
[
E(xi1xi2 · · ·xik

)
]n

i1,...,ik=1
=

[∫
· · ·

∫
xi1xi2 · · ·xik

dµ(xi1) · · · dµ(xik
)

]n

i1,...,ik=1

κk(x) =

[∑
A1t···tAp={i1,...,ik}

(−1)p−1(p− 1)!E(
∏

i∈A1
xi) · · ·E(

∏
i∈Ap

xi)

]n

i1,...,ik=1

For n = 1, κk(x) for k = 1,2,3,4 are the expectation, variance,
skewness, and kurtosis.

Symmetric tensors, in the form of cumulants, are of particular
importance in Independent Component Analysis (ICA).
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Tensors for blind source separation

Problem: y = Mx + n. Goal: recover x from y.

Unknown: source vector x ∈ Cn, mixing matrix M ∈ Cm×n, noise
n ∈ Cm.

Known: observation vector y ∈ Cm.

Assumptions: components of x statistically independent, M full
column-rank, n Gaussian.

Method: use cumulants

κk(y) = (M, M, . . . , M) · κk(x) + κk(n).

By assumptions, κk(n) = 0 and κk(x) is diagonal. So need to
diagonalize the symmetric tensor κk(y).

L. De Lathauwer, B. De Moor, and J. Vandewalle, “An intro-
duction to independent component analysis,” J. Chemometrics,
14 (2000), no. 3, pp. 123-149.
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Diagonalizing a symmetric tensor

Want to understand properties of symmetric rank, defined for
A ∈ Sk(Cn) as

rankS(A) = min
{
r

∣∣∣ A =
∑r

i=1
αiy
⊗k
i

}
.

The definition is never vacuous because of the following:

Lemma (Comon, Golub, L, Mourrain). Let A ∈ Sk(Cn). Then
there exist y1, . . . ,ys ∈ Cn such that

A =
∑s

i=1
αiy
⊗k
i

A best symmetric rank approximation may not exist either:

Example (Comon, Golub, L, Mourrain). Let x,y ∈ Cn be
linearly independent. Define for n ∈ N,

An := n

(
x +

1

n
y

)⊗k
− nx⊗k
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and

A := x⊗ y ⊗ · · · ⊗ y + y ⊗ x⊗ · · · ⊗ y + · · ·+ y ⊗ y ⊗ · · · ⊗ x.

Then rankS(An) ≤ 2, rankS(A) = k, and

lim
n→∞An = A.



Nonnegative tensors and nonnegative rank

Let 0 ≤ A ∈ Rd1×···×dk. The nonnegative rank of A is

rank+(A) := min
{
r

∣∣∣ ∑r

i=1
ui ⊗ vi ⊗ · · · ⊗ zi, ui, . . . , zi ≥ 0

}
Clearly, such a decomposition exists for any A ≥ 0.

Theorem (Golub, L). Let A = Jaj1···jkK ∈ Rd1×···×dk be non-

negative. Then

inf
{∥∥∥A−∑r

i=1
ui ⊗ vi ⊗ · · · ⊗ zi

∥∥∥ ∣∣∣ ui, . . . , zi ≥ 0
}

is attained.

Corollary. The set {A | rank+(A) ≤ r} is closed.
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NTF as naive Bayes model

Naive Bayes conditional independence assumption: X1, . . . , Xk, H

finitely supported discrete random variables such that X1, . . . , Xk

are statistically independent conditional on H, ie.

Pr(X1 = x1, . . . , Xk = xk | H = h) =
∏k

i=1
Pr(Xi = xi | H = h).

and so

Pr(X1 = x(1)
j1

, . . . , Xk = x(k)
jk

) =
∑r

i=1
Pr(H = hi)

∏k

β=1
Pr(Xβ = x(β)

jβ
| H = hi).

Let aj1···jk = Pr(X1 = x
(1)
j1

, . . . , Xk = x
(k)
jk

), etc, get

A =
∑r

i=1
λiu

(1)
i ⊗ · · · ⊗ u(k)

i .

r = rank+(A) if H has minimal support over all such decompo-

sitions.
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Algorithms

Even when an optimal solution B∗ to argminrank⊗(B)≤r‖A−B‖F
exists, B∗ is not easy to compute since the objective function is

non-convex.

A widely used strategy is a nonlinear Gauss-Seidel algorithm,

better known as the Alternating Least Squares algorithm:

Algorithm: ALS for optimal rank-r approximation

initialize X(0) ∈ Rl×r, Y (0) ∈ Rm×r, Z(0) ∈ Rn×r;
initialize s(0), ε > 0, k = 0;
while ρ(k+1)/ρ(k) > ε;

X(k+1) ← argminX̄∈Rl×r‖T −
∑r

α=1x̄
(k+1)
α ⊗ y(k)

α ⊗ z(k)
α ‖2F ;

Y (k+1) ← argminȲ ∈Rm×r‖T −
∑r

α=1x
(k+1)
α ⊗ ȳ(k+1)

α ⊗ z(k)
α ‖2F ;

Z(k+1) ← argminZ̄∈Rn×r‖T −
∑r

α=1x
(k+1)
α ⊗ y(k+1)

α ⊗ z̄(k+1)
α ‖2F ;

ρ(k+1) ← ‖
∑r

α=1[x
(k+1)
a ⊗ y(k+1)

α ⊗ z(k+1)
α − x(k)

α ⊗ y(k)
α ⊗ z(k)

α ]‖2F ;
k ← k + 1;
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Convex relaxation

[with Kim-Chuan Toh]

F (x11, . . . , znr) = ‖A−
∑r

α=1xα ⊗ yα ⊗ zα‖2F is a polynomial.

Lasserre/Parrilo strategy: Find largest λ∗ such that F − λ∗ is
a sum of squares. Then λ∗ is often minF (x11, . . . , znr).

Let v be the D-tuple of monomials of degree ≤ 6. Since deg(F )
is even, F − λ may be written as

F (x11, . . . , znr)− λ = vt(M − λE11)v

for some M ∈ RD×D.

Note rhs is a sum of squares iff M−λE11 is positive semi-definite
(since M − λE11 = BtB). Get convex problem

minimize −λ
subjected to vt(S + λE11)v = F,

S � 0.
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Complexity: For rank-r approximations to order-k tensors A ∈
Rd1×···×dk,

D =
(r(d1 + · · ·+ dk) + k

k

)
is large even for moderate di, r and k.

Sparsity to the rescue: The polynomials that we are interested

in are always sparse (eg. for k = 3, only terms of the form xyz

or x2y2z2 or uvwxyz appear). This can be exploited.

Theorem (Reznick). If f(x) =
∑m

i=1 pi(x)2, then the powers of

the monomials in pi must lie in 1
2 Newton(f).

So if f(x11, . . . , znr) =
∑N

j=1 pj(x11, . . . , znr)2, then only 1 and

monomials of the form xiαyjαzkα may occur in p1, . . . , pN .

In other words, the complexity is really rlmn + 1 instead of(
r(l+m+n)+3

3

)
.



Exploiting semiseparability

[with Ming Gu]

Gauss-Newton Method: g(x) = ‖f(x)‖2. Approximate Hessian

using Jacobian: Hg ≈ Jt
fJf .

The Hessian of F (X, Y, Z) = ‖A −
∑r

α=1xα ⊗ yα ⊗ zα‖2F can be

approximated by a semiseparable matrix. This is the case even

when X, Y, Z are required to be nonnegative.

Goal: Exploit this in optimization algorithms.
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Multilinear spectral theory

Eigenvalues/vectors of symmetric A are critical values/points of

Rayleigh quotient, xtAx/‖x‖22. Similar characterization exists for

singular values/vectors

For x = [x1, . . . , xn]t ∈ Rn, write xp := [xp
1, . . . , x

p
n]t. Define the

‘`k-norm’ ‖x‖k = (xk
1 + · · ·+ xk

n)
1/k.

Define eigenvalues/vectors of A ∈ Sk(Rn) as critical values/points

of the multilinear Rayleigh quotient A(x, . . . ,x)/‖x‖kk.

A(In,x, . . . ,x) = λxk−1

Note that for a symmetric tensor A,

A(In,x,x, . . . ,x) = A(x, In,x, . . . ,x) = · · · = A(x,x, . . . ,x, In).

These equations have also been obtained by L. Qi independently

using a different approach.
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Perron-Frobenius theorem for nonnegative tensors

An order-k cubical tensor A ∈ Tk(Rn) is reducible if there exist a

permutation σ ∈ Sn such that the permuted tensor

Jbi1···ikK = Jaσ(j1)···σ(jk)
K

has the property that for some m ∈ {1, . . . , n− 1}, bi1···ik = 0 for

all i1 ∈ {1, . . . , n−m} and all i2, . . . , ik ∈ {1, . . . , m}. We say that

A is irreducible if it is not reducible. In particular, if A > 0, then

it is irreducible.

Theorem (L). Let 0 ≤ A = Jaj1···jkK ∈ Tk(Rn) be irreducible.

Then A has a positive real eigenvalue µ with an eigenvector x that

may be chosen to have all entries non-negative. Furthermore, µ

is simple, ie. x is unique modulo scalar multiplication.
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Very basic spectral hypergraph theory

Define the order-3 adjacency tensor A by

Axyz =

1 if [x, y, z] ∈ E,

0 otherwise.

A is |V |-by-|V |-by-|V | nonnegative symmetric tensor.

Consider cubic form A(f, f, f) =
∑

x,y,z Axyzf(x)f(y)f(z) (f is a

vector of dimension |V |). Look at eigenvalues/vectors of A, ie.

critical values/points of A(f, f, f) constrained to
∑

x f(x)3 = 1.

Lemma (L). Let G be an m-regular 3-hypergraph and A be its

adjacency tensor. Then

(a) m is an eigenvalue of A;

(b) if µ is an eigenvalue of A, then |µ| ≤ m;

(c) µ has multiplicity 1 if and only if G is connected.
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A hypergraph G = (V, E) is said to be k-partite or k-colorable if

there exists a partition of the vertices V = V1∪ · · · ∪Vk such that

for any k vertices u, v, . . . , z with Auv···z 6= 0, u, v, . . . , z must each

lie in a distinct Vi (i = 1, . . . , k).

Lemma (L). Let G be a connected m-regular k-partite k-hypergraph

on n vertices. Then

(a) If k is odd, then every eigenvalue of G occurs with multiplicity

a multiple of k.

(b) If k is even, then the spectrum of G is symmetric (ie. if µ

is an eigenvalue, then so is −µ). Furthermore, every eigen-

value of G occurs with multiplicity a multiple of k/2. If µ

is an eigenvalue of G, then µ and −µ occurs with the same

multiplicity.



WORK IN PROGRESS

• ALGEBRAIC STATISTICS

• SIMULTANEOUS EIGENVECTORS

• LOW-RANK COCLUSTERING
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Algebraic statistics in computational biology

[with Bernd Sturmfels]

Problem: Find the polynomial equations that defines the set

{P ∈ C4×4×4 | rank⊗ P ≤ 4}.

Why interested? Here P = JpijkK is understood to mean ‘com-

plexified’ probability density values with i, j, k ∈ {A, C, G, T} and

we want to study tensors that are of the form

P = ρA⊗σA⊗ θA +ρC ⊗σC ⊗ θC +ρG⊗σG⊗ θG +ρT ⊗σT ⊗ θT ,

in other words,

pijk = ρAiσAjθAk + ρCiσCjθCk + ρGiσGjθGk + ρTiσTjθTk.

Why over C? Easier to deal with mathematically. Ultimately,

want to study this over R+.
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Simultaneous eigenvectors in bioinformatics

[with Orly Alter and Bernd Sturmfels]

Background (Alter, Brown, Botstein): (A1, A2) ∈ R2×m×n

matrix pencil representing gene × microarray matrix for two or-

ganisms. Generalized SVD allows for a simultaneous factoriza-

tion

A1 = U1Σ1X−1, A2 = U2Σ2X−1

which in turn allows for comparison of decoupled arraylets given

by columns of orthogonal matrices U1 and U2.

Goal: Extend to (A1, A2, . . . , Al) ∈ Rl×m×n by finding ‘approxi-

mate’ simultaneous eigenvectors of (A1At
1, A2At

2, . . . , AlA
t
l) ∈ Rl×m×m.
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