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Cohomology of Cryo-Electron Microscopy∗

Ke Ye† and Lek-Heng Lim‡

Abstract. The goal of cryo-electron microscopy (EM) is to reconstruct the 3-dimensional structure of a molecule
from a collection of its 2-dimensional projected images. In this paper, we show that the basic
premise of cryo-EM—patching together 2-dimensional projections to reconstruct a 3-dimensional
object—is naturally one of Čech cohomology with SO(2)-coefficients. We deduce that every cryo-
EM reconstruction problem corresponds to an oriented circle bundle on a simplicial complex, allowing
us to classify cryo-EM problems via principal bundles. In practice, the 2-dimensional images are
noisy and a main task in cryo-EM is to denoise them. We will see how the aforementioned insights
can be used towards this end.
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1. Introduction. The problem of cryo-electron microscopy (cryo-EM) asks for the fol-
lowing: Given a collection of noisy 2-dimensional (2D) projected images, reconstruct the 3-
dimensional (3D) structure of the molecule that gave rise to these images. Viewed from a high
level, it takes the form of an inverse problem similar to those in medical imaging [3, 4, 43],
remote sensing [14, 5], or underwater acoustics [10, 36], except that for cryo-EM the data
comes from an electron microscope instead of a CT scanner, radar, or sonar. However, when
examined at a finer level of detail, one realizes that the cryo-EM problem possesses mathemat-
ical structures that are quite different from those of other classical inverse problems. It has
inspired studies from the perspectives of representation theory [20, 21], differential geometry
[47, 46], and is related to profound problems in computational complexity [6] and operator
theory [7]. This paper examines the problem from an algebraic topological angle—we will
show that the problem of cryo-EM is a problem of cohomology, or, more specifically, the Čech
cohomology of a simplicial complex with coefficients in the Lie group SO(2) and the discrete
group SO(2)d, i.e., SO(2) endowed with the discrete topology.

Despite its abstract appearance, the aforementioned cohomology framework is actually
concrete and natural. The fact that cohomology has an important role to play in understand-
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ing 2D projections of 3D objects is already evident in simple examples like the Penrose tribar
or Escher brick, as we will see in section 2. Our analysis of discrete and continuous cryo-EM
cocycles requires a more sophisticated type of cohomology but is essentially along the same
lines. In fact, the same ideas that we use to study the cryo-EM problem also underlies the
classical field theory of electromagnetism [11]. The cohomology framework allows us to classify
cryo-EM cocycles: Given two different collections of 2D projected images, are they equivalent
in the sense that they will give us the same 3D reconstruction? The insights gained also shed
light on the denoising techniques: What are we really trying to achieve when we minimize a
certain loss function to denoise cryo-EM images?

The technique of cryo-electron microscopy has been described in great detail in [17, 18]
and more than adequately summarized in [20, 21, 38, 45, 47, 46, 48, 51, 52]. It suffices to
provide a very brief review here. A more precise mathematical model for the following high-
level description will be given in section 4. The basic idea is that one first immobilizes many
identical copies of a molecule in ice and employs an electron microscope to produce 2D images
of the molecule. As each copy of the molecule is frozen in some unknown orientation, each
of the 2D images may be regarded as a projection of the molecule from an unknown viewing
direction. The cryo-EM dataset is then the set of these 2D projected images. Such a 2D
image shows not only the shape of the molecule in the plane of the viewing direction but also
contains information about the density of the molecule, captured in the intensity of each pixel
of the 2D image [35]. The ultimate goal of cryo-EM is to construct the 3D structure of the
molecule from a cryo-EM dataset. In practice, these 2D images are very noisy due to various
issues ranging from the electron dosage of the microscope to the structure of the ice in which
the molecule are frozen. Hence the main difficulty in cryo-EM reconstruction is to denoise
these 2D images by determining the true viewing directions of these noisy 2D images so that
one may take averages of nearby images. There has been much significant progress toward
this goal in recent years [38, 45, 48, 51, 52].

Our paper attempts to understand cryo-EM datasets of 2D images via Čech and singular
cohomology groups. We will see that for a given molecule, the information extracted from its
2D cryo-EM images determines a cohomology class of a two-dimensional simplicial complex.
Furthermore, each of these cohomology classes corresponds to an oriented circle bundle on
this simplicial complex. We note that there are essentially two interpretations of cohomology:
obstruction and moduli. On the one hand, a cohomology group quantifies the obstruction from
local to global. For example, this is the sense in which cohomology is used when demonstrating
the nonexistence of an impossible figure [40] or in the solution of the Mittag-Leffler problem
[19, p. 34]. On the other hand, a cohomology group may also be used to describe a collection
of mathematical objects, i.e., it serves as a moduli space for these objects. For example, when
we use a cohomology group to parameterize all divisors or all line bundles on an algebraic
variety [22, p. 143], it is used in this latter sense.

The line bundles example is a special case of a more general statement: A cohomology
group serves as the moduli space of principal bundles over a topological space. This forms the
basis for our use of cohomology in the cryo-EM reconstruction problem—as a moduli space
for all possible cryo-EM datasets. Obviously, such a classification of cryo-EM datasets comes
under the implicit assumption that the 2D images in a dataset are noise-free. Our classification
depends on a standard mathematical model for molecules in the context of cryo-EM under
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a noise-free assumption. Here the reader is reminded that a molecule is a physical notion
and not a mathematical one. A mathematical answer to the question “What is a molecule?”
depends on the context. In one theory, a molecule may be a solution to a Schrödinger pde
(e.g., quantum chemistry) whereas in another, it may be a path in a 6N -dimensional phase
space (e.g., molecular dynamics). In our model, a molecule is a real-valued function on R3

representing potential. When our images are noisy, this model gives us a natural way, namely,
the cocycle condition, to denoise them by fitting them to the model. Various methods for
denoising cryo-EM images [45, 48] may be viewed as nonlinear regression for fitting the cocycle
condition under additional assumptions.

2. Cohomology and 2D projections of 3D objects. The idea that cohomology arises
whenever one attempts to analyze 2D projections of 3D objects was first pointed out by Pen-
rose, who proposed in [40] a cohomological argument to analyze Escher-type optical illusions.
In the following, we present Penrose’s elegantly simple example since it illustrates some of the
same principles that underly our more complicated use of cohomology in cryo-EM.

We follow the spirit of Penrose’s arguments in [40] but we will deviate slightly to be more
in-line with our discussions of cryo-EM and to obtain a proof for the nonexistence of Penrose
tribar. The few unavoidable topological jargons are defined in section 3 but they are used in
such a way that one could grasp the intuitive ideas involved even without knowledge of the
jargons. To be clear, a 3D object is one that can be embedded in R3 by an injective map J
such that J(ax + by) = aJ(x) + bJ(y) whenever x, y, ax + by are points in this object, and
a, b ∈ R.

The Penrose tribar is defined to be a fictitious 3D object—fictitious as it does not exist in
R3—obtained by gluing three rectangular solid cuboids (i.e., bars) L1, L2, L3 in R3 as follows:
Li is glued to Lj by identifying a cubical portion Lij at one end of Li with a cubical portion
Lji at one end of Lj as depicted in Figure 1(b), i, j = 1, 2, 3.

L12

L21

L23

L32

L31

L13
L1

L2L3

Figure 1. (a) Projection of tribar into R2. (b) Decomposition into three overlapping pieces in R3.

The tribar is more commonly shown in its 2D projected form as in Figure 1(a). Let ∆
be the triangular 2D object in Figure 1(a), which appears to be the projection of the Penrose
tribar, should it exist, onto a plane H ∼= R2. Indeed, there are (infinitely) many 3D objects
that, when projected onto a plane H ∼= R2, gives ∆ as an image. An example is the object in
Figure 2, as we explain below.

Note that the object in Figure 2 is an abstraction of the sculpture in Figure 3, which
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Figure 2. A 3D object whose projection onto R2 is ∆.

Figure 3. The Impossible Triangle sculpture by Brian MacKay and Ahmad Abas, located in the Claisebrook
Roundabout, Perth, Australia. Photograph by Bjørn Christian Tørrissen shared under a Creative Commons
license.

depicts how it projects to give ∆ when viewed from an appropriate angle. The plane H in
this case is either the viewer’s retina or the camera’s photographic film.

Let H ⊆ R3 be a hyperplane which partitions R3 into two half-spaces. Let O ∈ R3 be an
arbitrary point in one half-space and the three bars L1, L2, L3 be in the other. The reader
should think of O as the position of the viewer and the viewing direction as a normal to H.
Now we are going to arrange L1, L2, L3 in such a way that their projections onto H give us ∆.
This is clearly possible; for example, the 3D object in Figure 2, upon an appropriate rotation
dependent on H and O, would give ∆ as a projection.

Define dij ∈ R+ to be the distance from O to the center of Lij and dii = 1, i, j = 1, 2, 3.
Let g = (gij)3i,j=1 be the 3× 3 matrix of cross ratios

gij =
dij
dji
, i, j = 1, 2, 3.

Then g is a matrix with g−1
ij = gji and gii = 1 for all i, j = 1, 2, 3.

The matrix g is a function of the positions of the bars L1, L2, L3, or, to be precise, a
function of the centroids of these rigid bodies. These bars have a certain degree of freedom:
We may move each of them independently along the viewing direction and this would keep
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their projections in R2 invariant, always forming ∆. This movement is a similarity transform
that preserves the direction of the bar, with no rotation. Moving Li in the viewing direction
results in a rescaling of the distance dij by a factor gi ∈ R+ for all j 6= i, i.e., if d′ij denotes
the new distance upon moving Li’s along viewing directions, then d′ij = dij/gi for all i 6= j.
Let g′ = (g′ij)

3
i,j=1 be the new matrix of cross ratios upon moving Li’s along viewing direction.

Then we have

(1) g′ij =
d′ij
d′ji

=
dij/gi
dji/gj

= gij
gj
gi
, i, j = 1, 2, 3.

Suppose that we could eventually move L1, L2, L3 to form the tribar in R3. Then, in this
final position, the centers of Lij and Lji coincide and so d′ij = d′ji for all i 6= j, and thus
g′ij = 1 for all i, j = 1, 2, 3. In other words, the matrix g must be a coboundary, i.e.,

(2) gij =
gi
gj
,

for some gi, gj ∈ R+, i, j = 1, 2, 3.
In summary, what we have shown is that if L1, L2, L3 could be moved into place to form

a tribar, then for L1, L2, L3 in any positions that form ∆ upon projection onto R2, the
corresponding matrix g must be a coboundary, i.e., it satisfies (2), or equivalently, g is the
identity element in the cohomology group H1(R2,R+). With this observation, we will next
derive a contradiction showing that the tribar does not exist. Let L1, L2, L3 be arranged as
in Figure 2 and recall that their projections onto R2 give ∆. In this case, the matrix g is

g =

1 1 1
1 1 g23
1 g32 1

 .
If the tribar exists, then g is a coboundary, i.e., (2) has a solution for some gi, gj ∈ R+,
i, j = 1, 2, 3, and so

g1 = g2 = g3,

implying g23 = 1. However, as is evident from Figure 2, L23 does not even intersect L32 and
so g23 6= 1, a contradiction.

Although the tribar does not exist as a 3D object, i.e., it cannot be embedded in R3,
it clearly exists as an abstract geometrical object (a cubical complex) defined by the gluing
procedure described earlier—we will call this the intrinsic tribar to distinguish it from the
nonexistent 3D object. In fact, the intrinsic tribar can be embedded in a 3-manifold R3/Z, a
quotient space of R3 under a certain action of the discrete group Z related to Figure 2 (see
[16] for details).

We emphasize that a tribar is a geometrical object, not a topological one. It may be
tempting to draw a parallel between the nonembeddability of the intrinsic tribar in R3 with
the nonembeddability of the Möbius strip in R2 or the Klein bottle in R3. But these are
different phenomena. As a topological object, a Möbius strip is only defined up to homotopy,
i.e., we may freely deform a Möbius strip continuously. However, the definition of the tribar
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Figure 4. (a) Projection of Escher brick into R2. (b) Decomposition into overlapping pieces in R3.

does not afford this flexibility, i.e., a tribar is not homotopy invariant. For instance, we are
not allowed to twist or bend the bars. In fact, had we allowed such continuous deformation,
the intrinsic tribar is homotopy equivalent to a torus and, therefore, trivially embeddable in
R3. This is much like our study of cryo-EM, where the goal is to reconstruct the 3D structure
of a molecule precisely, and not just up to homotopy.

The discussions above also apply to other impossible objects in R3. For example, the
Escher brick, defined as the (nonexistent) 3D object obtained by gluing four bars L1, L2, L3, L4
as in Figure 4. If the Escher brick exists in R3, then whenever L1, L2, L3, L4 projects onto R2

to form Figure 4(a), the matrix g ∈ R4×4 is necessarily a coboundary, i.e., satisfies gij = gi/gj
for some gi ∈ R+, i, j = 1, 2, 3, 4. We may construct an analogue of Figure 2 whereby we glue
three of the four ends in Figure 4(b). This 3D object projects onto R2 to form Figure 4(a)
but its corresponding matrix g ∈ R4×4 is not a coboundary. Hence the Escher brick does not
exist in R3.

3. Singular cohomology and Čech cohomology. This paper is primarily intended for
an applied and computational mathematics readership. For readers unfamiliar with alge-
braic topology, this section provides in one place all the required definitions and background
material, kept to a bare minimum of just what we need for this paper.

We will define two types of cohomology groups associated to a topological space X and a
topological group G that will be useful for our study of the cryo-EM problem: Hn(X,G), the
singular cohomology group with coefficients in G; and Ȟn(X,G), the Čech cohomology group
with coefficients in G. For a given X, these cohomology groups are in general different; but
they would always be isomorphic for the space X that we construct from a given collection of
cryo-EM images (see section 4). The reason we need both of them is that they are good for
different purposes: the cohomology of cryo-EM is most naturally formulated in terms of Čech
cohomology; but singular cohomology is more readily computable and facilitates our explicit
calculations.

Our descriptions in the next few subsections are highly condensed, but in principle com-
plete and self-contained. While this material is standard, our goal here is to make them ac-
cessible to practitioners by limiting the prerequisite to a few rudimentary definitions in point
set topology and group theory. We provide pointers to standard sources at the beginning of
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each subsection.
We use X ' Y to denote isomorphism if X,Y are groups, homotopy equivalence if X,Y

are topological spaces, and bundle isomorphism if X,Y are bundles. We use X ∼= Y to denote
homeomorphism of topological spaces.

3.1. Singular cohomology. Standard references for this section are [23, 32, 49].
The standard n-simplex for n = 0, 1, 2, 3, is the set

∆n :=
{

(t0, . . . , tn) ∈ Rn+1 :
∑n

i=0
ti = 1, ti ≥ 0

}
.

∆n is the convex hull of its n+ 1 vertices,

e0 = (0, 0, . . . , 0), e1 = (1, 0, . . . , 0), . . . , en = (0, 0, . . . , 1).

The standard 0-simplex is a point, the standard 1-simplex is a line, the standard 2-simplex is
a triangle, and the standard 3-simplex is a tetrahedron.

For n = 0, 1, 2, the convex hull of any n vertices ei1 , . . . , ein of ∆n, where 0 ≤ i1 < · · · <
in ≤ n, is called a face of ∆n and denoted by [i1, . . . , in].

Let X be a topological space and let n = 0, 1, 2, 3. A continuous map σ : ∆n → X is called
a singular simplicial simplex on X. We denote by Cn(X) the free abelian group generated
by all singular simplicial simplices on X. The boundary maps are homomorphisms of abelian
groups

∂1 : C1(X)→ C0(X), ∂2 : C2(X)→ C1(X), ∂3 : C3(X)→ C2(X),

defined respectively by the linear extensions of

∂1(σ) = σ|[1] − σ|[0],

∂2(σ) = σ|[1,2] − σ|[0,2] + σ|[0,1],

∂3(σ) = σ|[1,2,3] − σ|[0,2,3] + σ|[0,1,3] − σ|[0,1,2].

Here σ|[i] denotes the restriction of σ to the face [i] of ∆1, σ|[i,j] denotes the restriction of σ
to the face [i, j] of ∆2, and σ|[i,j,k] denotes the restriction of σ to the face [i, j, k] of ∆3. We
set ∂0 : C0(X)→ {0} to be the zero map.

The sequence of homomorphisms of abelian groups

(3) C3(X) ∂3−→ C2(X) ∂2−→ C1(X) ∂1−→ C0(X) ∂0−→ 0

forms a chain complex, i.e., it has the property that

(4) ∂0 ◦ ∂1 = 0, ∂1 ◦ ∂2 = 0, ∂2 ◦ ∂3 = 0,

which are easy to verify. For n = 0, 1, 2, let Zn(X) := Ker ∂n ⊆ Cn(X) be the subgroup of
n-cycles and let Bn(X) := Im ∂n+1 ⊆ Cn(X) be the subgroup of n-boundaries. It follows from
(4) that Bn(X) ⊆ Cn(X). The quotient group

Hn(X) := Zn(X)/Bn(X)
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is called the nth singular homology group of X, n = 0, 1, 2.
For n = 0, 1, 2, 3, define Cn(X) = HomZ(Cn(X),Z), the set of all group homomorphisms

from Cn(X) to Z. Cn(X) is clearly an abelian group itself under addition of homomorphisms.
The map induced by the boundary map ∂n : Cn(X)→ Cn−1(X) is defined as

∂∗n : Cn−1(X)→ Cn(X), ∂∗n(f)(σ) = f(∂n(σ)),

for any f ∈ Cn−1(X) and σ ∈ Cn(X). The sequence of homomorphisms of abelian groups

(5) 0
∂∗0−→ C0(X)

∂∗1−→ C1(X)
∂∗2−→ C2(X)

∂∗3−→ C3(X)

forms a cochain complex, i.e., it has the property that

(6) ∂∗1 ◦ ∂∗0 = 0, ∂∗2 ◦ ∂∗1 = 0, ∂∗3 ◦ ∂∗2 = 0,

which follows from (4). For n = 0, 1, 2, let Zn(X) := Ker ∂∗n+1 ⊆ Cn(X) be the subgroup of
n-cocycles and let Bn(X) := Im ∂∗n ⊆ Cn(X) be the subgroup of n-coboundaries. The quotient
group

Hn(X) := Zn(X)/Bn(X)

is called the nth singular cohomology group of X, n = 0, 1, 2. More generally, let G be a group
then one can define the nth singular cohomology group Hn(X,G) with coefficient G of X to
be the cohomology groups Zn(X,G)/Bn(X,G) of the cochain complex

0
∂∗0−→ C0(X,G)

∂∗1−→ C1(X,G)
∂∗2−→ C2(X,G)

∂∗3−→ C3(X,G),

where Cn(X,G) = HomZ(Cn(X), G), ∂∗n is the map induced by ∂n : Cn(X) → Cn−1(X),
n = 0, 1, 2, and

Zn(X,G) := Ker ∂∗n+1 ⊆ Cn(X,G),
Bn(X,G) := Im ∂∗n ⊆ Cn(X,G).

Note that when G = Z, Cn(X,Z) = Cn(X), Zn(X,Z) = Zn(X), Bn(X,Z) = Bn(X),
Hn(X,Z) = Hn(X).

For the purpose of this paper, X would take the form of a finite simplicial complex, a
collection K of finitely many simplices such that

(i) every face of a simplex in K is also contained in K;
(ii) the intersection of two simplices ∆1,∆2 in K is a face of both ∆1 and ∆2.

We denote the union of simplices in K by |K|. We also say that a topological space X is a
finite simplicial complex if X can be realized as |K| for some finite simplicial complex K. For
example, spheres Sn and tori S1× · · · × S1 are finite simplicial complexes in this more general
sense.

For the purpose of this paper, readers need only know that

H0(S2) ' H2(S2) ' Z, H1(S2) = 0, H0(S2) ' H2(S2) ' Z, H1(S2) = 0,

and that if X is a simplicial complex of dimension p, then Hn(X) = 0 for all n > p.
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A topological space X is contractible if there is a point x0 ∈ X and a continuous map
H : X × [0, 1]→ X such that

H(x, 0) = x0 and H(x, 1) = x.

Roughly speaking, this means that X can be continuously shrunk to a point x0. For example,
an open/closed/half-open-half-closed line segment is contractible, as is an open/closed disk or
a disk with an arc on the boundary. The following is the only fact about contractible spaces
that we need for this paper.

Proposition 3.1. If X is contractible and G is an abelian group, then Hn(X,G) = 0 for all
n > 0 and H0(X,G) = G.

3.2. Principal bundles and classifying spaces. Standard references for this section are
[23, 25, 32, 33, 49].

Let G be a group with multiplication map µ : G×G→ G, (x, y) 7→ xy and inversion map
ι : G → G, x 7→ x−1. If G is also a topological space such that µ and ι are continuous, then
G together with this topology is called a topological group. Every group G is a topological
group if we put the discrete topology on G; we will denote such a topological group by Gd
(unless the natural topology is the discrete topology, in which case we will just write G). For
example, Z with its natural discrete topology is a topological group. In this paper, we are
primarily interested in the case where G is the group of 2× 2 real orthogonal matrices. When
endowed with the manifold topology, this is SO(2), the special orthogonal group in dimension
two and is homeomorphic to the unit circle S1 as a topological space. On the other hand,
SO(2)d is just a discrete uncountable collection of 2× 2 orthogonal matrices. Both SO(2) and
SO(2)d will be of interest to us.

Let X,P, F be topological spaces. We say that π : P → X is a fiber bundle with fiber F
and base space X if π is a continuous surjection and every point of X has a neighborhood U
such that π−1(U) is homoeomorphic to U × F .

In particular, π−1(x) ∼= F for all x ∈ X.
A principal G-bundle is a tuple (P, π, ϕ) where π : P → X is a fiber bundle with fiber G

and ϕ : G× P → P is a group action such that
(i) ϕ is a continuous map;
(ii) ϕ(g, f) ∈ π−1(x) for any f ∈ π−1(x);
(iii) if ϕ(g, f) = f for some f ∈ P , then g is the identity element in G;
(iv) For any x and f, f ′ ∈ π−1(x), there is a g ∈ G such that ϕ(g, f) = f ′.

We will often say “P is a principal G-bundle on X” to mean the above, without specifying π
and ϕ. A principal SO(2)-bundle is called an oriented circle bundle and a principal SO(2)d-
bundle is called a flat oriented circle bundle. We will have more to say about these in sections 4
and 5.

Let (P, π, ϕ) and (P ′, π′, ϕ′) be two principal G-bundles on X. We say that (P, π, ϕ)
is isomorphic to (P ′, π′, ϕ′), denoted P ' P ′, if there is a homeomorphism ϑ : P → P ′

compatible with the group actions ϕ, ϕ′ and the projection maps π, π′ in the following sense:

ϑ ◦ ϕ = ϕ′ ◦ (idG×ϑ) and π′ ◦ ϑ = π.
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Here idG : G → G is the identity map. Let U = {Ui : i ∈ I} be an open covering of X
such that π−1(Ui) ∼= Ui × G via some isomorphism τi for all i ∈ I. A transition function
corresponding to U is a map τij := τiτ

−1
j , defined for all i, j ∈ I such that Ui ∩ Uj 6= ∅. It

may be regarded as a G-valued function τij : Ui∩Uj → G. Transition functions are important
because one may construct a principal G-bundle entirely from its transition functions [25].

For G = SO(2), transition functions τij of an oriented circle bundle are continuous SO(2)-
valued functions on open sets Ui∩Uj . For G = SO(2)d, transition functions τ ′ij of a flat oriented
circle bundle are continuous SO(2)d-valued functions on open sets Ui ∩ Uj but since SO(2)d
has the discrete topology, this means that τ ′ij are locally constant SO(2)-valued functions on
Ui ∩ Uj . In particular, if Ui ∩ Uj is connected, then τ ′ij are constant SO(2)-valued functions
on Ui ∩ Uj . In our case, the covering that we choose (see (13)) will have connected Ui ∩ Uj ’s
and so we may regard{

isomorphism classes of flat oriented circle bundles
}

⊆
{

isomorphism classes of oriented circle bundles
}
.

In other words, flat oriented circle bundles are just oriented circle bundles whose transition
functions are constant-valued.

Let X,Y be topological spaces. Two maps h0, h1 : X → Y are homotopic if there is a
continuous function H : X × I → Y such that

H(x, 0) = h0(x) and H(x, 1) = h1(x).

Homotopy is an equivalence relation and the set of homotopy equivalent classes of maps from
X to Y is denoted by [X,Y ]. Let Sn be the n-sphere. We say that a topological space X is
weakly contractible if [Sn, X] contains only the equivalence class of the trivial map, i.e., the
map that sends all points in Sn into a fixed point of X. The classifying space of a topological
group G is a topological space BG together with a principal G-bundle EG on BG such that
EG is weakly contractible.

Proposition 3.2. For any topological space X and topological group G, there is a one-to-one
correspondence between the following two sets:

[X,BG]←→ {isomorphism classes of principal G-bundles on X},

given by h 7→ h∗(EG), the principal G-bundle on X whose fiber over x ∈ X is the fiber of EG
over h(x) ∈ BG.

For the purpose of this paper, readers need only know that the classifying space BU(n)
of the unitary group U(n) is Gr(n,∞), the Grassmannian of n-planes in C∞. In particular, if
n = 1, since U(1) = SO(2), we have

(7) B SO(2) = CP∞.

Let G be an abelian group with identity 1. We write HomZ(G,Z) for the set of all
homomorphisms from G to Z. An element g ∈ G is a torsion element if it has finite order,
i.e., gn = 1 for some n ∈ N. The subgroup of all torsion elements in G is called its torsion
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subgroup and denoted GT . For example, every element in Z/mZ is a torsion element whereas
0 is the only torsion element in Z. For an abelian group G, we also denote its torsion subgroup
as

GT = Ext1Z(G,Z).

The reason for including this alternative notation is that it is very standard—a special case
of Ext groups for G defined more generally [23, 24]. We now state some routine relations [24]
that we will need for our calculations. Let G and G′ be abelian groups. Then

HomZ(GT ,Z) = 0, HomZ(G/GT ,Z) ' G/GT ,
HomZ(G⊕G′,Z) ' HomZ(G,Z)⊕HomZ(G′,Z)

and

Ext1Z(GT ,Z) = GT , Ext1Z(G/GT ,Z) = 0,

Ext1Z(G⊕G′,Z) ' Ext1Z(G,Z)⊕ Ext1Z(G′,Z).

Singular homology and singular cohomology are related via Ext1Z and HomZ in the following
well-known theorem.

Theorem 3.3 (universal coefficient theorem). Let X be a topological space. Then we have
a natural short exact sequence

0→ Ext1Z(H1(X),Z)→ H2(X)→ HomZ(H2(X),Z)→ 0.

In particular we have an isomorphism,

H2(X) ' Zb ⊕ T1,

where b := rank(H2(X)) = b2(X) is the second Betti number of X and T1 is the torsion
subgroup of H1(X).

The second Betti number of X counts the number of 2D “voids” in X. In the case
of interest to us, where X is a finite two-dimensional simplicial complex, the second Betti
number counts the number of 2-spheres (by which we meant the boundary of a 3-simplex,
which is homeomorphic to S2) contained in X.

We will also need the following alternative characterization [32, Chapter 22] of H2(X).

Theorem 3.4. Let X be a topological space. Then we have

[X,CP∞] ' H2(X).

3.3. Čech cohomology. Standard sources for this are [19, Chapter 0], [22, Chapter 3],
and [27, Chapter 2].

Let G be a topological abelian group and let X be a topological space. For any open
subset U of X we define an assignment

U 7→ G(U) := group of G-valued continuous functions on U
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for all open subset U ⊆ X. By definition, if G is a discrete group and U is any connected
open subset of X, then G(U) = G. If U ⊆ V , then we have a restriction map

ρV,U : G(V )→ G(U)

defined by the restriction of G-valued continuous functions on V to U .
Let X be a topological space and let G be a topological abelian group on X. Let U =

{Ui : i ∈ I} be an open covering of X. We may associate a cochain complex to X, G, and U
as follows:

(8) C0(U , G) δ0−→ C1(U , G) δ1−→ C2(U , G),

where

C0(U , G) =
∏

i∈I
G(Ui),

C1(U , G) =
{

(gij)i,j∈I ∈
∏

i,j∈I
G(Ui ∩ Uj) : gijgji = 1 for all i, j ∈ I

}
,

C2(U , G) =
{

(gijk)i,j,k∈I ∈
∏

i,j,k∈I
G(Ui ∩ Uj ∩ Uk) :

gijkgikj = gijkgkji = gijkgjik = 1 for all i, j, k ∈ I
}
,

and (
δ0(gi)i∈I

)
j,k

= gkg
−1
j for all j, k ∈ I,(

δ1(gij)i,j∈I
)
k,l,m

= glmgmkgkl for all k, l,m ∈ I.

To be precise, we have

gkg
−1
j = ρUk,Uk∩Uj (gk) · ρUj ,Uk∩Uj (g

−1
j ),

glmgmkgkl = ρUl∩Um,Uk∩Ul∩Um(glm) · ρUk∩Um,Uk∩Ul∩Um(gmk) · ρUk∩Ul,Ul∩Um∩Uk(gkl).

It is easy to check that δ1 ◦ δ0 = 0 and so (8) indeed forms a cochain complex.
As in the case of singular cohomology, B̌1(U , G) := Im δ0 and Ž1(U , G) := Ker δ1 are the

groups of Čech 1-coboundaries and Čech 1-cocycles, respectively. Again we have B̌1(U , G) ⊆
Ž1(U , G). The first Čech cohomology group associated to U with coefficients in G is then
defined to be the quotient group

Ȟ1(U , G) := Ž1(U , G)/B̌1(U , G).

Explicitly, we have

Ȟ1(U , G) =
{(gij) : gijgjkgki = 1 for all i, j, k}
{(gij) : gij = gjg

−1
i for all i, j}

.

We have in fact already encountered this notion in section 2, Ȟ1(R2,R+), the Čech cohomol-
ogy group of the plane R2 with coefficients in the group R+ has appeared implicitly in our
discussion.
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By its definition, Ȟ1(U , G) depends on the choice of open covering U of X. To obtain a
Čech cohomology group of X independent of open covering, we take the direct limit over all
possible open coverings of X. The first Čech cohomology group of X with coefficients in G is
defined to be the direct limit

Ȟ1(X,G) := lim−→ Ȟ1(U , G)

with U running through all open coverings of X.
For those unfamiliar with the notion of direct limit, Ȟ1(X,G) may be defined explicitly

using an equivalence relation:

Ȟ1(X,G) :=
[∐

U
Ȟ1(U , G)

]/
∼,

where
∐
U denotes the disjoint union of Ȟ1(U , G) for all possible open coverings of X. The

equivalence relation ∼ is given as follows: For ϕU ∈ Ȟ1(U , G) and ϕV ∈ Ȟ1(V, G), ϕU ∼ ϕV
if and only if

(i) there is an open covering W such that every open set W ∈ W is contained in U ∩ V
for some U ∈ U and V ∈ V;

(ii) there is an element ϕW ∈ Ȟ1(W, G) such that the restriction of ϕU and the restriction
of ϕV are both equal to ϕW .

The term “restriction” needs elaboration. Let U = {Ui : i ∈ I}, V = {Vα : α ∈ Λ} be open
covers of X such that for any Ui ∈ U , there is some Vαi ∈ V with Ui ⊆ Vαi . Fix a map τ : I → Λ
such that Ui ⊆ Vτ(i). There is a natural restriction map ρV,U : Ȟ1(V, G)→ Ȟ1(U , G) induced
by ρ̃V,U : C1(V, G)→ C1(U , G), where

(ρ̃V,U (gα,β))i,j = ρVτ(i)∩Vτ(j),Ui∩Uj (gτ(i),τ(j)).

The image ρV,U (ϕ) of ϕ ∈ Ȟ1(V, G) is called the restriction of ϕ to Ȟ1(U , G). It does not
depend on the choice of τ .

As the reader can guess, calculating the Čech cohomology group using such a definition
would in general be difficult. Fortunately, the following theorem (really a special case of
Leray’s theorem [15]) allows us to simplify the calculation in all cases of interest to us in this
paper.

Theorem 3.5 (Leray’s theorem). Let X be a topological space and let G be a topological
abelian group. Let U = {Ui : i ∈ I} be an open cover of X such that Ȟ1(Ui, G) = 0 for all
i ∈ I. Then we have

Ȟ1(U , G) ' Ȟ1(X,G).

Furthermore, we will often be able to reduce calculation of Čech cohomology to calculation
of singular cohomology since they are equal in the case when X is a finite simplicial complex
[41].

Theorem 3.6. If K is a finite simplicial complex and G is an abelian group, then

Ȟ1(K,Gd) ' H1(K,G),

where Gd is the group G equipped with the discrete topology.
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For a contractible space, we have H1(K,G) = 0 by Proposition 3.1. So we may deduce
the following from Theorem 3.6.

Corollary 3.7. If K is a finite contractible simplicial complex and G is an abelian group,
then

Ȟ1(K,Gd) = 0.

To check whether an oriented circle bundle on a finite simplicial complex K is flat, we
have the following useful result [29, 34, 37].

Proposition 3.8. An oriented circle bundle on K is flat if and only if its Euler class is a
torsion element in H2(K).

Defining the Euler class of an oriented circle bundle would take us too far afield and so
this will be the only term left undefined in our paper. Fortunately, all we need is the following
corollary of Proposition 3.8.

Corollary 3.9. If H2(K) is torsion free, then any oriented circle bundle on K must be flat.

A particularly important result [9, 26] for us is the following theorem that relates the Čech
cohomology group with G-coefficients and principal G-bundles.

Theorem 3.10. If G is a topological abelian group, then Ȟ1(X,G) is in canonical one-to-
one correspondence with the set of isomorphism classes of principal G-bundles on X.

4. Cohomological classification of discrete cryo-EM cocycles. We will follow the math-
ematical setup for the cryo-EM problem as laid out in [20, 21]. First, recall the high-level
description of the problem: Given cocycles comprising a collection of noisy 2D projected
images, reconstruct the 3D structure of the molecule that gave rise to these images. The
standard mathematical model for cryo-EM casts the problem in mathematical terms and may
be described as follows:

(i) The molecule is described by a function ϕ : R3 → R, the potential function of the
molecule.

(ii) A viewing direction is described by a point on the 2-sphere S2.
(iii) The position of an image is described by a 3 × 3 matrix A = [a, b, c] ∈ SO(3) where

the orthonormal column vectors a, b, c are such that span{a, b} is the projection plane
and c is the viewing direction.

(iv) A projected image ψ of the molecule ϕ by A is described by a function ψ : R2 → R
where

ψ(x, y) =
∫
z∈R

ϕ(xa+ yb+ zc) dz.

The function ψ describes the density of the molecule along the chosen viewing direc-
tion.

Let Ψ = {ψ1, . . . , ψn} be a set of n projected images of the molecule and c1, . . . , cn be the
corresponding viewing directions. It is common to impose two mild assumptions:

(a) The function ϕ is generic. In particular, each image ψi ∈ Ψ has a uniquely determined
viewing direction. In practice, this means that the molecule has no extra symmetry.
This assumption does not exclude the possibility where two images ψi, ψj may share
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the same viewing direction. However, it excludes the case where an image ψi can be
obtained from projections of the molecule from two different directions.

(b) The viewing directions c1, . . . , cn ∈ S2 are distributed uniformly on S2. This is a
standard assumption in cryo-EM literature although in practice, viewing directions
are rarely uniformly distributed.

In addition, since each image ψi is associated with a viewing direction ci, we should regard ψi
to be a real-valued function on the tangent plane to S2 with unit normal in the direction of
ci. This is the point of view adopted in [48] and we will assume it throughout this paper. An
important distinction between cryo-EM and other reconstruction problems in medical imaging,
remote sensing, underwater acoustics, etc, mentioned in section 1 is that for the former, the
viewing directions c1, . . . , cn are unknown and have to be determined from the data set Ψ,
whereas for the latter, we usually know in which directions the imaging instruments (CT
scanner, camera, radar, sonar, etc) are pointed. In fact, determining c1, . . . , cn from Ψ is the
most crucial step in cryo-EM—our goal is to show that there is some interesting algebraic
topology behind this problem.

Henceforth, by a “molecule,” we will mean one in the standard mathematical model, i.e.,
a function ϕ. These include ϕ’s that do not correspond to any actual molecules. We assume
that ϕ ∈ L2(R3) and ψ1, . . . , ψn ∈ L2(R2). There is a natural notion of distance [38] between
projected images Ψ = {ψ1, . . . , ψn} given by

d(ψi, ψj) = min
g∈SO(2)

‖g · ψi − ψj‖,

where ‖ · ‖ is the norm in L2(R2) and the action of g ∈ SO(2) on a projected image ψ is

(g · ψ)(x, y) = ψ(g−1(x, y)).

Geometrically, the action of g on ψ is the rotation of ψ by the angle represented by g ∈ SO(2).
Let gij be the element in SO(2) which realizes the minimum of the distance d(ψi, ψj), i.e.,

(9) gij := argmin
g∈SO(2)

‖g · ψi − ψj‖

for i, j = 1, . . . , n. Clearly, we have

(10) gii = 1n and gijgji = 1n

for all i, j = 1, . . . , n, where 1n is the n× n identity matrix, which we will henceforth denote
simply as 1 when there is no cause for confusion. In general, gij is not unique since it could
happen that two different rotations both minimize the distance but our assumption that the
function ϕ is generic ensures that gij is uniquely determined by ψi and ψj . We will call

(11) D := {gij ∈ SO(2) : i, j = 1, . . . , n}

the set of pairwise angular comparisons. This is of course derived from the raw image data set
Ψ and the process of extracting D from Ψ is itself an active research topic [6, 7], particularly
when the images ψi’s are noisy. We will not concern ourselves with this auxiliary problem
here.
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We will use notations consistent with those introduced in section 3.1 for simplices. For
any ε > 0, we may construct an undirected graph Gε = (V,E) where V = {[1], . . . , [n]} is the
set of vertices corresponding to the projected images Ψ = {ψ1, . . . , ψn}, and E is the set of
edges defined by

(12) [i, j] ∈ E if and only if d(ψi, ψj) ≤ ε.

Let us first consider an ideal situation where the projected images ψi’s are noiseless. Also
we fix ε > 0 and the number of images n. Let Gε be the associated undirected graph. We
define the cryo-EM complex Kε as follows:

(i) the 0-simplices of Kε are the vertices of Gε,
(ii) the 1-simplices of Kε are the edges of Gε,
(iii) the 2-simplices of Kε are the triangles [i, j, k] such that [i, j], [i, k], [j, k] are all edges

of Gε.
Kε is a two-dimensional finite simplicial complex. It is the 3-clique complex [8, 31] of the
graph Gε. In addition, Kε is also the Vietoris–Rips complex [12, 53] defined by (12) with
respect to the metric d.

Some simple examples: The graph G1 = (V1, E1) with V1 = {[1], [2], [3]} and E1 =
{[1, 2], [1, 3], [2, 3]} defines a simplicial complex K1 that is a triangle. The graph G2 = (V2, E2)
with V2 = {[1], [2], [3], [4]} and E2 = {[1, 2], [1, 3], [2, 3], [1, 4], [2, 4], [3, 4]} defines a simplicial
complex K2 that is the boundary of a tetrahedron or 3-simplex. The graph G3 = (V3, E3)
with V3 = {[1], [2], [3], [4]} and E3 = {[1, 2], [2, 3], [1, 4], [3, 4]} defines a simplicial complex K3
that is the boundary of a square.

K1
1

23

K2
1

2

3

4

K3
1

2

3

4

We will regard our simplicial complex Kε as being embedded in R4 and inherits the Euclidean
topology from R4, i.e., Kε is a geometric simplicial complex and not just an abstract simplicial
complex. For each vertex [i] of Kε we define an open set Ui(Kε) to be the union of the interior
of all simplices of Kε containing the vertex [i]. Those familiar with simplicial complex might
like to note that Ui(Kε) is just the complement of the link of [i] in the star of [i]. For example,
U1(Ki) for i = 1, 2, 3 are shown below. Here dashed lines are excluded from the neighborhood.

U1(K1) 1

23

U1(K2) 1

2

3

4

U1(K3) 1

2

3

4
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It follows from our definition of Ui(Kε) that

(13) U = {Ui : [i] is a vertex of Kε}

is an open covering of Kε.
Let ϕ be a fixed molecule and let Ψ = {ψ1, . . . , ψn} be a set of projected images of ϕ.

The set of pairwise angular comparisons D = {gij ∈ SO(2) : i, j = 1, . . . , n} contains all
gij ’s corresponding to every pair of images ψi, ψj . For the purpose of cryo-EM reconstruction,
one does not usually need all elements in the D [48], only a much smaller subset comprising
the gij ’s corresponding to images ψi, ψj that are near each other, i.e., d(ψi, ψj) ≤ ε for some
small ε > 0. This is expected since most reconstruction methods proceed by aggregating local
information. With this in mind, we define the following.

Definition 4.1. Let D = {gij ∈ SO(2) : i, j = 1, . . . , n} be the set of pairwise angular
comparisons. Let ε > 0 and Kε be the cryo-EM complex. The discrete cryo-EM cocycle on
Kε is the subset of D corresponding to edges in Kε given by

zdε := {gij ∈ SO(2) : [i, j] ∈ Kε}.

We may view zdε as the “useful” part of the set of pairwise angular comparisons D for
cryo-EM reconstruction. In fact we are unaware of any reconstruction method that makes use
of gij where [i, j] /∈ Kε.

As we mentioned earlier in this section, we take the point of view in [48] that the projected
images ψi’s lie in tangent planes of a 2-sphere determined by their viewing directions. We also
assume, as in [48], that if the images ψi, ψj , and ψk have viewing directions close enough, then
they lie in the same tangent plane. This assumption is reasonable since if ψi and ψj share
the same viewing direction, then they will only differ by a plane rotation. Moreover, if ψi, ψj ,
and ψk share the same viewing direction, then the angle needed to rotate ψi to ψk is the sum
of the angle needed to rotate ψi to ψj and the angle needed to rotate ψj to ψk—implying that
the gij ’s corresponding to Ψ = {ψ1, . . . , ψn} satisfy the following 1-cocycle condition:

(14) gijgjkgki = 1.

Here 1 is the identity matrix in SO(2). Note that the matrices gij ’s in the discrete cryo-EM
cocycle always satisfy (10), irrespective of whether viewing directions are close enough.

By the preceding discussion, we will assume that for ε > 0 small enough, the gij ’s will
satisfy the 1-cocycle condition (14) for all edges [i, j], [j, k], [k, i] of the cryo-EM complex Kε.
One motivation for this assumption is that when ε→ 0, images that lie in an ε-neighborhood
will share the same viewing direction and thus gij ’s will satisfy the cocycle condition (14).
Therefore, “small enough ε” should be taken mathematically to mean the value of ε such
that (14) holds, bearing in mind that (14), like any mathematical model, is ultimately only
an approximation of reality. Our assumption that the 1-cocycle condition is satisfied for
small enough ε > 0 is a basic tenet for our subsequent discussions. As far as we know, this
assumption is not in existing cryo-EM literature although it is closely related to the “same
tangent plane” assumption in [48]. While never explicitly stated, (14) is the implicit principle
underlying many, if not most, denoising techniques for cryo-EM images [47, 48, 44], as we will
see in section 6.
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Given an open subset U of Kε, any element g ∈ SO(2) can be regarded as the constant
SO(2)-valued function sending every point x ∈ U to g, and thus we may regard zdε as a cocycle
in Ž1

(
Kε,SO(2)d

)
. We highlight this observation as follows:

Every discrete cryo-EM cocycle on Kε is an SO(2)d-valued Čech 1-cocycle on Kε.
Henceforth , we will regard

Ž1(Kε,SO(2)d
)

=
{

all discrete cryo-EM cocycles on Kε

}
.

The set on the right includes all possible discrete cryo-EM cocycles on Kε corresponding to all
molecules ϕ. A cocycle zdε only tells us how to glue together local information. It is possible
for two different 3D molecules to give the same discrete cryo-EM cocycle zdε as long as the
relations between their projected images are the same.

Given a discrete cryo-EM cocycle zdε ∈ Ž1
(
Kε, SO(2)d

)
, i.e., elements in zdε satisfy (14),

and any arbitrary image ψ ∈ L2(R2), we may apply each g ∈ zdε to ψ to obtain a set of images

zdε (ψ) := {g · ψ : g ∈ zdε} = {gij · ψ : [i, j] ∈ Kε}.

The cocycle condition (14) ensures that for any image g ·ψ in this set, we obtain the same set
of images by applying each g ∈ zdε , i.e.,

zdε (g · ψ) = zdε (ψ) for any g ∈ zdε .

Moreover, the discrete cryo-EM cocycle obtained would be exactly zdε . A set of projected
images zdε (ψ) allows one to reconstruct the 3D molecule ϕ whose projected images are precisely
the ones in zdε (ψ) [17, 18, 42, 39]. Put in another way, given a discrete cryo-EM cocycle
zdε ∈ Ž1

(
Kε, SO(2)d

)
and an image ψ ∈ L2(R2), we may construct a 3D molecule ϕ ∈ L2(R3)

whose discrete cryo-EM cocycle is exactly zdε and one of whose projected image is ψ.
The context for the following theorem is that we are given two collections of n projected

images Ψ = {ψ1, . . . , ψn} and Ψ′ = {ψ′1, . . . , ψ′n} of the same molecule ϕ. These give two
discrete cryo-EM cocycles D = {gij ∈ SO(2) : i, j = 1, . . . , n} and D′ = {g′ij ∈ SO(2) :
i, j = 1, . . . , n}. Let ε > 0 be sufficiently small and let zdε = {gij ∈ SO(2) : [i, j] ∈ Kε},
z′dε = {g′ij ∈ SO(2) : [i, j] ∈ Kε} be the corresponding discrete cryo-EM cocycles on Kε.

Theorem 4.2 (bundle classification of discrete cryo-EM cocycles). Let ε > 0 be small enough
so that (14) holds and let Kε be the corresponding cryo-EM complex. Then

(i) the 1-cocycle zdε determines a flat oriented circle bundle on Kε;
(ii) two 1-cocycles zdε and z′dε for the same molecule determine isomorphic flat oriented

circle bundles if and only if

(15) g′ij = gijgig
−1
j

for some gi, gj ∈ SO(2), [i, j] ∈ Kε.

Proof. Let U = {Ui(Kε) : i = 1, . . . , n} be the open cover defined in (13). It is easy to see
that Ui(Kε) is contractible and so by Corollary 3.7,

Ȟ1(Ui(Kε),SO(2)d
)

= {1}
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for all i = 1, . . . , n. We may then apply Theorem 3.5 to get

Ȟ1(U ,SO(2)d
)
' Ȟ1(Kε,SO(2)d

)
.

Therefore, it follows from Theorem 3.10 that Ȟ1
(
U ,SO(2)d

)
is canonically in one-to-one cor-

respondence with the set of isomorphism classes of SO(2)d-principal bundles, i.e., flat ori-
ented circle bundles. Since the subset zdε = {gij ∈ SO(2) : [i, j] ∈ Kε} is a 1-cocycle in
Ȟ1(U ,SO(2)d), it determines an oriented circle bundle over Kε. Part (ii) follows from the fact
that the 1-cocycle bε = {gig−1

j ∈ SO(2) : [i, j] ∈ Kε} is a 1-coboundary and thus represents
the trivial cohomology class.

If the reader finds (15) familiar, that is because we have seen a similar version (1) in our
discussion of the Penrose tribar. The difference here is that the quantities in (1) are from
the group R+ whereas the quantities in (15) are from the group SO(2). Two cocycles zdε =
{gij ∈ SO(2) : [i, j] ∈ Kε} and z′dε = {g′ij ∈ SO(2) : [i, j] ∈ Kε} are said to be cohomologically
equivalent if and only if they differ by a coboundary bε = {gig−1

j ∈ SO(2) : [i, j] ∈ Kε} in the
sense of (15). Cohomologically equivalent zdε and z′dε define the same cohomology class in the
quotient group and we have

Ȟ1(Kε,SO(2)d
)

:= Ž1(Kε, SO(2)d
)
/B̌1(Kε,SO(2)d

)
=
{

cohomologically equivalent discrete cryo-EM cocycles on Kε

}
.

By Proposition 3.2, the cohomology group Ȟ1
(
Kε,SO(2)d

)
can be identified as sets with

the classifying space [Kε, B SO(2)d], which classifies the isomorphism classes of flat oriented
circle bundles on Kε. We obtain a canonical one-to-one correspondence

(16)
{

cohomologically equivalent discrete cryo-EM cocycles on Kε

}
←→

{
isomorphism classes of flat oriented circle bundles on Kε

}
.

Finally, we arrive at the following result.

Theorem 4.3. Let ε > 0 be small enough so that (14) holds and let Kε be the corresponding
cryo-EM complex. Then

(i) every flat oriented circle bundle on Kε is the trivial circle bundle;
(ii) all discrete cryo-EM cocycles on Kε are coboundaries bε = {gig−1

j ∈ SO(2) : [i, j] ∈
Kε}.

Proof. By Proposition 3.8, it suffices to show that H2(Kε) is torsion free. But this follows
from Theorem 3.3: By our construction of Kε, the simplicial complex is actually homotopic to
a one-point union of several spheres or a one-point union of several circles. This implies that
either H1(Kε) = 0 or H1(Kε) ' Zr for some integer r ≥ 1. In particular, H1(Kε) is torsion
free, i.e., T1 = 0.

In other words, the set on the right of (16) is a singleton comprising only the trivial
bundle. Consequently, discrete cryo-EM cocycles on Kε are all cohomologically equivalent
and all correspond to the trivial circle bundle. So Theorem 4.2 does not provide an interesting
classification. The reason is that a discrete cryo-EM cocycle as defined by (9), i.e., an element
of Ȟ1

(
Kε, SO(2)d

)
, is too coarse. In the next section, we will see how the classification

becomes more interesting mathematically when we look at continuous cryo-EM cocycles.
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5. Cohomological classification of continuous cryo-EM cocycles. In the standard math-
ematical model for cryo-EM, a projected image is a function ψ : R2 → R defined by

ψ(x, y) =
∫
z∈R

ϕ(xa+ yb+ zc) dz,

where A = [a, b, c] ∈ SO(3) describes the orientation of the molecule in R3 and ϕ is the
potential function of the molecule. For every pair of images ψi, ψj we define an SO(2)-valued
function

(17) hij(r) := argming∈SO(2)

∫ 2π

0
|(g · ψi)(r cos θ, r sin θ)− ψj(r cos θ, r sin θ)|2 dθ,

where r =
√
x2 + y2. These hij ’s should be interpreted as follows: We regard a 2D image ψi

as comprising circular “slices” of different radii as in Figure 5, i.e., each slice is the intersection
of the image ψi with a circle of radius r. For each pair i, j, hij(r) ∈ SO(2) is the rotation that
minimizes the difference between the slice of ψi of radius r and the slice of ψj of radius r.

ψi
r3r2r1

Figure 5. Circular slices of an image ψi.

The integral in (17) is in fact a restriction of the circular Radon transform [28], defined
for a compactly supported f : R2 → R by

Sf : R2 × (0,∞)→ R, Sf(η, ξ, r) =
∫

(x−η)2+(y−ξ)2=r
f(x, y) dσ(x, y),

where σ denotes the surface measure on the circle of radius r centered at (η, ξ). Although it
has not been used, as far as we know, in cryo-EM applications, the circular Radon transform is
common in a variety of other applications, e.g., thermoacoustic tomography and optoacoustic
tomography [2, 13, 30, 54, 1]. If we set (η, ξ) = (0, 0), x = r cos θ, y = r sin θ, then

Sf(0, 0, r) =
∫ 2π

0
f(r cos θ, r sin θ) dθ,
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and so (17) is the circular Radon transform of |g · ψi − ψj |2 at (0, 0, r).
Let ε > 0 and the potential function ϕ : R3 → R be chosen so that hij(r) satisfies the

1-cocycle condition

(18) hij(r)hjk(r)hki(r) = 1

for all r > 0 whenever the images ψi, ψj , and ψk are such that

d(ψi, ψj) ≤ ε, d(ψj , ψk) ≤ ε, d(ψk, ψi) ≤ ε.

We remind readers that the existence of such an ε that guarantees (18) is an underlying basic
tenet of our model. Since ϕ is compactly supported, so must its projections ψi’s, implying
that hij is eventually constant, i.e., there exists some R > 0 and some g ∈ SO(2) such that
hij(r) = g whenever r ≥ R. In fact there is no loss of generality in assuming that g = 1: Since
SO(2) is connected, we may pick a continuous curve γ : [R,R′] → SO(2) such that γ(R) = g
and γ(R′) = 1; replacing h|[R,R′] by γ then gives an h where hij(r) = 1 for sufficiently large r.
In particular, limr→∞ hij(r) = 1, the identity element in SO(2).

Recall that we write G(U) for the set of G-valued functions on an open set U . So hij ∈
SO(2)(R2). Let U be the open covering of Kε in (13). We will now define a continuous
cryo-EM cocycle, a Čech 1-cocycle

zcε := {τij ∈ SO(2)(Ui ∩ Uj) : [i, j] ∈ Kε}

on Kε determined by the hij ’s. The process is analogous to how we obtained zdε , the discrete
cryo-EM cocycle on Kε, from the set of pairwise angular comparisons D in section 4 but is a
little more involved.

We first define the restriction of τij to Ui ∩ Uj ∩ Uk for all k = 1, . . . , n and show that
we can glue them together to obtain a globally defined SO(2)-valued function on Ui ∩Uj . By
construction, the open covering U has the property that for any Ui, Uj , Uk, either

Ui ∩ Uj ∩ Uk = ∅ or Ui ∩ Uj ∩ Uk ∼= R2.

In the first case there is nothing to define. If Ui ∩Uj ∩Uk ∼= R2, we fix a homeomorphism and
regard Ui ∩ Uj ∩ Uk as R2, then define the restriction of τij to be

τij(x, y) = hij(r),

for (x, y) ∈ Ui ∩ Uj ∩ Uk and hij ∈ SO(2)(Ui ∩ Uj). Although the definition of τij |Ui∩Uj∩Uk
depends on a homeomorphism Ui ∩Uj ∩Uk ∼= R2, two such homeomorphisms induce a home-
omorphism from Ui ∩ Uj ∩ Uk to itself. So we obtain a one-to-one correspondence between
the set of τij ’s constructed from one homeomorphism and the set of τij ’s constructed from the
other. This in turn induces a one-to-one correspondence between cohomology classes repre-
sented by the two sets of τij ’s. So while different homeomorphisms Ui ∩ Uj ∩ Uk ∼= R2 give
different τij ’s, their cohomology classes are in one-to-one correspondence.

Since Ui ∩Uj ∩Uk is disjoint from Ui ∩Uj ∩Ul whenever k and l are distinct, to define τij
on Ui ∩ Uj we need only define it on the set

Vij := Ui ∩ Uj −
⋃

k 6=i,j
Ui ∩ Uj ∩ Uk.
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If Vij 6= ∅, then it must be the interior of the 1-simplex connecting [i] and [j]. In this case
we define τij to be the constant limr→∞ τij(x, y) = 1 ∈ SO(2) where (x, y) ∈ Ui ∩Uj ∩Uk and
r =

√
x2 + y2. Note that the limit exists as τij(x, y) depends only on r =

√
x2 + y2 and ϕ

and ψi’s are compactly supported. Lastly, it is obvious from its definition that τij satisfies the
1-cocyle condition

(19) τij(x, y)τjk(x, y)τki(x, y) = 1.

To illustrate our construction of τij , we consider an example where the two-dimensional
simplicial complex K is obtained by gluing two triangles as follows:

j

l

i

k hij hij

Here Ui ∩ Uj ∩ Uk is the interior of the triangle with vertices i, j, k. We define the values
of τij , τki, and τjk on Ui ∩ Uj ∩ Uk to be hij , hki, and hjk respectively. One should think of
Ui∩Uj∩Uk as a copy of R2 and the boundary of the triangle with vertices i, j, k as the “points
at infinity” of R2.

Since zcε satisfies (19), we see that zcε ∈ Ž1
(
Kε, SO(2)

)
. By an argument similar to the

proof of Theorem 4.2, we obtain the following classification result.

Theorem 5.1 (bundle classification of continuous cryo-EM cocycles I). Let ε > 0 be small
enough so that (19) holds and let Kε be the corresponding cryo-EM complex. Then

(i) the 1-cocycle zcε determines an oriented circle bundle on Kε;
(ii) two 1-cocycles zcε and z′cε for the same molecule determine isomorphic oriented circle

bundles if and only if

(20) τ ′ij = τijτiτ
−1
j

for some τi ∈ SO(2)(Ui), τj ∈ SO(2)(Uj), [i, j] ∈ Kε.

For small enough ε > 0, Theorem 5.1 gives us a classification of all possible continuous
cryo-EM cocycles on Kε, a canonical correspondence

(21)
{

cohomologically equivalent cryo-EM cocycles on Kε

}
−→

{
isomorphism classes of oriented circle bundles on Kε

}
.

By Proposition 3.2, the isomorphism classes of principal G-bundles may be identified with
[Kε, BG], the homotopy classes of continuous maps from Kε to the classifying space of G. In
our case, G = SO(2) ' S1, the circle group. By (7), BG = B SO(2) ' CP∞ and so

(22) Ȟ1(Kε, SO(2)
)
' [Kε, B SO(2)] ' [Kε,CP∞] ' H2(Kε),

where the last isomorphism is by Theorem 3.4. We will discuss the two main implications of
(22) separately: H2(Kε) gives us a homological classification of continuous cryo-EM cocycles;
whereas [Kε, B SO(2)] tells us about the moduli space of continuous cryo-EM cocycles.
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5.1. Cohomology as obstruction. The cohomology group H2(Kε) may be viewed as the
obstruction to Kε degenerating into a one-dimensional simplicial complex. If H2(Kε) = 0,
then Kε contains no 2-sphere—by which we mean the boundary of a 3-simplex, which is
homeomorphic to S2. Thus Kε is a two-dimensional simplicial complex whose 2-simplices
are all contractible, and thus it is homotopic to a one-dimensional simplicial complex. Let
H2(Kε) = 0. If ψj , ψk, ψl are three images that lie in the ε-neighborhood of an image ψi,
then at least one of ψj , ψk, ψl cannot lie in the intersection of ε-neighborhoods of the other
two. In terms of the graph Gε, H2(Kε) = 0 implies that Gε does not contain a 4-clique, i.e.,
a complete subgraph with four vertices.

The isomorphism wtih H2(Kε) also allows us to calculate Ȟ1
(
Kε, SO(2)

)
explicitly.

Theorem 5.2. Ȟ1
(
Kε, SO(2)

)
' H2(Kε) = Zb where b = b2(Kε), the second Betti number

of Kε.

Proof. The isomorphism is (22). The equality follows from Theorem 3.3, observing that
H1(Kε) = 0 by our construction of Kε and so T1 = 0. We may also derive the isomorphism
directly without going through the chain of isomorphisms in (22). Snake lemma [23, 32, 49]
applied to the exact sequence of groups

1→ Z 2π−→ R expi−−→ S1 → 1,

where the first map is multiplication by 2π and expi(x) := exp(ix), yields a long exact sequence
of cohomology groups

· · · → Ȟ1(Kε,R)→ Ȟ1(Kε, S1)→ Ȟ2(Kε,Z)→ Ȟ2(Kε,R)→ · · · .

Both Ȟ1(Kε,R) and Ȟ2(Kε,R) are zero by the existence of partition of unity on Kε. So
Ȟ1(Kε,S1) = Ȟ2(Kε,Z). Since S1 = SO(2), Ȟ1(Kε, S1) = Ȟ1

(
Kε, SO(2)

)
. Finally, by

Theorem 3.6, we get Ȟ2(Kε,Z) ' H2(Kε,Z) = H2(Kε).

5.2. Cohomology as moduli. A benefit of classifying continuous cryo-EM cocycles in
terms of oriented circle bundles is that these are very well understood classical objects [11, 50].
In what follows, we will refine Theorem 4.2 with explicit descriptions of the oriented circle
bundles that arise in the classification of continuous cryo-EM cocycles.

Let b2(Kε) = b. Since Kε is a finite two-dimensional simplicial complex, b2(Kε) = b
implies that Kε contains b copies of 2-spheres. By (21) and Theorem 5.2, we expect to obtain
an oriented circle bundle over Kε for each (m1, . . . ,mb) ∈ Zb. An oriented circle bundle
over any one-dimensional simplicial complex K must be trivial since H2(K) = 0. Hence
any oriented circle bundle over Kε is uniquely determined by its restriction to the 2-spheres
contained in Kε and understanding oriented circle bundles on Kε reduces to understanding
oriented circle bundles on S2, which we will describe explicitly in the following.

We start by identifying the 3-sphere with the group of unit quaternions, i.e.,

S3 = {a+ bi+ cj + dk ∈ H : a, b, c, d ∈ R, a2 + b2 + c2 + d2 = 1},

and identify the circle with the group of unit complex numbers, i.e.,

S1 = {a+ bi ∈ C : a, b ∈ R, a2 + b2 = 1}.
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Elements of S1 may be regarded as unit quaternions with c = d = 0 and so S1 a subgroup of
S3. In particular, S1 acts on S3 by quaternion multiplication and we have a group action

(23) ϕ : S1×S3 → S3, (x+yi, a+bi+cj+dk) 7→ xa−yb+(xb+ya)i+(xc−yd)j+(xd+yc)k.

As topological spaces we have
S3/S1 ' S2

but note that S1 is not a normal subgroup of S3 and so S2 does not inherit a group structure.
Let

π : S3 → S3/S1 ' S2

be the natural quotient map.
For m ∈ N, let Cm be the subgroup of S1 generated by exp(2πi/m), a cyclic group of order

m. Each Cm is also a subgroup of S3 and acts on S3 by quaternion multiplication. Since Cm
is a subgroup of S1, we obtain an induced projection map

(24) πm : S3/Cm → S3/S1 ' S2

for each m ∈ N. The following classic result [50] describes all circle bundles on S2—there are
infinitely many of them, one for each nonnegative integer.

Proposition 5.3. For each m = 0, 1, 2, . . . , there is a circle bundle (Am, πm, ϕm) with base
space S2 where

A0 = S1 × S2, Am = S3/Cm for m ∈ N.

The projection to S2,

π0 : A0 → S2, πm : Am → S3/S1 ' S2,

is the projection onto the second factor for m = 0 and the quotient map (24) for m ∈ N. The
group action ϕm : S1 × Am → Am is the trivial action (any element in S1 acts as identity
on A0) for m = 0 and the action induced by quaternion multiplication ϕ in (23) for m ∈ N.
Every circle bundle on S2 is isomorphic to an Am for some m = 0, 1, 2, . . . .

Note that these are SO(2)-bundles since we regard SO(2) = S1. A0 is the trivial circle
bundle on S2 and A1 is the well-known Hopf fibration. As a manifold, Am = S3/Cm is
orientable for all m ∈ N and so each Am comes in two different orientations, which we denote
by A+

m and A−m. For m = 0, 1, 2, . . . , we write

B0 := A0, Bm := A+
m, B−m := A−m.

These are the oriented circle bundles on S2.
We will next construct a cryo-EM bundle by gluing oriented circle bundles along the cryo-

EM complex Kε, attaching a copy of Bm for some m ∈ Z to each 2-sphere in Kε. We then
show that these bundles are in one-to-one correspondence with continuous cryo-EM cocycles
on Kε.

Let Kε be a cryo-EM complex with b2(Kε) = b, i.e., Kε contains b copies of 2-spheres;
in fact, by its definition, Kε is homotopic to the one-point union of b copies of S2, as we
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discussed in the proof of Theorem 4.3. Label these arbitrarily from i = 1, . . . , b and denote
them S2

1, . . . ,S2
b . For any (m1, . . . ,mb) ∈ Zb, we may define a principal SO(2)-bundle Bm1,...,mb

on Kε as one whose restriction on the ith 2-sphere in Kε is Bmi , i = 1, . . . , b, and is trivial
elsewhere. We remove all the 2-spheres contained in Kε and let the remaining simplicial
complex be

Lε :=
(
Kε −

⋃b

i=1
S2
i

)
.

As a topological space, Bm1,...,mb is the union of Bmi ’s corresponding to each of the 2-spheres
and the trivial circle bundle on Lε,

Bm1,...,mb :=
[⋃b

i=1
Bmi

]
∪
[
Lε × S1

]
.

To see that Bm1,...,mb is a fiber bundle on Kε, take the open covering

U = {U1(Kε), . . . , Un(Kε)}

of Kε in section 4. By the construction of Bm1,...,mb , its restriction to Ui(Kε) is a trivial fiber
bundle since Ui(Kε) is contractible. So Bm1,...,mb is locally trivial and thus a fiber bundle on
Kε. Moreover, the bundle (Bm1,...,mb , π, ϕ) is an oriented circle bundle on Kε with π and ϕ
defined as follows. The projection map π : Bm1,...,mb → Kε is defined by

π(f) =

{
πmi(f) if f ∈ Bmi , i = 1, . . . , b,
pr1(f) if f ∈ Lε × S1.

Here pr1 : Lε × S1 → Lε is the projection onto the first factor. The group action ϕ :
SO(2)×Bm1,...,mb → Bm1,...,mb is defined by

ϕ(g, f) =

{
ϕmi(g, f) if f ∈ Bmi , i = 1, . . . , b,
f if f ∈ Lε × S1,

for any g ∈ G and f ∈ Bm1,...,mb . Furthermore, the intersection of any two simplices in Kε is
by our construction either empty or a contractible space and so any bundle is trivial on the
intersection.

Since every oriented circle bundle on Kε is isomorphic to Bm1,...,mb for some (m1, . . . ,mb) ∈
Zb, we have the following classification theorem for continuous cryo-EM cocycles in terms of
Bm1,...,mb .

Theorem 5.4 (bundle classification of continuous cryo-EM cocycles II). Let ε > 0 be small
enough so that (19) holds and let Kε be the corresponding cryo-EM complex. Let b = b2(Kε).
Then each cohomologically equivalent continuous cryo-EM cocycles zcε on Kε corresponds to
an isomorphism class of an oriented circle bundle Bm1,...,mb on Kε for (m1, . . . ,mb) ∈ Zb.

Proof. Let zcε = {gij ∈ SO(2)(Ui ∩ Uj) : [i, j] ∈ Kε} and let z′cε = {g′ij ∈ SO(2)(Ui ∩ Uj) :
[i, j] ∈ Kε} be cohomologically equivalent continuous cryo-EM cocycles on Kε, i.e., they
are related by (20) for some gi, gj ∈ SO(2), [i, j] ∈ Kε. By Theorem 5.1, zcε and z′cε must
correspond to the same oriented circle bundle on Kε.
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6. Denoising cryo-EM images and cohomology. Aside from providing theoretical classifi-
cation results (e.g. Theorems 4.2 and 5.4) whose practical value is as yet unclear, we show here
that the more elementary aspects of our cohomology framework can shed light on one aspect
of cryo-EM imaging—denoising cryo-EM images. Our goal is not to propose any new method
but to provide some perspectives on existing methods, which work well in practice [47, 48, 44].
We saw in section 4 that a noiseless discrete cryo-EM cocycle zdε = {gij ∈ SO(2) : [i, j] ∈ Kε}
on Kε satisfies the cocycle condition

(25) gijgjkgki = 1,

when ε is sufficiently small. In reality, a collection of projected images obtained from cryo-EM
measurements, Ψ̂ = {ψ̂1, . . . , ψ̂n}, will invariably be corrupted by noise; here a carat over a
quantity signifies that it is possibly corrupted by noise. As a result, the discrete cryo-EM
cocycle ẑε = {ĝij ∈ SO(2) : [i, j] ∈ Kε} obtained from Ψ̂ will not satisfy (25) for sufficiently
small ε > 0. To see this, let Ψ = {ψ1, . . . , ψn} be a set of noise-free projected images whose
discrete cryo-EM cocycle is zdε . If ẑε also satisfies (25), then we have

ĝij = gijgig
−1
j ∈ SO(2)

for some gi ∈ SO(2). But this implies that ψ̂i can be obtained by rotating the noise-free image
ψi by gi ∈ SO(2) and so ψ̂i is also noise-free, a contradiction.

In general cryo-EM images are denoised by class averaging [18]. Noisy images are grouped
into classes of similar viewing directions. The within-class average is then taken as an ap-
proximation of the noise-free image in that direction. The methods for grouping images into
classes [47, 48, 44] are essentially all based on the observation that in the noiseless scenario,
the cocycle condition (25) must hold. We will look at a few measures of deviation of discrete
cryo-EM cocycles from being a cocycle.

Let ẑdε = {ĝij ∈ SO(2) : [i, j] ∈ Kε} be a discrete cryo-EM cocycle on Kε computed from
a noisy set of projected images Ψ̂. Since SO(2) can be identified with the circle S1, every
g ∈ SO(2) corresponds to an angle θ ∈ S1, represented by θ ∈ [0, 2π). A straightforward
measure of deviation of zε from being a cocycle is given by

δ(ẑdε ) =
∑

i,j,k : [i,j],[i,k],[j,k]∈Kε
(θij + θjk + θki)2,

where the addition in the parentheses is computed in S1, i.e., given by the unique number
θijk ∈ [0, 2π) such that

θij + θjk + θki = θijk (mod 2π).

Lemma 6.1. ẑdε is a cocycle if and only if δ(ẑdε ) = 0.

Let ψ be an arbitrary projected image. Then δ(ẑε) quantifies the obstruction of gluing
images in

ẑdε (ψ) = {g · ψ : g ∈ ẑdε} = {ĝij · ψ : [i, j] ∈ Kε}

together to get the 3D structure of the molecule. If δ(ẑε) is small, then ẑdε is already close
enough to a cocycle and hence every image is good.
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On the other hand, if δ(ẑdε ) is big, then the following measure allows us to identify subsets
of good images, if any. Given an image ψ, whenever [i, j] is an edge of Kε for some j, we
want the viewing direction of gij ·ψ to be close to that of ψ. This is captured by the quantity
ρi(ẑdε ) := δi(ẑdε )/3δ(ẑdε ) where

δi(ẑdε ) =
∑

j,k : [i,j],[i,k],[j,k]∈Kε
(θij + θjk + θki)2, i = 1, . . . , n.

Clearly,
∑n

i=1 ρi(ẑ
d
ε ) = 1. For gij · ψ to be a good image, we want ρi(ẑdε )� 1.
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