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Ten ways to decompose a tensor

1 Complete triangular decomposition

2 Complete orthogonal decomposition

3 Higher order singular value decomposition

4 Higher order nonnegative matrix decomposition

5 Outer product decomposition

6 Nonnegative outer product decomposition

7 Symmetric outer product decomposition

8 Block outer product decomposition

9 Kronecker product decomposition

10 Coclustering decomposition

Idea

rank → rank revealing decomposition → low-rank approximation → data
analytic model
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Data mining in the olden days

Spectroscopy: measure light absorption/emission of specimen as
function of energy.

Typical specimen contains 1013 to 1016 light absorbing entities or
chromophores (molecules, amino acids, etc).

Fact (Beer’s Law)

A(λ) = − log(I1/I0) = ε(λ)c. A = absorbance, I1/I0 = fraction of
intensity of light of wavelength λ that passes through specimen, c =
concentration of chromophores.

Multiple chromophores (k = 1, . . . , r) and wavelengths (i = 1, . . . ,m)
and specimens/experimental conditions (j = 1, . . . , n),

A(λi , sj) =
∑r

k=1
εk(λi )ck(sj).

Bilinear model aka factor analysis: Am×n = Em×r Cr×n

rank-revealing factorization or, in the presence of noise, low-rank
approximation min‖Am×n − Em×r Cr×n‖.
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Modern data mining

Text mining is the spectroscopy of documents.

Specimens = documents.

Chromophores = terms.

Absorbance = inverse document frequency:

A(ti ) = − log
(∑

j
χ(fij)/n

)
.

Concentration = term frequency: fij .∑
j χ(fij)/n = fraction of documents containing ti .

A ∈ Rm×n term-document matrix. A = QR = UΣV T rank-revealing
factorizations.

Bilinear models:

I Gerald Salton et. al.: vector space model (QR);
I Sue Dumais et. al.: latent sematic indexing (SVD).
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Bilinear models

Bilinear models work on ‘two-way’ data:

I measurements on object i (genomes, chemical samples, images,
webpages, consumers, etc) yield a vector ai ∈ Rn where n = number of
features of i ;

I collection of m such objects, A = [a1, . . . , am] may be regarded as an
m-by-n matrix, e.g. gene × microarray matrices in bioinformatics,
terms × documents matrices in text mining, facial images ×
individuals matrices in computer vision.

Various matrix techniques may be applied to extract useful
information: QR, EVD, SVD, NMF, CUR, compressed sensing
techniques, etc.

Examples: vector space model, factor analysis, principal component
analysis, latent semantic indexing, PageRank, EigenFaces.

Some problems: factor indeterminacy — A = XY rank-revealing
factorization not unique; unnatural for k-way data when k > 2.
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Ubiquity of multiway data

Batch data: batch × time × variable

Time-series analysis: time × variable × lag

Computer vision: people × view × illumination × expression × pixel

Bioinformatics: gene × microarray × oxidative stress

Phylogenetics: codon × codon × codon

Analytical chemistry: sample × elution time × wavelength

Atmospheric science: location × variable × time × observation

Psychometrics: individual × variable × time

Sensory analysis: sample × attribute × judge

Marketing: product × product × consumer

Fact (Inevitable consequence of technological advancement)

Increasingly sophisticated instruments, sensor devices, data collecting and
experimental methodologies lead to increasingly complex data.
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Tensors: computer scientist’s definition

Data structure: k-array A = JaijkKl ,m,ni ,j ,k=1 ∈ Rl×m×n

Algebraic structure:

1 Addition/scalar multiplication: for JbijkK ∈ Rl×m×n, λ ∈ R,

JaijkK + JbijkK := Jaijk + bijkK and λJaijkK := JλaijkK ∈ Rl×m×n

2 Multilinear matrix multiplication: for matrices
L = [λi ′i ] ∈ Rp×l ,M = [µj′j ] ∈ Rq×m,N = [νk′k ] ∈ Rr×n,

(L,M,N) · A := Jci ′j′k′K ∈ Rp×q×r

where

ci ′j′k′ :=
∑l

i=1

∑m

j=1

∑n

k=1
λi ′iµj′jνk′kaijk .

Think of A as 3-dimensional array of numbers. (L,M,N) · A as
multiplication on ‘3 sides’ by matrices L,M,N.

Generalizes to arbitrary order k . If k = 2, ie. matrix, then
(M,N) · A = MANT.
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Tensors: mathematician’s definition

U,V ,W vector spaces. Think of U ⊗ V ⊗W as the vector space of
all formal linear combinations of terms of the form u⊗ v ⊗w,∑

αu⊗ v ⊗w,

where α ∈ R,u ∈ U, v ∈ V ,w ∈W .

One condition: ⊗ decreed to have the multilinear property

(αu1 + βu2)⊗ v ⊗w = αu1 ⊗ v ⊗w + βu2 ⊗ v ⊗w,

u⊗ (αv1 + βv2)⊗w = αu⊗ v1 ⊗w + βu⊗ v2 ⊗w,

u⊗ v ⊗ (αw1 + βw2) = αu⊗ v ⊗w1 + βu⊗ v ⊗w2.

Up to a choice of bases on U,V ,W , A ∈ U ⊗ V ⊗W can be
represented by a 3-way array A = JaijkKl ,m,ni ,j ,k=1 ∈ Rl×m×n.
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Tensors: physicist’s definition

“What are tensors?” ≡ “What kind of physical quantities can be
represented by tensors?”

Usual answer: if they satisfy some ‘transformation rules’ under a
change-of-coordinates.

Theorem (Change-of-basis)

Two representations A,A′ of A in different bases are related by

(L,M,N) · A = A′

with L,M,N respective change-of-basis matrices (non-singular).

Pitfall: tensor fields (roughly, tensor-valued functions on manifolds)
often referred to as tensors — stress tensor, piezoelectric tensor,
moment-of-inertia tensor, gravitational field tensor, metric tensor,
curvature tensor.
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Outer product

If U = Rl , V = Rm, W = Rn, Rl ⊗ Rm ⊗ Rn may be identified with
Rl×m×n if we define ⊗ by

u⊗ v ⊗w = JuivjwkKl ,m,ni ,j ,k=1.

A tensor A ∈ Rl×m×n is said to be decomposable if it can be written
in the form

A = u⊗ v ⊗w

for some u ∈ Rl , v ∈ Rm,w ∈ Rn. For order 2, u⊗ v = uvT.

In general, any A ∈ Rl×m×n may be written as a sum of
decomposable tensors

A =
∑r

i=1
λiui ⊗ vi ⊗wi .

May be written as a multilinear matrix multiplication:

A = (U,V ,W ) · Λ.

U ∈ Rl×r ,V ∈ Rm×r ,W ∈ Rn×r and diagonal Λ ∈ Rr×r×r .
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Tensor ranks

Matrix rank. A ∈ Rm×n

rank(A) = dim(spanR{A•1, . . . ,A•n}) (column rank)

= dim(spanR{A1•, . . . ,Am•}) (row rank)

= min{r | A =
∑r

i=1uiv
T
i } (outer product rank).

Multilinear rank. A ∈ Rl×m×n. rank�(A) = (r1(A), r2(A), r3(A))
where

r1(A) = dim(spanR{A1••, . . . ,Al••})
r2(A) = dim(spanR{A•1•, . . . ,A•m•})
r3(A) = dim(spanR{A••1, . . . ,A••n})

Outer product rank. A ∈ Rl×m×n.

rank⊗(A) = min{r | A =
∑r

i=1ui ⊗ vi ⊗wi}

In general, rank⊗(A) 6= r1(A) 6= r2(A) 6= r3(A).
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Properties of matrix rank

1 Rank of A ∈ Rm×n easy to determine (Gaussian elimination)

2 Best rank-r approximation to A ∈ Rm×n always exist (Eckart-Young
theorem)

3 Best rank-r approximation to A ∈ Rm×n easy to find (singular value
decomposition)

4 Pick A ∈ Rm×n at random, then A has full rank with probability 1,
ie. rank(A) = min{m, n}

5 rank(A) from a non-orthogonal rank-revealing decomposition (e.g.
A = L1DLT

2 ) and rank(A) from an orthogonal rank-revealing
decomposition (e.g. A = Q1RQT

2 ) are equal

6 rank(A) is base field independent, ie. same value whether we regard
A as an element of Rm×n or as an element of Cm×n
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Properties of outer product rank

1 Computing rank⊗(A) for A ∈ Rl×m×n is NP-hard [Håstad 1990]

2 For some A ∈ Rl×m×n, argminrank⊗(B)≤r‖A− B‖F does not have a
solution

3 When argminrank⊗(B)≤r‖A− B‖F does have a solution, computing
the solution is an NP-complete problem in general

4 For some l ,m, n, if we sample A ∈ Rl×m×n at random, there is no r
such that rank⊗(A) = r with probability 1

5 An outer product decomposition of A ∈ Rl×m×n with orthogonality
constraints on X ,Y ,Z will in general require a sum with more than
rank⊗(A) number of terms

6 rank⊗(A) is base field dependent, ie. value depends on whether we
regard A ∈ Rl×m×n or A ∈ Cl×m×n
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Properties of multilinear rank

1 Computing rank�(A) for A ∈ Rl×m×n is easy

2 Solution to argminrank�(B)≤(r1,r2,r3)‖A− B‖F always exist

3 Solution to argminrank�(B)≤(r1,r2,r3)‖A− B‖F easy to find

4 Pick A ∈ Rl×m×n at random, then A has

rank�(A) = (min(l ,mn),min(m, ln),min(n, lm))

with probability 1

5 If A ∈ Rl×m×n has rank�(A) = (r1, r2, r3). Then there exist full-rank
matrices X ∈ Rl×r1 , Y ∈ Rm×r2 , Z ∈ Rn×r3 and core tensor
C ∈ Rr1×r2×r3 such that A = (X ,Y ,Z ) · C . X ,Y ,Z may be chosen
to have orthonormal columns

6 rank�(A) is base field independent, ie. same value whether we
regard A ∈ Rl×m×n or A ∈ Cl×m×n
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Outer product decomposition in spectroscopy

Application to fluorescence spectral analysis by Rasmus Bro.

Specimens with a number of pure substances in different
concentration

I aijk = fluorescence emission intensity at wavelength λem
j of ith sample

excited with light at wavelength λex
k .

I Get 3-way data A = JaijkK ∈ Rl×m×n.
I Get outer product decomposition of A

A = x1 ⊗ y1 ⊗ z1 + · · ·+ xr ⊗ yr ⊗ zr .

Get the true chemical factors responsible for the data.

I r : number of pure substances in the mixtures,
I xα = (x1α, . . . , xlα): relative concentrations of αth substance in

specimens 1, . . . , l ,
I yα = (y1α, . . . , ymα): excitation spectrum of αth substance,
I zα = (z1α, . . . , znα): emission spectrum of αth substance.

Noisy case: find best rank-r approximation (candecomp/parafac).
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Multilinear decomposition in bioinformatics

Application to cell cycle studies by Alter and Omberg.

Collection of gene-by-microarray matrices A1, . . . ,Al ∈ Rm×n

obtained under varying oxidative stress.

I aijk = expression level of jth gene in kth microarray under ith stress.
I Get 3-way data array A = JaijkK ∈ Rl×m×n.
I Get multilinear decomposition of A

A = (X ,Y ,Z ) · C ,

to get orthogonal matrices X ,Y ,Z and core tensor C by applying SVD
to various ’flattenings’ of A.

Column vectors of X ,Y ,Z are ‘principal components’ or
‘parameterizing factors’ of the spaces of stress, genes, and
microarrays; C governs interactions between these factors.

Noisy case: approximate by discarding small cijk (Tucker Model).
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Fundamental problem of multiway data analysis

argminrank(B)≤r‖A− B‖

Examples

1 Outer product rank: A ∈ Rd1×d2×d3 , find ui , vi ,wi :

min‖A− u1 ⊗ v1 ⊗w1 − u2 ⊗ v2 ⊗w2 − · · · − ur ⊗ vr ⊗ zr‖.

2 Multilinear rank: A ∈ Rd1×d2×d3 , find C ∈ Rr1×r2×r3 , Li ∈ Rdi×ri :

min‖A− (L1, L2, L3) · C‖.

3 Symmetric rank: A ∈ Sk(Cn), find ui :

min‖A− u⊗k
1 − u⊗k

2 − · · · − u⊗k
r ‖.

4 Nonnegative rank: 0 ≤ A ∈ Rd1×d2×d3 , find ui ≥ 0, vi ≥ 0,wi ≥ 0.
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Feature revelation

More generally, D = dictionary. Minimal r with

A ≈ α1B1 + · · ·+ αr Br ∈ Dr .

Bi ∈ D often reveal features of the dataset A.

Examples

1 PARAFAC: D = {A ∈ Rd1×d2×d3 | rank⊗(A) ≤ 1}.
2 Tucker: D = {A ∈ Rd1×d2×d3 | rank�(A) ≤ (1, 1, 1)}.
3 De Lathauwer: D = {A ∈ Rd1×d2×d3 | rank�(A) ≤ (r1, r2, r3)}.
4 ICA: D = {A ∈ Sk(Cn) | rankS(A) ≤ 1}.
5 NTF: D = {A ∈ Rd1×d2×d3

+ | rank+(A) ≤ 1}.
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A simple result

Lemma (de Silva and Lim)

Let r ≥ 2 and k ≥ 3. Given the norm-topology on Rd1×···×dk , the following
statements are equivalent:

1 The set Sr (d1, . . . , dk) := {A | rank⊗(A) ≤ r} is not closed.

2 There exists B, rank⊗(B) > r , that may be approximated arbitrarily
closely by tensors of strictly lower rank, ie.

inf{‖B − A‖ | rank⊗(A) ≤ r} = 0.

3 There exists C , rank⊗(C ) > r , that does not have a best rank-r
approximation, ie.

inf{‖C − A‖ | rank⊗(A) ≤ r}

is not attained (by any A with rank⊗(A) ≤ r).
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Non-existence of best low-rank approximation
Let xi , yi ∈ Rdi , i = 1, 2, 3. Let

A := x1 ⊗ x2 ⊗ y3 + x1 ⊗ y2 ⊗ x3 + y1 ⊗ x2 ⊗ x3

and for n ∈ N,

An := x1 ⊗ x2 ⊗ (y3 − nx3) +

(
x1 +

1

n
y1

)
⊗
(

x2 +
1

n
y2

)
⊗ nx3.

Lemma (de Silva and Lim)

rank⊗(A) = 3 iff xi , yi linearly independent, i = 1, 2, 3. Furthermore, it is
clear that rank⊗(An) ≤ 2 and

lim
n→∞

An = A.

Exercise 62, Section 4.6.4, in: D. Knuth, The art of computer
programming, 2, 3rd Ed., Addison-Wesley, Reading, MA, 1997.
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Bad news: outer product approximations are ill-behaved

Theorem (de Silva and Lim)

1 Tensors failing to have a best rank-r approximation exist for

1 all orders k > 2,
2 all norms and Brègman divergences,
3 all ranks r = 2, . . . ,min{d1, . . . , dk}.

2 Tensors that fail to have best low-rank approximations occur with
non-zero probability and sometimes with certainty — all 2× 2× 2
tensors of rank 3 fail to have a best rank-2 approximation.

3 Tensor rank can jump arbitrarily large gaps. There exists sequence
of rank-r tensor converging to a limiting tensor of rank r + s.
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Message

That the best rank-r approximation problem for tensors has no
solution poses serious difficulties.

Incorrect to think that if we just want an ‘approximate solution’, then
this doesn’t matter.

If there is no solution in the first place, then what is it that are we
trying to approximate? ie. what is the ‘approximate solution’ an
approximate of?

Problems near an ill-posed problem are generally ill-conditioned.

Current way to deal with such difficulties — pretend that it doesn’t
matter.
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Some good news: weak solutions may be characterized
For a tensor A that has no best rank-r approximation, we will call a
C ∈ {A | rank⊗(A) ≤ r} attaining

inf{‖C − A‖ | rank⊗(A) ≤ r}
a weak solution. In particular, we must have rank⊗(C ) > r .

Theorem (de Silva and Lim)

Let d1, d2, d3 ≥ 2. Let An ∈ Rd1×d2×d3 be a sequence of tensors with
rank⊗(An) ≤ 2 and

lim
n→∞

An = A,

where the limit is taken in any norm topology. If the limiting tensor A has
rank higher than 2, then rank⊗(A) must be exactly 3 and there exist pairs
of linearly independent vectors x1, y1 ∈ Rd1 , x2, y2 ∈ Rd2 , x3, y3 ∈ Rd3

such that

A = x1 ⊗ x2 ⊗ y3 + x1 ⊗ y2 ⊗ x3 + y1 ⊗ x2 ⊗ x3.

Observation 1: a sequence of order-3 rank-2 tensors cannot ‘jump
rank’ by more than 1
Observation 2: requires exactly six vectors to define, ‘rank-2 like’
x1 ⊗ x2 ⊗ x3 + y1 ⊗ y2 ⊗ y3
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More good news: nonnegative tensors are better behaved

Let 0 ≤ A ∈ Rd1×···×dk . The nonnegative rank of A is

rank+(A) := min
{

r
∣∣ ∑r

i=1
ui ⊗ vi ⊗ · · · ⊗ zi , ui , . . . , zi ≥ 0

}
Clearly, such a decomposition exists for any A ≥ 0.

Theorem (Lim)

Let A = Jaj1···jk K ∈ Rd1×···×dk be nonnegative. Then

inf
{∥∥A−

∑r

i=1
ui ⊗ vi ⊗ · · · ⊗ zi

∥∥ ∣∣ ui , . . . , zi ≥ 0
}

is always attained.

Corollary

Nonnegative tensor approximation always have solutions.
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Algorithms

Even when an optimal solution B∗ to argminrank⊗(B)≤r‖A− B‖F
exists, B∗ is not easy to compute since the objective function is
non-convex.

A widely used strategy is a nonlinear Gauss-Seidel algorithm, better
known as the Alternating Least Squares algorithm:

Algorithm: ALS for optimal rank-r approximation

initialize X (0) ∈ Rl×r ,Y (0) ∈ Rm×r ,Z (0) ∈ Rn×r ;

initialize s(0), ε > 0, k = 0;

while ρ(k+1)/ρ(k) > ε;

X (k+1) ← argminX̄∈Rl×r ‖T −
∑r

α=1x̄
(k+1)
α ⊗ y

(k)
α ⊗ z

(k)
α ‖2

F ;

Y (k+1) ← argminȲ∈Rm×r ‖T −
∑r

α=1x
(k+1)
α ⊗ ȳ

(k+1)
α ⊗ z

(k)
α ‖2

F ;

Z (k+1) ← argminZ̄∈Rn×r ‖T −
∑r

α=1x
(k+1)
α ⊗ y

(k+1)
α ⊗ z̄

(k+1)
α ‖2

F ;

ρ(k+1) ← ‖
∑r

α=1[x
(k+1)
a ⊗ y

(k+1)
α ⊗ z

(k+1)
α − x

(k)
α ⊗ y

(k)
α ⊗ z

(k)
α ]‖2

F ;
k ← k + 1;
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Convex relaxation

Joint work with Kim-Chuan Toh.

F (x11, . . . , znr ) = ‖A−
∑r

α=1xα ⊗ yα ⊗ zα‖2
F is a polynomial.

Lasserre/Parrilo strategy: Find largest λ∗ such that F − λ∗ is a
sum of squares. Then λ∗ is often min F (x11, . . . , znr ).

1 Let v be the D-tuple of monomials of degree ≤ 6. Since deg(F ) is
even, F − λ may be written as

F (x11, . . . , znr )− λ = vT(M − λE11)v

for some M ∈ RD×D .
2 Note rhs is a sum of squares iff M − λE11 is positive semi-definite

(since M − λE11 = BTB).
3 Get convex problem

minimize −λ
subjected to vT(S + λE11)v = F ,

S � 0.
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Convex relaxation

Complexity: for rank-r approximations to order-k tensors
A ∈ Rd1×···×dk , D =

(r(d1+···+dk )+k
k

)
— large even for moderate di , r

and k .

Sparsity: our polynomials are always sparse (eg. for k = 3, only terms
of the form xyz or x2y 2z2 or uvwxyz appear). This can be exploited.

Theorem (Reznick)

If f (x) =
∑m

i=1 pi (x)2, then the powers of the monomials in pi must lie in
1
2 Newton(f ).

So if f (x11, . . . , znr ) =
∑N

j=1 pj(x11, . . . , znr )2, then only 1 and
monomials of the form xiαyjαzkα may occur in p1, . . . , pN .

Complexity is reduced to rlmn + 1 from
(r(l+m+n)+3

3

)
.
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Exploiting semiseparability

Joint work with Ming Gu.

Gauss-Newton Method: g(x) = ‖f(x)‖2. Approximate Hessian
using Jacobian: Hg ≈ JT

f Jf .

The Hessian of F (X ,Y ,Z ) = ‖A−
∑r

α=1xα ⊗ yα ⊗ zα‖2
F can be

approximated by a semiseparable matrix.

This is the case even when X ,Y ,Z are required to be nonnegative.

Goal: Exploit this in optimization algorithms.
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Basic multilinear algebra subroutines?
Multilinear matrix multiplication (L1, . . . , Lk) · A is data parallel.
GPGPU: general purpose computations on graphics hardware.
Kirk’s Law: GPU speed behaves like Moore’s Law cubed.
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Survey: some other results and work in progress

Symmetric tensors

I symmetric rank can leap arbitrarily large gap [with Comon & Mourrain]

Multilinear spectral theory

I Perron-Frobenius theorem for tensors
I spectral hypergraph theory

New tensor decompositions

I Kronecker product decomposition
I coclustering decomposition [with Dhillon]

Applications

I approximate simultaneous eigenvectors [with Alter & Sturmfels]
I nonnegative tensors in algebraic statistical biology [with Sturmfels]
I tensor decompositions for model reduction [with Pereyra]
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Code of life is a 4× 4× 4 tensor
Codons: triplets of nucleotides, (i , j , k) where i , j , k ∈ {A,C ,G ,U}.
Genetic code: these 43 = 64 codons encode the 20 amino acids.
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Tensors in algebraic statistical biology

Joint work with Bernd Sturmfels.

Problem

Find the polynomial equations that defines the set

{P ∈ C4×4×4 | rank⊗(P) ≤ 4}.

Why interested? Here P = JpijkK is understood to mean
‘complexified’ probability density values with i , j , k ∈ {A,C ,G ,T}
and we want to study tensors that are of the form

P = ρA⊗σA⊗θA +ρC ⊗σC ⊗θC +ρG ⊗σG ⊗θG +ρT ⊗σT ⊗θT ,

in other words,

pijk = ρAiσAjθAk + ρCiσCjθCk + ρGiσGjθGk + ρTiσTjθTk .

Why over C? Easier to deal with mathematically.

Ultimately, want to study this over R+.

Lek-Heng Lim (Stanford University) Numerical multilinear algebra in data analysis April 5, 2007 32 / 33



Conclusion

Floating point computing is powerful and cheap
I 1 million fold increase in the last 50 years,
I potentially our best tool for analyzing massive datasets.

Last 50 years, Numerical Linear Algebra played crucial role in:

I statistical analysis of two-way data,
I numerical solution of partial differential equations of vector fields,
I numerical solution of second-order optimization methods.

Next step — develop Numerical Multilinear Algebra for:

I statistical analysis of multi-way data,
I numerical solution of partial differential equations of tensor fields,
I numerical solution of higher-order optimization methods.

Goal: develop a collection of standard algorithms for higher order
tensors that parallel algorithms developed for order-2 tensors.
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