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January 4, 2009

Risk Mismanagement

By JOE NOCERA

THERE AREN’T MANY widely told anecdotes about the current financial crisis, at least not yet, but there’s
one that made the rounds in 2007, back when the big investment banks were first starting to write down
billions of dollars in mortgage-backed derivatives and other so-called toxic securities. This was well before
Bear Stearns collapsed, before Fannie Mae and Freddie Mac were taken over by the federal government,
before Lehman fell and Merrill Lynch was sold and A.I.G. saved, before the $700 billion bailout bill was
rushed into law. Before, that is, it became obvious that the risks taken by the largest banks and investment
firms in the United States — and, indeed, in much of the Western world — were so excessive and foolhardy
that they threatened to bring down the financial system itself. On the contrary: this was back when the
major investment firms were still assuring investors that all was well, these little speed bumps
notwithstanding — assurances based, in part, on their fantastically complex mathematical models for
measuring the risk in their various portfolios.

There are many such models, but by far the most widely used is called VaR — Value at Risk. Built around
statistical ideas and probability theories that have been around for centuries, VaR was developed and
popularized in the early 1990s by a handful of scientists and mathematicians — “quants,” they’re called in
the business — who went to work for JPMorgan. VaR’s great appeal, and its great selling point to people
who do not happen to be quants, is that it expresses risk as a single number, a dollar figure, no less.

VaR isn’t one model but rather a group of related models that share a mathematical framework. In its most
common form, it measures the boundaries of risk in a portfolio over short durations, assuming a “normal”
market. For instance, if you have $50 million of weekly VaR, that means that over the course of the next
week, there is a 99 percent chance that your portfolio won’t lose more than $50 million. That portfolio could
consist of equities, bonds, derivatives or all of the above; one reason VaR became so popular is that it is the
only commonly used risk measure that can be applied to just about any asset class. And it takes into account
a head-spinning variety of variables, including diversification, leverage and volatility, that make up the kind
of market risk that traders and firms face every day.

Another reason VaR is so appealing is that it can measure both individual risks — the amount of risk
contained in a single trader’s portfolio, for instance — and firmwide risk, which it does by combining the
VaRs of a given firm’s trading desks and coming up with a net number. Top executives usually know their
firm’s daily VaR within minutes of the market’s close.
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Why not Gaussian

Log characteristic function

log E(exp(i〈t, x〉)) =
∞∑
|α|=1

i |α|κα(x)
tα

α!
.

Gaussian assumption:
∞ = 2.

If x is multivariate Gaussian, then

log E(exp(i〈t, x〉)) = i〈E(x), t〉+
1

2
t> Cov(x)t.

K1(x) mean, K2(x) (co)variance, K3(x) (co)skewness, K4(x)
(co)kurtosis,. . . .

Paul Wilmott: “The relationship between two assets can never be
captured by a single scalar quantity.”
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properly understood, were not a fraud after all but a potentially important signal that trouble was brewing?
Or did it suggest instead that a handful of human beings at Goldman Sachs acted wisely by putting their
models aside and making “decisions on more subjective degrees of belief about an uncertain future,” as
Peter L. Bernstein put it in “Against the Gods?”

To put it in blunter terms, could VaR and the other risk models Wall Street relies on have helped prevent
the financial crisis if only Wall Street paid better attention to them? Or did Wall Street’s reliance on them
help lead us into the abyss?

One Saturday a few months ago, Taleb, a trim, impeccably dressed, middle-aged man — inexplicably, he
won’t give his age — walked into a lobby in the Columbia Business School and headed for a classroom to
give a guest lecture. Until that moment, the lobby was filled with students chatting and eating a quick lunch
before the afternoon session began, but as soon as they saw Taleb, they streamed toward him, surrounding
him and moving with him as he slowly inched his way up the stairs toward an already-crowded classroom.
Those who couldn’t get in had to make do with the next classroom over, which had been set up as an
overflow room. It was jammed, too.

It’s not every day that an options trader becomes famous by writing a book, but that’s what Taleb did, first
with “Fooled by Randomness,” which was published in 2001 and became an immediate cult classic on Wall
Street, and more recently with “The Black Swan: The Impact of the Highly Improbable,” which came out in
2007 and landed on a number of best-seller lists. He also went from being primarily an options trader to
what he always really wanted to be: a public intellectual. When I made the mistake of asking him one day
whether he was an adjunct professor, he quickly corrected me. “I’m the Distinguished Professor of Risk
Engineering at N.Y.U.,” he responded. “It’s the highest title they give in that department.” Humility is not
among his virtues. On his Web site he has a link that reads, “Quotes from ‘The Black Swan’ that the
imbeciles did not want to hear.”

“How many of you took statistics at Columbia?” he asked as he began his lecture. Most of the hands in the
room shot up. “You wasted your money,” he sniffed. Behind him was a slide of Mickey Mouse that he had
put up on the screen, he said, because it represented “Mickey Mouse probabilities.” That pretty much sums
up his view of business-school statistics and probability courses.

Taleb’s ideas can be difficult to follow, in part because he uses the language of academic statisticians; words
like “Gaussian,” “kurtosis” and “variance” roll off his tongue. But it’s also because he speaks in a kind of
brusque shorthand, acting as if any fool should be able to follow his train of thought, which he can’t be
bothered to fully explain.

“This is a Stan O’Neal trade,” he said, referring to the former chief executive of Merrill Lynch. He clicked to
a slide that showed a trade that made slow, steady profits — and then quickly spiraled downward for a giant,
brutal loss.

“Why do people measure risks against events that took place in 1987?” he asked, referring to Black Monday,
the October day when the U.S. market lost more than 20 percent of its value and has been used ever since as
the worst-case scenario in many risk models. “Why is that a benchmark? I call it future-blindness.

“If you have a pilot flying a plane who doesn’t understand there can be storms, what is going to happen?” he
asked. “He is not going to have a magnificent flight. Any small error is going to crash a plane. This is why
the crisis that happened was predictable.”

Eventually, though, you do start to get the point. Taleb says that Wall Street risk models, no matter how
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By Felix Salmon

Road Map for Financial
Recovery: Radical Transparency
Now!

WIRED MAGAZINE: 17.03

Recipe for Disaster: The Formula That Killed Wall Street

In the mid-'80s, Wall Street turned to the quants—brainy financial engineers—to invent new ways to boost profits. Their

methods for minting money worked brilliantly... until one of them devastated the global economy.

Photo: Jim Krantz/Gallery Stock

A year ago, it was hardly unthinkable that a math wizard like David X. Li

might someday earn a Nobel Prize. After all, financial economists—even Wall

Street quants—have received the Nobel in economics before, and Li's work on

measuring risk has had more impact, more quickly, than previous Nobel Prize-

winning contributions to the field. Today, though, as dazed bankers,

politicians, regulators, and investors survey the wreckage of the biggest financial meltdown since the Great Depression, Li is

probably thankful he still has a job in finance at all. Not that his achievement should be dismissed. He took a notoriously

tough nut—determining correlation, or how seemingly disparate events are related—and cracked it wide open with a simple

and elegant mathematical formula, one that would become ubiquitous in finance worldwide.

For five years, Li's formula, known as a Gaussian copula function, looked like an unambiguously positive breakthrough, a

piece of financial technology that allowed hugely complex risks to be modeled with more ease and accuracy than ever

before. With his brilliant spark of mathematical legerdemain, Li made it possible for traders to sell vast quantities of new

securities, expanding financial markets to unimaginable levels.

His method was adopted by everybody from bond investors and Wall Street banks to ratings agencies and regulators. And it

became so deeply entrenched—and was making people so much money—that warnings about its limitations were largely

ignored.
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Why not copulas
Nassim Taleb: “Anything that relies on correlation is charlatanism.”
Even if marginals normal, dependence might not be.
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Cumulants

Univariate distribution: First four cumulants are
I mean K1(x) = E(x) = µ,
I variance K2(x) = Var(x) = σ2,
I skewness K3(x) = σ3 Skew(x),
I kurtosis K4(x) = σ4 Kurt(x).

Multivariate distribution: Covariance matrix partly describes the
dependence structure — enough for Gaussian. Cumulants describe
higher order dependence among random variables.
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Cumulants

For multivariate x, Kd(x) = Jκj1···jd (x)K are symmetric tensors of
order d .

In terms of Edgeworth expansion,

log E(exp(i〈t, x〉) =
∞∑
|α|=1

i |α|κα(x)
tα

α!
, log E(exp(〈t, x〉) =

∞∑
|α|=1

κα(x)
tα

α!
,

α = (j1, . . . , jn) is a multi-index, tα = t j1
1 · · · t

jn
n , α! = j1! · · · jn!.

Provide a natural measure of non-Gaussianity: If x Gaussian,

Kd(x) = 0 for all d ≥ 3.

Gaussian assumption equivalent to quadratic approximation.

Non-Gaussian data: Not enough to look at just mean and
covariance.
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Examples of cumulants

Univariate: Kp(x) for p = 1, 2, 3, 4 are mean, variance, skewness,
kurtosis (unnormalized)

Discrete: x ∼ Poisson(λ), Kp(x) = λ for all p.

Continuous: x ∼ Uniform([0, 1]), Kp(x) = Bp/p where Bp = pth
Bernoulli number.

Nonexistent: x ∼ Student(3), Kp(x) does not exist for all p ≥ 3.

Multivariate: K1(x) = E(x) and K2(x) = Cov(x).

Discrete: x ∼Multinomial(n,q),

κj1···jp (x) = n ∂p

∂tj1 ···∂tjp
log(q1e

t1x1 + · · ·+ qketkxk )
∣∣∣
t1,...,tk=0

.

Continuous: x ∼ Normal(µ,Σ), Kp(x) = 0 for all p ≥ 3.
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Tensors as hypermatrices

Up to choice of bases on U,V ,W , a tensor A ∈ U ⊗ V ⊗W may be
represented as a hypermatrix

A = JaijkKl ,m,ni ,j ,k=1 ∈ Rl×m×n

where dim(U) = l , dim(V ) = m, dim(W ) = n if

1 we give it coordinates;

2 we ignore covariance and contravariance.

Henceforth, tensor = hypermatrix.
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Probably the source

Woldemar Voigt, Die fundamentalen physikalischen Eigenschaften der
Krystalle in elementarer Darstellung, Verlag Von Veit, Leipzig, 1898.

“An abstract entity represented by an array of components
that are functions of co-ordinates such that, under a
transformation of co-ordinates, the new components are related
to the transformation and to the original components in a
definite way.”
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Definite way: multilinear matrix multiplication

Correspond to change-of-bases transformations for tensors.

Matrices can be multiplied on left and right: A ∈ Rm×n, X ∈ Rp×m,
Y ∈ Rq×n,

C = (X ,Y ) · A = XAY> ∈ Rp×q,

cαβ =
∑m,n

i ,j=1
xαiyβjaij .

3-tensors can be multiplied on three sides: A ∈ Rl×m×n, X ∈ Rp×l ,
Y ∈ Rq×m, Z ∈ Rr×n,

C = (X ,Y ,Z ) · A ∈ Rp×q×r ,

cαβγ =
∑l ,m,n

i ,j ,k=1
xαiyβjzγkaijk .

‘Right’ (covariant) multiplication: (X ,Y ,Z ) · A := A · (X>,Y>,Z>).
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Tensors inevitable in multivariate problems

Expand multivariate f (x1, . . . , xn) in power series

f (x) = a0 + a>1 x + x>A2x +A3(x, x, x) + · · ·+Ad(x, . . . , x) + · · · .

a0 ∈ R, a1 ∈ Rn,A2 ∈ Rn×n,A3 ∈ Rn×n×n, . . . ,Ad ∈ Rn×···×n, . . . .

a0 scalar, a1 vector, A2 matrix, Ad tensor of order d .

Lesson: Important to look beyond the quadratic term.

Objective: Want to better understand tensor-valued quantities.
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Examples

Mathematics

I Derivatives of univariate functions: f : R→ R smooth,
f ′(x), f ′′(x), . . . , f (k)(x) ∈ R.

I Derivatives of multivariate functions: f : Rn → R smooth,
grad f (x) ∈ Rn,Hess f (x) ∈ Rn×n, . . . ,D(k)f (x) ∈ Rn×···×n.

Statistics

I Cumulants of random variables: Kd(x) ∈ R.
I Cumulants of random vectors: Kd(x) = Jκj1···jd (x)K ∈ Rn×···×n.

Physics

I Hooke’s law in 1D: x extension, F force, k spring constant,

F = −kx .

I Hooke’s law in 3D: x = (x1, x2, x3)>, elasticity tensor C ∈ R3×3×3×3,
stress Σ ∈ R3×3, strain Γ ∈ R3×3

σij =
∑3

k,l=1
cijklγkl .
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Tensors in physics

Hooke’s law again: At a point x = (x1, x2, x3)> in a linear
anisotropic solid,

σij =
∑3

k,l=1
cijklγkl −

∑3

k=1
bijkek − taij

where elasticity tensor C ∈ R3×3×3×3, piezoelectric tensor
B ∈ R3×3×3, thermal tensor A ∈ R3×3, stress Σ ∈ R3×3, strain
Γ ∈ R3×3, electric field e ∈ R3, temperature change t ∈ R.

Invariant under change-of-coordinates: If y = Qx, then

σij =
∑3

k,l=1
c ijklγkl −

∑3

k=1
bijkek − taij

where

C = (Q,Q,Q,Q) · C, B = (Q,Q,Q) · B, A = (Q,Q) · A,
Σ = (Q,Q) · Σ, Γ = (Q,Q) · Γ, e = Qe.
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Tensors in computer science

For A = [aij ],B = [bjk ] ∈ Rn×n,

AB =
∑n

i ,j ,k=1
aikbkjEij =

∑n

i ,j ,k=1
ϕik(A)ϕkj(B)Eij

where Eij = eie
>
j ∈ Rn×n. Let

Tn =
∑n

i ,j ,k=1
ϕik ⊗ ϕkj ⊗ Eij .

Tn is a tensor of order 3.

O(n2+ε) algorithm for multiplying two n × n matrices gives O(n2+ε)
algorithm for solving system of n linear equations [Strassen; 1969].

Conjecture. rank⊗(Tn) = O(n2+ε).
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Tensors in statistics

Multilinearity: If x is a Rn-valued random variable and A ∈ Rm×n

Kp(Ax) = (A, . . . ,A) · Kp(x).

Additivity: If x1, . . . , xk are mutually independent of y1, . . . , yk , then

Kp(x1 + y1, . . . , xk + yk) = Kp(x1, . . . , xk) +Kp(y1, . . . , yk).

Independence: If I and J partition {j1, . . . , jp} so that xI and xJ are
independent, then

κj1···jp (x) = 0.

Support: There are no distributions where

Kp(x)

{
6= 0 3 ≤ p ≤ n,

= 0 p > n.
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Humans cannot understand ‘raw’ tensors
Humans cannot make sense out of more than O(n) numbers. For most
people, 5 ≤ n ≤ 9 [Miller; 1956].

VaR: single number

I Readily understandable.
I Not sufficiently informative and discriminative.

Covariance matrix: O(n2) numbers

I Hard to make sense of without further processing.
I For symmetric matrices, may perform eigenvalue decomposition.
I Basis for PCA, MDS, ISOMAP, LLE, Laplacian Eigenmap, etc.
I Used in clustering, classification, dimension reduction, feature

identification, learning, prediction, visualization, etc.

Cumulant of order d : O(nd) numbers

I How to make sense of these?
I Want analogue of ‘eigenvalue decomposition’ for symmetric tensors.
I Principal Cumulant Component Analysis: finding components that

simultaneously account for variation in cumulants of all orders.
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Analyzing matrices

Orbits of group action on Rm×n, A 7→ XAY−1

I GL(m)× GL(n): A = L1DL>2
F L1, L2 unit lower triangular, D diagonal

I O(m)× O(n): A = UΣV>

F U,V orthogonal, Σ diagonal

Orbits of group action on Cn×n, A 7→ XAX−1

I GL(n): A = SJS−1

F S nonsingular, J Jordan form

I O(n): A = QRQ>

F Q orthogonal, R upper triangular

Orbits of group action on S2(Rn), A 7→ XAX>

I O(n): A = QΛQ>

F Q orthogonal, Λ diagonal
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What about tensors?

Orbits of GL(m)× GL(n) action on matrix pencils R2×m×n.
(A1,A2) = (SK1T

−1, SK2T
−1) where (K1,K2) Kronecker form:





1
0 1

0
. . .

. . . 1
0


,



0
1 0

1
. . .

. . . 0
1




∈ R2×(p+1)×p

,




1 0
1 0

. . .
. . .

1 0

 ,


0 1
0 1

. . .
. . .

0 1


 ∈ R2×q×(q+1)

,





1

. . .

. . .

1

 ,


0 −a0

1
. . .

.

.

.

. . . 0 −ar−2
1 −ar−1



 ∈ R2×r×r
.

No nice orbit classification for 3-tensors Rl×m×n when l > 2.

Even harder for k-tensors Rd1×···×dk .
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Another view of EVD and SVD

Linear combination of rank-1 matrices.

Symmetric eigenvalue decomposition of A ∈ S2(Rn),

A = V ΛV> =
∑rank(A)

i=1
λivi ⊗ vi .

Singular value decomposition of A ∈ Rm×n,

A = UΣV> =
∑rank(A)

i=1
σiui ⊗ vi .

Nonlinear approximation: best r -term approximation by a dictionary
of atoms.
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Secant varieties

For a nondegenerate variety X ⊆ Rn, write

sr (X ) = union of s-secants to X for s ≤ r ,

r-secant quasiprojective variety of X .

r-secant variety,

σr (X ) = Zariski closure of sr (X ).

For purpose of analyzing tensors, X often one of the following:

Seg(Rd1 , . . . ,Rdp ) = {v1 ⊗ · · · ⊗ vp ∈ Rd1×···×dp | vi ∈ Rdi},
Verp(Rn) = {v ⊗ · · · ⊗ v ∈ Sp(Rn) | v ∈ Rn}.

Respectively ‘rank-1 tensors’ and ‘rank-1 symmetric tensors’:

u⊗ v ⊗w : = JuivjwkKl ,m,ni ,j ,k=1.

Serious difficulty: sr (X ) 6= σr (X ) for r > 1, cf. [de Silva, L.; 08].
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Other forms

Approximation theory: Decomposing function into linear
combination of separable functions,

f (x , y , z) =
∑r

i=1
λiϕi (x)ψi (y)θi (z).

Application: separation of variables for pdes.

Operator theory: Decomposing operator into linear combination of
Kronecker products,

∆3 = ∆1 ⊗ I ⊗ I + I ⊗∆1 ⊗ I + I ⊗ I ⊗∆1.

Application: numerical operator calculus.
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Other forms

Commutative algebra: Decomposing homogeneous polynomial into
linear combination of powers of linear forms,

pd(x , y , z) =
∑r

i=1
λi (aix + biy + ciz)d .

Application: independent components analysis.

Probability theory: Decomposing probability density into conditional
densities of random variables satisfying näıve Bayes:

Pr(x , y , z) =
∑

h
Pr(h) Pr(x | h) Pr(y | h) Pr(z | h).

Application: probabilistic latent semantic indexing.

H◦

X
•oo

ooo
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Y
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Analyzing tensors

A ∈ Rm×n.
I Singular value decomposition:

A = UΣV> =
∑r

i=1
σiui ⊗ vi

where rank(A) = r , U,V orthonormal columns, Σ = diag[σ1, . . . , σr ].

A ∈ Rl×m×n. Can either keep diagonality of Σ or orthogonality of U
and V but not both.

I Linear combination:

A = (X ,Y ,Z ) · Σ =
∑r

i=1
σixi ⊗ yi ⊗ zi

where rank⊗(A) = r , X ,Y ,Z matrices, Σ = diagr×r×r [σ1, . . . , σr ]; r
may exceed n.

I Multilinear combination:

A = (U,V ,W ) · C =
∑r1,r2,r3

i,j,k=1
cijkui ⊗ vj ⊗wk

where rank�(A) = (r1, r2, r3), U,V ,W orthonormal columns,
C = JcijkK ∈ Rr1×r2×r3 ; r1, r2, r3 ≤ n.
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Tensor ranks (Hitchcock, 1927)

Matrix rank. A ∈ Rm×n.

rank(A) = dim(spanR{A•1, . . . ,A•n}) (column rank)

= dim(spanR{A1•, . . . ,Am•}) (row rank)

= min{r | A =
∑r

i=1uiv
T
i } (outer product rank).

Multilinear rank. A ∈ Rl×m×n. rank�(A) = (r1(A), r2(A), r3(A)),

r1(A) = dim(spanR{A1••, . . . ,Al••})
r2(A) = dim(spanR{A•1•, . . . ,A•m•})
r3(A) = dim(spanR{A••1, . . . ,A••n})

Outer product rank. A ∈ Rl×m×n.

rank⊗(A) = min{r | A =
∑r

i=1λiui ⊗ vi ⊗wi}.

In general, r1(A) 6= r2(A) 6= r3(A) 6= rank⊗(A).

L.-H. Lim (Applied Math Seminar) Analysis of cumulants March 6, 2009 28 / 46



Symmetric tensors as hypermatrices

Cubical tensor JaijkK ∈ Rn×n×n is symmetric if

aijk = aikj = ajik = ajki = akij = akji .

For order p, invariant under all permutations σ ∈ Sp on indices.

Sp(Rn) denotes set of all order-p symmetric tensors.

Symmetric multilinear matrix multiplication C = (X ,X ,X ) · A where

cαβγ =
∑l ,m,n

i ,j ,k=1
xαixβjxγkaijk .
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Tensor ranks (Hitchcock, 1927)

Multilinear rank. A ∈ S3(Rn). Then

r1(A) = r2(A) = r3(A).

Outer product rank. A ∈ S3(Rn).

rankS(A) = min{r | A =
∑r

i=1λivi ⊗ vi ⊗ vi}.
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DARPA mathematical challenge eight

One of the twenty three mathematical challenges announced at DARPA
Tech 2007.

Problem

Beyond convex optimization: can linear algebra be replaced by algebraic
geometry in a systematic way?

Algebraic geometry in a slogan: polynomials are to algebraic
geometry what matrices are to linear algebra.

Polynomial f ∈ R[x1, . . . , xn] of degree d can be expressed as

f (x) = a0 + a>1 x + x>A2x +A3(x, x, x) + · · ·+Ad(x, . . . , x).

a0 ∈ R, a1 ∈ Rn,A2 ∈ Rn×n,A3 ∈ Rn×n×n, . . . ,Ad ∈ Rn×···×n.

Numerical linear algebra: d = 2.

Numerical multilinear algebra: d > 2.
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Symmetric tensors as polynomials

Jaj1···jpK ∈ Sp(Rn) associated with unique homogeneous polynomial
F ∈ C[x1, . . . , xn]p via

F (x) =
∑n

j1,...,jp=1

(
p

d1, . . . , dn

)
aj1···jpx

d1
1 · · · x

dn
n ,

dj = number of times index j appears in j1, . . . , jp,

d1 + · · ·+ dn = p.

Sp(Cn) ∼= C[x1, . . . , xn]p.

Waring problem for polynomials: what’s the smallest r so that

pd(x , y , z) =
∑r

i=1
λi (aix + biy + ciz)d .

Alexander-Hirschowitz theorem: what’s the generic r?

Equivalent formulation on the next slide.
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One plausible EVD and SVD for hypermatrices

Rank revealing decompositions associated with the outer product
rank.

Symmetric outer product decomposition of A ∈ S3(Rn),

A =
∑r

i=1
λivi ⊗ vi ⊗ vi

where rankS(A) = r , vi unit vector, λi ∈ R.

Outer product decomposition of A ∈ Rl×m×n,

A =
∑r

i=1
σiui ⊗ vi ⊗wi

where rank⊗(A) = r , ui ∈ Rl , vi ∈ Rm,wi ∈ Rn unit vectors, σi ∈ R.
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Geometry of symmetric outer product decomposition

Embedding
νn,p : Rn → Sp(Rn) ∼= R[x1, . . . , xn]p.

Image νn,p(Rn) is (real affine) Veronese variety, set of rank-1
symmetric tensors

Verp(Rn) = {v⊗p ∈ Sp(Rn) | v ∈ Rn}.

As polynomials,

Verp(Rn) = {L(x)p ∈ R[x1, . . . , xn]p | L(x) = α1x1 + · · ·+ αnxn}.

A ∈ Sp(Rn) has rank 2 iff it sits on a bisecant line through two points
of Verp(Rn), rank 3 iff it sits on a trisecant plane through three
points of Verp(Rn), etc.
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Outer product approximation is ill-behaved

Approximation of a homogeneous polynomial by a sum of powers of
linear forms (e.g. Independent Components Analysis).

Let x, y ∈ Rm be linearly independent. Define for n ∈ N,

An := n

[
x +

1

n
y

]⊗p

− nx⊗p

Define

A := x⊗ y ⊗ · · · ⊗ y + y ⊗ x⊗ · · · ⊗ y + · · ·+ y ⊗ y ⊗ · · · ⊗ x.

Then rankS(An) ≤ 2, rankS(A) ≥ p, and

lim
n→∞

An = A.

See [Comon, Golub, L, Mourrain; 08] for details. Exact decomposition
when r < n, algorithm of [Comon, Mourrain, Tsigaridas; 09]
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Inherent difficulty

The best r -term approximation problem for tensors has no solution in
general (except for the nonnegative case).

Eugene Lawler: “The Mystical Power of Twoness.”

I 2-SAT is easy, 3-SAT is hard;
I 2-dimensional matching is easy, 3-dimensional matching is hard;
I 2-body problem is easy, 3-body problem is hard;
I 2-dimensional Ising model is easy, 3-dimensional Ising model is hard.

Applies to tensors too:

I 2-tensor rank is easy, 3-tensor rank is hard;
I 2-tensor spectral norm is easy, 3-tensor spectral norm is hard;
I 2-tensor approximation is easy, 3-tensor approximation is hard;
I 2-tensor eigenvalue problem is easy, 3-tensor eigenvalue problem is

hard.
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Another plausible EVD and SVD for hypermatrices

Rank revealing decompositions associated with the multilinear rank.

Symmetric multilinear decomposition of A ∈ S3(Rn),

A = (U,U,U) · C

where rank�(A) = (r , r , r), U ∈ Rn×r has orthonormal columns and
C ∈ S3(Rr ).

Singular value decomposition of A ∈ Rl×m×n,

A = (U,V ,W ) · C

where rank�(A) = (r1, r2, r3), U ∈ Rl×r1 , V ∈ Rm×r2 , W ∈ Rn×r3

have orthonormal columns and C ∈ Rr1×r2×r3 .
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Eigenvalue decompositions for symmetric tensors

Let A ∈ S3(Rn).

Symmetric outer product decomposition

A =
∑r

i=1
λivi ⊗ vi ⊗ vi = (V ,V ,V ) · Λ.

where rankS(A) = r , V ∈ Rn×r , Λ = diag[λ1, . . . , λr ] ∈ S3(Rn).

In general, r can exceed n.

Symmetric multilinear decomposition

A = (U,U,U) · C =
∑s

i ,j ,k=1
cijkui ⊗ uj ⊗ uk

where rank�(A) = (s, s, s), U ∈ O(n, s), C = JcijkK ∈ S3(Rs).

s ≤ n.
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Geometry of symmetric multilinear decomposition

Symmetric subspace variety,

Subp
r (Rn) = {A ∈ Sp(Rn) | ∃V ≤ Rn such that A ∈ Sp(V )}

= {A ∈ Sp(Rn) | rank�(A) ≤ (r , r , r)}.

Unsymmetric version,

Subp,q,r (Rl ,Rm,Rn)

= {A ∈ Rl×m×n | ∃U,V ,W such that A ∈ U ⊗ V ⊗W }
= {A ∈ Rl×m×n | rank�(A) ≤ (p, q, r)}.

Symmetric subspace variety in Sp(Rn) — closed, irreducible, easier to
study.

Quasiprojective secant variety of Veronese in Sp(Rn) — not closed,
not irreducible, difficult to study.

Reference: Forthcoming book [Landsberg, Morton; 09]
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Factor analysis

Linear generative model
y = As + ε

noise ε ∈ Rm, factor loadings A ∈ Rm×r , hidden factors s ∈ Rr ,
observed data y ∈ Rm.

Do not know A, s, ε, but need to recover s and sometimes A from
multiple observations of y.

Time series of observations, get matrices Y = [y1, . . . , yn],
S = [s1, . . . , sn], E = [ε1, . . . , εn], and

Y = AS + E .

Factor analysis: Recover A and S from Y by a low-rank matrix
approximation Y ≈ AS
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Principal and independent components analysis

Principal components analysis: s Gaussian,

K̂2(y) = QΛ2Q
> = (Q,Q) · Λ2,

Λ2 ≈ K̂2(s) diagonal matrix, Q ∈ O(n, r), [Pearson; 1901].

Independent components analysis: s statistically independent entries, ε
Gaussian

K̂p(y) = (Q, . . . ,Q) · Λp, p = 2, 3, . . . ,

Λp ≈ K̂p(s) diagonal tensor, Q ∈ O(n, r), [Comon; 1994].

What if

s not Gaussian, e.g. power-law distributed data in social networks.

s not independent, e.g. functional components in neuroimaging.

ε not white noise, e.g. idiosyncratic factors in financial modelling.
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Principal cumulant components analysis

Note that if ε = 0, then

Kp(y) = Kp(Qs) = (Q, . . . ,Q) · Kp(s).

In general, want principal components that account for variation in all
cumulants simultaneously

minQ∈O(n,r), Cp∈Sp(Rr )

∑∞

p=1
αp‖K̂p(y)− (Q, . . . ,Q) · Cp‖2F ,

We have assumed A = Q ∈ O(n, r) since otherwise A = QR and

Kp(As) = (Q, . . . ,Q) · [(R, . . . ,R) · Kp(s)].

Recover orthonormal basis of subspace spanned by A.

Cp ≈ (R, . . . ,R) · K̂p(s) not necessarily diagonal.
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PCCA optimization

Appears intractable: optimization over infinite-dimensional manifold

O(n, r)×
∏∞

p=1
Sp(Rr ).

Surprising relaxation: optimization over a single Grassmannian
Gr(n, r) of dimension r(n − r),

maxQ∈Gr(n,r)

∑∞

p=1
αp‖K̂p(y) · (Q, . . . ,Q)‖2F .

In practice ∞ = 3 or 4.
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Grassmannian parameterization

Stiefel manifold O(n, r): set of n × r real matrices with orthonormal
columns. O(n, n) = O(n), usual orthogonal group.

Grassman manifold Gr(n, r): set of equivalence classes of O(n, r)
under left multiplication by O(n).

Parameterization via

Gr(n, r)× Sp(Rr )→ Sp(Rn).

Image is Subp
r (Rn).

More generally

Gr(n, r)×
∏∞

p=1
Sp(Rr )→

∏∞

p=1
Sp(Rn).

Image is
∏∞

p=1 Subp
r (Rn).
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From Stieffel to Grassmann

Given A ∈ Sp(Rn), some r � n, want

minX∈O(n,r), C∈Sp(Rr ) ‖A − (X , . . . ,X ) · C‖F ,

Unlike approximation by secants of Veronese, subspace approximation
problem always has an globally optimal solution.

Equivalent to

maxX∈O(n,r) ‖(X>, . . . ,X>) · A‖F = maxX∈O(n,r) ‖A · (X , . . . ,X )‖F .

Problem defined on a Grassmannian since

‖A · (X , . . . ,X )‖F = ‖A · (XQ, . . . ,XQ)‖F ,

for any Q ∈ O(r). Only the subspaces spanned by X matters.

Equivalent to
maxX∈Gr(n,r) ‖A · (X , . . . ,X )‖F .

Efficient algorithm exists: Limited memory BFGS on Grassmannian
[Savas, L; ’09]
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Thanks

Details and data experiments: forthcoming paper on “Principal
Cumulant Component Analysis” by Morton and L.
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