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Overview

 Massive data sets
 Streaming algorithms
 Regression
 Clarkson‘s algorithm
 Our results
 Subspace embeddings
 Noisy sampling  
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Massive data sets

Examples
 Internet traffic logs
 Financial data
 etc.
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Streaming algorithms

Scenario
 Data arrives sequentially at a high rate and in arbitrary order
 Data is too large to be stored completely or is stored in secondary memory 

(where streaming is the fastest way of accessing the data)
 We want some information about the data

Algorithmic requirements
 Data must be processed quickly
 Only a summary of the data can be stored
 Goal: Approximate some statistics of the data
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Streaming algorithms

The turnstile model
 Input: A sequence of updates to an object (vector, matrix, database, etc.) 
 Output: An approximation of some statistics of the object
 Space: significantly sublinear in input size
 Overall time: near-linear in input size
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Streaming algorithms

Example
 Approximating the number of users of a search engine
 Each user has its ID (IP-address)
 Take the vector v of all valid IP-addresses as the object
 Entries of v: #queries submitted to search engine
 Whenever a user submits a query, increment v at the entry corresponding to 

the submitting IP-address
 Required statistic: # non-zero entries in the current vector
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Regression analysis

Regression
 Statistical method to study dependencies between variables in the 

presence of noise.
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Regression analysis

Linear Regression
 Statistical method to study linear dependencies between variables in the 

presence of noise.
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Regression analysis

Linear Regression
 Statistical method to study linear dependencies between variables in the 

presence of noise.

Example
 Ohm's law V = R ∙ I 
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Regression analysis

Linear Regression
 Statistical method to study linear dependencies between variables in the 

presence of noise.

Example
 Ohm's law V = R ∙ I 
 Find linear function that best 

fits the data
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Regression analysis

Linear Regression
 Statistical method to study linear dependencies between variables in the 

presence of noise.

Standard Setting
 One measured variable y
 A set of predictor variables x  ,…, x
 Assumption:

y  = b + b x  + … + b x   + e
 e is assumed to be a noise (random) variable and the b are model 

parameters

1 d

1 1 d d0

j
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Regression analysis

Example
 Measured variable is the voltage V
 Predictor variable is the current I
 (Unknown) model parameter is the resistance R
 We get pairs of observations for V and I, i.e. pairs (x ,y ) where x is some 

current and y is some measured voltage

Assumption
 Each pair (x,y) was generated 

through y  = R ∙ x  + e,
where e is distributed according 
to some noise distribution, 
e.g. Gaussian noise

i i
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Regression analysis

Setting
 Experimental data is assumed to be generated as pairs (x  , y  ) with 

y  = b + b x    + … + b x     + e,
 where e is drawn from some noise distribution, e.g., a Gaussian distribution

Least Squares Method

 Find b* that minimizes S (y – b* x  )²
 Maximizes the (log)-likelihood of b, i.e. the 

probability density of the y  given b
 Other desirable statistical properties

i i
i 0 1 i,1 d i,d

i i

i
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Regression analysis

Model
 Experimental data is assumed to be generated as pairs (x  , y  ) with 

y  = b + b x    + … + b x     + e,
 where e is drawn from some noise distribution, e.g. a Gaussian distribution

Method of least absolute deviation

 Find b* that minimizes S |y – b* x  |
 More robust than least squares

i i
i 0 1 i,1 d i,d

i i
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Regression analysis

Model
 Experimental data is assumed to be generated as pairs (x  , y  ) with 

y  = b + b x    + … + b x     + e,
 where e is drawn from some noise distribution, e.g. a Gaussian distribution

Method of least absolute deviation (l  -regression)

 Find b* that minimizes S |y – b* x  |
 More robust than least squares

i i
i 0 1 i,1 d i,d

i i

1 
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Regression analysis

Model
 Experimental data is assumed to be generated as pairs (x  , y  ) with 

y  = b + b x    + … + b x     + e,
 where e is drawn from some noise distribution, e.g., a Gaussian distribution

l  -regression

 Find b* that minimizes S |y – b* x  |     , 1 < p < 2
 More robust than least squares

i i
i 0 1 i,1 d i,d

i i
p

p 
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Regression analysis

Matrix form for lp -regression, 1≤p≤2
 Input:  nd-matrix X whose rows are the xi and a vector y=(y1,…, yn)

n is the number of observations; d is the number of predictor 
variables (We assume that b0 = 0 for all i) 

 Output:  b* that minimizes ||Xb*-y||pp
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Regression analysis

Geometry of regression
 Assume n À d
 We want to find a b* that minimizes ||Xb*-y|| 
 The product Xb* can be written as

X   b* +X   b*+ …+ X    b*

 where X    is the i-th column of X
 This is a linear k-dimensional subspace (k≤d is the rank of X)
 The problem is equivalent to computing the point of the column space of X 

nearest to y in lp-norm

*1 *2 *d1 2 d

*i

p
p
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Regression analysis

(1+e)-approximation algorithm for l  - regression [Clarkson, SODA'05]
Input:    n  d matrix X, vector y
Output: vector b' s.t. ||Xb' –y||1 ≤ (1+e) ∙ ||Xb*-y||1
1. Compute O(1)-Approximation b"
2. Compute the residual r' = Xb"-y 
3. Scale r' such that ||r'||1 = d
4. Compute a well-conditioned basis U 

of the column space of X
5. Sample row i according to p =f  ∙ poly(d,1/e)

where f = |r' | +||u  || / (|r'| + ||U||)
6. Assign to each sample row a weight of 1/p
7. Solve the problem on the sample set 

using linear programming

1

i i

i i i*

i
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Regression analysis

1
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(1+e)-approximation algorithm for l  - regression [Clarkson, SODA'05]
Input:    n  d matrix X, vector y
Output: vector b' s.t. ||Xb' –y||1 ≤ (1+e) ∙ ||Xb*-y||1
1. Compute O(1)-Approximation b"
2. Compute the residual r' = Xb"-y 
3. Scale r' such that ||r'||1 = d
4. Compute a well-conditioned basis U 

of the column space of X
5. Sample row i according to p =f  ∙ poly(d,1/e)

where f = |r' | +||u  || / (|r'| + ||U||)
6. Assign to each sample row a weight of 1/p
7. Solve the problem on the sample set 

using linear programming
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Regression analysis
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(1+e)-approximation algorithm for l  - regression [Clarkson, SODA'05]
Input:    n  d matrix X, vector y
Output: vector b' s.t. ||Xb' –y||1 ≤ (1+e) ∙ ||Xb*-y||1
1. Compute O(1)-Approximation b"
2. Compute the residual r' = Xb"-y 
3. Scale r' such that ||r'||1 = d
4. Compute a well-conditioned basis U 

of the column space of X
5. Sample row i according to p =f  ∙ poly(d,1/e)

where f = |r' | +||u  || / (|r'| + ||U||)
6. Assign to each sample row a weight of 1/p
7. Solve the problem on the sample set 

using linear programming
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Regression analysis
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(1+e)-approximation algorithm for l  - regression [Clarkson, SODA'05]
Input:    n  d matrix X, vector y
Output: vector b' s.t. ||Xb' –y||1 ≤ (1+e) ∙ ||Xb*-y||1
1. Compute O(1)-Approximation b"
2. Compute the residual r' = Xb"-y 
3. Scale r' such that ||r'||1 = d
4. Compute a well-conditioned basis U 

of the column space of X
5. Sample row i according to p =f  ∙ poly(d,1/e)

where f = |r' | +||u  || / (|r'| + ||U||)
6. Assign to each sample row a weight of 1/p
7. Solve the problem on the sample set 

using linear programming
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Regression analysis
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(1+e)-approximation algorithm for l  - regression [Clarkson, SODA'05]
Input:    n  d matrix X, vector y
Output: vector b' s.t. ||Xb' –y||1 ≤ (1+e) ∙ ||Xb*-y||1
1. Compute O(1)-Approximation b"
2. Compute the residual r' = Xb"-y 
3. Scale r' such that ||r'||1 = d
4. Compute a well-conditioned basis U 

of the column space of X
5. Sample row i according to p =f  ∙ poly(d,1/e)

where f = |r' | +||u  || / (|r'| + ||U||)
6. Assign to each sample row a weight of 1/p
7. Solve the problem on the sample set 

using linear programming
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Regression analysis
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New problem:

i

(1+e)-approximation algorithm for l  - regression [Clarkson, SODA'05]
Input:    n  d matrix X, vector y
Output: vector b' s.t. ||Xb' –y||1 ≤ (1+e) ∙ ||Xb*-y||1
1. Compute O(1)-Approximation b"
2. Compute the residual r' = Xb"-y 
3. Scale r' such that ||r'||1 = d
4. Compute a well-conditioned basis U 

of the column space of X
5. Sample row i according to p =f  ∙ poly(d,1/e)

where f = |r' | +||u  || / (|r'| + ||U||)
6. Assign to each sample row a weight of 1/p
7. Solve the problem on the sample set 

using linear programming
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Regression analysis
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(1+e)-approximation algorithm for l  - regression [Clarkson, SODA'05]
Input:    n  d matrix X, vector y
Output: vector b' s.t. ||Xb' –y||1 ≤ (1+e) ∙ ||Xb*-y||1
1. Compute O(1)-Approximation b"
2. Compute the residual r' = Xb"-y 
3. Scale r' such that ||r'||1 = d
4. Compute a well-conditioned basis U 

of the column space of X
5. Sample row i according to p =f  ∙ poly(d,1/e)

where f = |r' | +||u  || / (|r'| + ||U||)
6. Assign to each sample row a weight of 1/p
7. Solve the problem on the sample set 

using linear programming
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Regression analysis
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(1+e)-approximation algorithm for l  - regression [Clarkson, SODA'05]
Input:    n  d matrix X, vector y
Output: vector b' s.t. ||Xb' –y||1 ≤ (1+e) ∙ ||Xb*-y||1
1. Compute O(1)-Approximation b"
2. Compute the residual r' = Xb"-y 
3. Scale r' such that ||r'||1 = d
4. Compute a well-conditioned basis U 

of the column space of X
5. Sample row i according to p =f  ∙ poly(d,1/e)

where f = |r' | +||u  || / (|r'| + ||U||)
6. Assign to each sample row a weight of 1/p
7. Solve the problem on the sample set 

using linear programming

Well-conditioned basis U:
Basis with

||z||1· ||Uz||1 · poly(d)||z||1
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(1+e)-approximation algorithm for l  - regression [Clarkson, SODA'05]
Input:    n  d matrix X, vector y
Output: vector b' s.t. ||Xb' –y||1 ≤ (1+e) ∙ ||Xb*-y||1
1. Compute O(1)-Approximation b"
2. Compute the residual r' = Xb"-y 
3. Scale r' such that ||r'||1 = d
4. Compute a well-conditioned basis U 

of the column space of X
5. Sample row i according to p =f  ∙ poly(d,1/e)

where f = |r' | +||u  || / (|r'| + ||U||)
6. Assign to each sample row a weight of 1/p
7. Solve the problem on the sample set 

using linear programming

Well-conditioned basis U:
Basis with

||z||1· ||Uz||1 · poly(d)||z||1
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Regression analysis
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(1+e)-approximation algorithm for l  - regression [Clarkson, SODA'05]
Input:    n  d matrix X, vector y
Output: vector b' s.t. ||Xb' –y||1 ≤ (1+e) ∙ ||Xb*-y||1
1. Compute O(1)-Approximation b"
2. Compute the residual r' = Xb"-y 
3. Scale r' such that ||r'||1 = d
4. Compute a well-conditioned basis U 

of the column space of X
5. Sample row i according to p =f  ∙ poly(d,1/e)

where f = |r' | +||u  || / (|r'| + ||U||)
6. Assign to each sample row a weight of 1/p
7. Solve the problem on the sample set 

using linear programming

Well-conditioned basis U:
Basis with

||z||1· ||Uz||1 · poly(d)||z||1
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Regression analysis
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(1+e)-approximation algorithm for l  - regression [Clarkson, SODA'05]
Input:    n  d matrix X, vector y
Output: vector b' s.t. ||Xb' –y||1 ≤ (1+e) ∙ ||Xb*-y||1
1. Compute O(1)-Approximation b"
2. Compute the residual r' = Xb"-y 
3. Scale r' such that ||r'||1 = d
4. Compute a well-conditioned basis U 

of the column space of X
5. Sample row i according to p =f  ∙ poly(d,1/e)

where f = |r' | +||u  || / (|r'| + ||U||)
6. Assign to each sample row a weight of 1/p
7. Solve the problem on the sample set 

using linear programming

Well-conditioned basis U:
Basis with

||z||1· ||Uz||1 · poly(d)||z||1
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Regression analysis
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(1+e)-approximation algorithm for l  - regression [Clarkson, SODA'05]
Input:    n  d matrix X, vector y
Output: vector b' s.t. ||Xb' –y||1 ≤ (1+e) ∙ ||Xb*-y||1
1. Compute O(1)-Approximation b"
2. Compute the residual r' = Xb"-y 
3. Scale r' such that ||r'||1 = d
4. Compute a well-conditioned basis U 

of the column space of X
5. Sample row i according to p =f  ∙ poly(d,1/e)

where f = |r' | +||u  || / (|r'| + ||U||)
6. Assign to each sample row a weight of 1/p
7. Solve the problem on the sample set 

using linear programming

Well-conditioned basis U:
Basis with

||z||1· ||Uz||1 · poly(d)||z||1
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Regression analysis

Solving l  -regression via linear programming

 Minimize (1,…,1) ∙ (a + a )
 Subject to: 

X b + a  - a = y
a , a  ≥ 0

+ -

+ -

1

+ -
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Regression for data streams

l  -regression
 X: nd-matrix of  predictor variables, n is the number of observations 
 y: vector of measured variables
 b: unknown model parameter (this is what we want to optimize)
 Find b that minimizes ||Xb-y||   

Turnstile model
 We get updates for X and y
 Example: (i,j,c) means X[i,j] = X[i,j] + c
 Heavily overconstrained case: n À d  

1

1
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Regression for data streams

State of the art
 Small space streaming algorithm in the turnstile model  for l  -regression for 

all p, 1 ≤ p ≤ 2; the time to extract the solution is prohibitively large
[Feldman, Monemizadeh, Sohler, W; SODA'10]

 Efficient streaming algorithm in the turnstile model for l  -regression
[Clarkson, W, STOC'09]

 Somewhat efficient non-streaming (1+e)-approximations for l  –regression
[Clarkson, SODA'05; Drineas, Mahoney, Muthukrishnan; SODA'06; 
Sarlos; FOCS'06; Dasgupta, Drineas, Harb, Kumar, Mahoney; SICOMP'09]

p

2

p
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Our Results

 A (1+ε)-approximation algorithm for lp-regression problem for any p in [1, 2]
 First 1-pass algorithm in the turnstile model
 Space complexity poly(d log n / ε)
 Time complexity nd1.376 poly(log n / ε)
 Improves earlier nd5 log n time algorithms for every p

 New linear oblivious embeddings from lpn to lpr

 r = poly(d log n)
 Preserve d-dimensional subspaces
 Distortion is poly(d)

 This talk will focus on the case p = 1
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Regression for data streams

First approach
 Leverage Clarkson's algorithm

Sequential structure is hard to implement in streaming

Compute O(1)-approximation Compute well-conditioned
basis

Sample rows from the 
well-conditioned basis and 

the residual
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Regression for data streams

Theorem 1(l  -subspace embedding)
 Let r≥poly(d, ln n). There is a probability space over r  n matrices R such 

that for any nd-matrix A with probability at least 99/100 we have 
for all bℝ   :

||Ab||1 ≤  ||RAb||1 ≤ O(d²) ∙ ||Ab||1

• R is a scaled matrix of i.i.d. Cauchy random variables

• Argues through the existence of well-conditioned bases
• Uses "well-conditioned nets"

• Generalizes to p > 1

d

1
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Regression for data streams

The algorithm – part 1
 Pick random matrix R according to the distribution from the previous 

theorem
 Maintain RX and Ry during the stream
 Find b' that minimizes ||RXb'-Ry|| using linear programming
 Compute a well-conditioned basis U for RX
 Compute Y such that U = RXY

Lemma 2
With probability 99/100, XY is a well-conditioned basis for the 

column space of X.
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Regression for data streams

The algorithm – part 1
 Pick random matrix R according to the distribution from the previous 

theorem
 Maintain RX and Ry during the streaming
 Find b' that minimizes ||RXb'-Ry|| using linear programming
 Compute a well-conditioned basis U for RX
 Compute Y such that U = RXY

Lemma 2
With probability 99/100, XY is a well-conditioned basis for the 

column space of X.

R can be stored implicitly.
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Regression for data streams

The algorithm – part 1
 Pick random matrix R according to the distribution from the previous 

theorem
 Maintain RX and Ry during the streaming
 Find b' that minimizes ||RXb'-Ry|| using linear programming
 Compute a well-conditioned basis U for RX
 Compute Y such that U = RXY

Lemma 2
With probability 99/100, XY is a well-conditioned basis for the 

column space of X.

R(X+D) = RX + RD
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Regression for data streams

The algorithm – part 1
 Pick random matrix R according to the distribution from the previous 

theorem
 Maintain RX and Ry during the streaming
 Find b' that minimizes ||RXb'-Ry|| using linear programming
 Compute a well-conditioned basis U for RX
 Compute Y such that U = RXY

Lemma 2
With probability 99/100, XY is a well-conditioned basis for the 

column space of X.
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Regression for data streams

The algorithm – part 1
 Pick random matrix R according to the distribution from the previous 

theorem
 Maintain RX and Ry during the streaming
 Find b' that minimizes ||RXb'-Ry|| using linear programming
 Compute a well-conditioned basis U for RX
 Compute Y such that U = RXY

Lemma 2
With probability 99/100, XY is a well-conditioned basis for the 

column space of X.

Using [Clarkson; SODA‘05] or
[Dasgutpta et. al.; SICOMP09]
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Regression for data streams

The algorithm – part 1
 Pick random matrix R according to the distribution from the previous 

theorem
 Maintain RX and Ry during the streaming
 Find b' that minimizes ||RXb'-Ry|| using linear programming
 Compute a well-conditioned basis U for RX
 Compute Y such that U = RXY

Lemma 2
With probability 99/100, XY is a well-conditioned basis for the 

column space of X.

The span of U equals the span of RX
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Regression for data streams

The algorithm – part 1
 Pick random matrix R according to the distribution from the previous 

theorem
 Maintain RX and Ry during the streaming
 Find b' that minimizes ||RXb'-Ry|| using linear programming
 Compute a well-conditioned basis U for RX
 Compute Y such that U = RXY

Lemma 2
With probability 99/100, XY is a well-conditioned basis for the 

column space of X.
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Regression for data streams

Intermediate summary
 Can compute poly(d)-approximation
 Can compute Y s.t. XY is well-conditioned

Compute O(1)-approximation Compute well-conditioned
basis

Sample rows from the 
well-conditioned basis and 

the residual
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Regression for data streams

We can reduce everything to a new problem
 Updates to matrix B 
 Need to sample rows from B with probability according to their l1-norm
 Assume we know M=||B||1

Noisy sampling [Extension of Andoni, DoBa, Indyk, W; FOCS'09]
 Subdivide rows into groups 

≤4
≤8 rows

Norm:   M      M/2         M/4                     M/8  
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Regression for data streams

Noisy sampling
 Subdivide rows into groups
 Try to sample from each group separately 

≤4
≤8 rows

Norm:   M      M/2         M/4                     M/8 
Prob.:     1         1/2            1/4                        1/8
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Regression for data streams

Noisy sampling 
 Subdivide rows into groups 
 Try to sample from each group separately 
 Problem: Can't store the sample in the stream

≤8 rows

Norm:                                                            M/8
Prob.:                                                              1/8
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Regression for data streams

Noisy sampling
 Subdivide rows into groups 
 Try to sample from each group separately 
 Problem: Can't store the sample
 Instead: Subsampling

≤8 rows

Norm:                                                            M/8
Prob.:                                                              1/8
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Regression for data streams

Noisy Sampling
 Grouping:
 I  ={i : ||B ||1  (M/2  , 2 M/2  ]}

 Sample step (Group I  ): 
 Subsample rows with probability 1/2
 Hash sampled rows into w buckets 
 Maintain sum of each bucket
 Noise in a bucket ¼ M/(2j w)

 Verification step:
 Check if bucket has norm approx. M/2
 If yes, then return bucket as noisy sample with weight 2

j i
j j

j
j

j

j
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Regression for data streams

Summary of the algorithm
 Maintain RX and Ry to obtain poly(d)-approximation and access to 

matrix B
 Sample rows using our noisy sampling data structure
 Solve the problem on the noisy sample
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Regression for data streams

Some simplifications
 Let B be the matrix XY adjunct r' = Xb'-y

 Assume the stream has updates for B
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Regression for data streams

Some simplifications
 Let B be the matrix XY adjunct r' = Xb'-y

 Assume the stream has updates for B

Why don‘t we need another pass for this? 
 We can treat the entries of Y and b' as formal variables and plug in the 

values at the end of the stream 

Assume we know Y in 
advance:

(X+D)Y = XY+ DY 
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Theorem

The above algorithm is a (1+e)-approximation to the l1-
regression problem

• uses poly(d, log n, 1/e) space

• implementable in 1-pass in the turnstile model

• can be implemented in nd1.376 poly(log n / ε) time
• Main point is that well-conditioned basis computed in sketch-space
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Conclusion

Main results
 First efficient streaming algorithm for lp-regression, 1 · p < 2 
 nd1.376 running time improves previous nd5 running time
 First oblivious poly(d) subspace embedding for l1

Open problems
 Streaming and/or approximation algorithms for even more robust 

regression problems like least median of squares, etc.
 Regression when d À n  (redundant parameters, structural restrictions, …)
 Kernel methods
 Algorithms for statistical problems on massive data sets
 Other applications of our subspace embedding


