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Massive data sets

Examples
Internet traffic logs
Financial data
etc.



Streaming algorithms

Scenario
Data arrives sequentially at a high rate and in arbitrary order

Data is too large to be stored completely or is stored in secondary memory
(where streaming is the fastest way of accessing the data)

We want some information about the data

Algorithmic requirements
Data must be processed quickly
Only a summary of the data can be stored
Goal: Approximate some statistics of the data



Streaming algorithms

The turnstile model
Input: A sequence of updates to an object (vector, matrix, database, etc.)

Output: An approximation of some statistics of the object
Space: significantly sublinear in input size
Overall time: near-linear in input size



Streaming algorithms

Example
Approximating the number of users of a search engine
Each user has its ID (IP-address)
Take the vector v of all valid IP-addresses as the object
Entries of v: #queries submitted to search engine

Whenever a user submits a query, increment v at the entry corresponding to
the submitting IP-address

Required statistic: # non-zero entries in the current vector



Regression analysis

Regression

Statistical method to study dependencies between variables in the
presence of noise.
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Linear Regression

Statistical method to study linear dependencies between variables in the
presence of noise.
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Regression analysis

Linear Regression

Statistical method to study linear dependencies between variables in the

presence of noise.
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Regression analysis

Linear Regression

Statistical method to study linear dependencies between variables in the
presence of noise.

Standard Setting
One measured variable y
A set of predictor variables x
Assumption:

1 Xy

y =bgtby Xi+...+by X4 +€
eis assumed to be a noise (random) variable and the IoJ are model
parameters



Regression analysis

Example
Measured variable is the voltage V
Predictor variable is the current |

(Unknown) model parameter is the resistance R

We get pairs of observations for V and |, i.e. pairs (x,,y;) where x is some

current and y is some measured voltage

Assumption

Each pair (X,y) was generated
throughy =R -Xx + ¢

where eis distributed according
to some noise distribution,

e.g. Gaussian noise
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Regression analysis

Setting

Experimental data is assumed to be generated as pairs (x; , y; ) with

yi:bO +b1 Xigt o +bOI Xi,d + e,

where eis drawn from some noise distribution, e.g., a Gaussian distribution

Least Squares Method
Find b* that minimizes S (v~ b*x. )2
Maximizes the (log)-likelinood of b, i.e. the
probability density of the Y. given b
Other desirable statistical properties 1



Regression analysis

Model

Experimental data is assumed to be generated as pairs (x; , y; ) with

yi:bO +b1 Xigt o +bOI Xi,d + e,

where eis drawn from some noise distribution, e.g. a Gaussian distribution

Method of least absolute deviation

Find b* that minimizes S ly —b*x. |
More robust than least squares



Regression analysis

Model

Experimental data is assumed to be generated as pairs (x; , y; ) with

yi:bO + b, Xigt o +bOI Xq *e,

where eis drawn from some noise distribution, e.g. a Gaussian distribution

Method of least absolute deviation (I, -regression)

Find b* that minimizes S ly —b*x. |
More robust than least squares



Regression analysis

Model

Experimental data is assumed to be generated as pairs (x; , y; ) with

yi:bO +b1 Xigt o +bOI Xi,d + e,

where eis drawn from some noise distribution, e.g., a Gaussian distribution

Ip-regression

Find b* that minimizes S ly —b*x. P ,1<p<2
More robust than least squares



Regression analysis

Matrix form for |, -regression, 1sp<2

Input: nxd-matrix X whose rows are the x; and a vector y=(y,..., Y,)
n is the number of observations; d is the number of predictor
variables (We assume that b, = O for all i)

Output: b* that minimizes || Xb*-y|[?



Regression analysis

Geometry of regression
Assume n A d
We want to find a b* that minimizes ||Xb*-y||g
The product Xb* can be written as

Klbl* +Xep b2*+ L+ Xy DY

where in IS the I-th column of X
This is a linear k-dimensional subspace (k<d is the rank of X)

The problem is equivalent to computing the point of the column space of X
nearesttoy in |,-norm



Regression analysis

(1+e)-approximation algorithm for |, - regression [Clarkson, SODA'03]
Input: n xd matrix X, vectory
Output: vector b' s.t. || Xb'-y||, £ (1+€) - || Xb*-y]||;

Compute O(1)-Approximation b"

Compute the residual r' = Xb"-y

Scale r' such that ||r'||, =d

Compute a well-conditioned basis U
of the column space of X

Sample row i according to p,=f; - poly(d,1/e)
where .= | | +||ul| / (Ir] + [|U]])
Assign to each sample row a weight of 1/p.

Solve the problem on the sample set
using linear programming
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Regression analysis
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Regression analysis

(1+e)-approximation algorithm for |, - regression [Clarkson, SODA'03]
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New problem:

Xb

using linear programming



Regression analysis
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Regression analysis

(1+e)-approximation algorithm for |, - regression [Clarkson, SODA'03]

Input: n xd matrix X, vectory __ dtonedbasie U
: : ell-conditioned basis U:
Output: vector b' s.t. || Xb'-y||, £ (1+€) - || Xb*-y]||; Basis with

Compute O(1)-Approximation b" 1z[l, - 11Uz][; - poly(d)l|zl,
Compute the residual r' = Xb"-y
Scale r' such that ||r']|; =d

Compute a well-conditioned basis U
of the column space of X

Sample row i according to p,=f; - poly(d,1/e) "
where .= |r | +]|u ]|/ (Ir] + [[U]]) A
Assign to each sample row a weight of 1/p.

Solve the problem on the sample set
using linear programming

Xb




Regression analysis

(1+e)-approximation algorithm for |, - regression [Clarkson, SODA'03]
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Regression analysis
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Regression analysis

(1+e)-approximation algorithm for |, - regression [Clarkson, SODA'03]
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Regression analysis

(1+e)-approximation algorithm for |, - regression [Clarkson, SODA'03]
Input: n xd matrix X, vectory
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Regression analysis

Solving |; -regression via linear programming

Minimize (1,...,1) - (@ +a” )
Subject to:
Xb + & a =y
a, a0



Regression for data streams

|, -regression
X: nxd-matrix of predictor variables, n is the number of observations
y: vector of measured variables
b: unknown model parameter (this is what we want to optimize)
Find b that minimizes ||Xb-y||1

Turnstile model
We get updates for X and y
Example: (i,j,c) means X]i,j] = X[i,j] +
Heavily overconstrained case: n A d



Regression for data streams

State of the art

Small space streaming algorithm in the turnstile model for | -regression for
all p, 1 < p < 2; the time to extract the solution is prohibitively large
[Feldman, Monemizadeh, Sohler, W; SODA'10]

Efficient streaming algorithm in the turnstile model for |, -regression
[Clarkson, W, STOC'09]

Somewhat efficient non-streaming (1+e)-approximations for | ,—regression
[Clarkson, SODA'05; Drineas, Mahoney, Muthukrishnan; SODA'06;
Sarlos; FOCS'06; Dasgupta, Drineas, Harb, Kumar, Mahoney; SICOMP'09]



Our Results

A (1+¢)-approximation algorithm for | -regression problem for any p in [1, 2]
First 1-pass algorithm in the turnstile model
Space complexity poly(d log n/ ¢€)
Time complexity nd*-37¢ poly(log n / €)
Improves earlier nd® log n time algorithms for every p

New linear oblivious embeddings from | " to | ¥

r = poly(d log n)
Preserve d-dimensional subspaces
Distortion is poly(d)

This talk will focus onthe casep =1



Regression for data streams

First approach
Leverage Clarkson's algorithm

Sequential structure is hard to implement in streaming

Compute O(1)-approximation Compute v;/)ell-_conditioned
asis

Sample rows from the
well-conditioned basis and
the residual



Regression for data streams

Theorem 1(l; -subspace embedding)

Let r=poly(d, In n). There is a probability space over r x n matrices R such
that for any nxd-matrix A with probability at least 99/100 we have
for all beR® -

|AD[|; = [|RADb][, = O(d?) - [|Abl|,
R is a scaled matrix of i.i.d. Cauchy random variables

Argues through the existence of well-conditioned bases
Uses "well-conditioned nets"

Generalizestop>1



Regression for data streams

The algorithm — part 1

Pick random matrix R according to the distribution from the previous
theorem

Maintain RX and Ry during the stream

Find b' that minimizes ||RXb'-Ry|| using linear programming
Compute a well-conditioned basis U for RX

Compute Y such that U = RXY

Lemma 2

With probability 99/100, XY is a well-conditioned basis for the
column space of X.



Regression for data streams
R can be stored implicitly.

The algorithm — part 1

Pick random matrix R according to the distribution from the previous
theorem

Maintain RX and Ry during the streaming

Find b' that minimizes ||RXb'-Ry|| using linear programming
Compute a well-conditioned basis U for RX

Compute Y such that U = RXY

Lemma 2

With probability 99/100, XY is a well-conditioned basis for the
column space of X.



Regression for data streams

The algorithm — part 1

Pick random matrix R according to the distribution from the previous
theorem

Maintain RX and Ry during the streaming
Find b' that minimizes ||RXb'-Ry|| using linear programming
Compute a well-conditioned bas " U for RX

Compute Y such that U = RXY

R(X+D) =RX + RD
Lemma 2 ( )

With probability 99/100, XY is a well-conditioned basis for the
column space of X.



Regression for data streams

The algorithm — part 1

Pick random matrix R according to the distribution from the previous
theorem

Maintain RX and Ry during the streaming

Find b' that minimizes ||[RXb'-Ry|| using linear programming
Compute a well-conditioned basis U for RX

Compute Y such that U = RXY

Lemma 2

With probability 99/100, XY is a well-conditioned basis for the
column space of X.



Regression for data streams

The algorithm — part 1

Pick random matrix R according to the distribution from the previous
theorem

Maintain RX and Ry during the streaming

Find b' that minimizes ||RXb'-Ry|| using linear programming
Compute a well-conditioned basis U for RX!

Compute Y such that U = RXY

Using [Clarkson; SODA'05] or

Lemma 2 [Dasgutpta et. al.; SICOMPO09]

With probability 99/100, XY is a well-conditioned basis for the
column space of X.



Regression for data streams

The algorithm — part 1

Pick random matrix R according to the distribution from the previous
theorem

Maintain RX and Ry during the streaming

Find b' that minimizes ||RXb'-Ry|| using linear programming
Compute a well-conditioned basis U for RX

Compute Y such that U = RXY

The span of U equals the span of RX
Lemma 2

With probability 99/100, XY is a well-conditioned basis for the
column space of X.



Regression for data streams

The algorithm — part 1

Pick random matrix R according to the distribution from the previous
theorem

Maintain RX and Ry during the streaming

Find b' that minimizes ||RXb'-Ry|| using linear programming
Compute a well-conditioned basis U for RX

Compute Y such that U = RXY

Lemma 2

With probability 99/100, XY is a well-conditioned basis for the
column space of X.



Regression for data streams

Intermediate summary
Can compute poly(d)-approximation
Can compute Y s.t. XY is well-conditioned

Compute O(1)-approximation Compute vt\;ell-_conditioned
asis

Sample rows from the
well-conditioned basis and
the residual



Regression for data streams

We can reduce everything to a new problem
Updates to matrix B
Need to sample rows from B with probability according to their I;-norm
Assume we know M=||B||,

Noisy sampling [Extension of Andoni, DoBa, Indyk, W; FOCS'09]
Subdivide rows into groups

<8 rows

Norm: ~M ~M/2 ~M/4 ~M/8



Regression for data streams

Noisy sampling
Subdivide rows into groups
Try to sample from each group separately

<8 rows
<4
]
Norm: ~M  ~M/2 ~M/4 ~M/8
Prob.: 1 1/2 1/4 1/8



Regression for data streams

Noisy sampling
Subdivide rows into groups
Try to sample from each group separately
Problem: Can't store the sample in the stream

<8 rows

Norm:; ~M/8
Prob.: 1/8



Regression for data streams

Noisy sampling
Subdivide rows into groups
Try to sample from each group separately
Problem: Can't store the sample
Instead: Subsampling

<8 rows

Norm:; ~M/8
Prob.: 1/8



Regression for data streams

Noisy Sampling
Grouping:
=i 11Bylly € (W20, 2 Mi2)])

Sample step (Group Ij): |
Subsample rows with probability 1/2]
Hash sampled rows into w buckets
Maintain sum of each bucket

Noise in a bucket ¥4 M/(2! w)

Verification step:
Check if bucket has norm approx. M/2!
If yes, then return bucket as noisy sample with weight 2!



Regression for data streams

Summary of the algorithm

Maintain RX and Ry to obtain poly(d)-approximation and access to
matrix B

Sample rows using our noisy sampling data structure
Solve the problem on the noisy sample



Regression for data streams

Some simplifications
Let B be the matrix XY adjunctr' = Xb'-y

Assume the stream has updates for B



Regression for data streams

Some simplifications Assume we know Y in

Let B be the matrix XY adjunctr' = Xb'-y advance:
(X+D)Y = XY+ DY

Assume the stream has updates for B

Why don‘t we need another pass for this?

We can treat the entries of Y and b' as formal variables and plug in the
values at the end of the stream



Theorem

The above algorithm is a (1+e)-approximation to the I;-
regression problem

uses poly(d, log n, 1/e) space
Implementable in 1-pass in the turnstile model

can be implemented in nd*-376 poly(log n / €) time
Main point is that well-conditioned basis computed in sketch-space



Conclusion

Main results
First efficient streaming algorithm for | -regression, 1 - p <2
nd*-376 running time improves previous nd® running time
First oblivious poly(d) subspace embedding for |,

Open problems

Streaming and/or approximation algorithms for even more robust
regression problems like least median of squares, etc.

Regression when d A n (redundant parameters, structural restrictions, ...)
Kernel methods

Algorithms for statistical problems on massive data sets

Other applications of our subspace embedding



