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Stanford Matrix Considered Harmful [V.]
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This talk is about spectral ranking

PageRank is just the currently trendy incarnation
of spectral ranking

The main ideas were developed in the late forties
and in the early fifties

However, the connection between these ideas
emerged during the study of PageRank
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Nonetheless, the idea is useful in several
applications
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M is a matrix representing relations between
entities

M might contain “contradictory”
information, as in...

i likes j,j likes k, but i does not like k, or...

i is better than j,j is better than k, but i is not
better than k
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® |ohn R.Seeley (1949) wants to rank children

® Given M containing 0 or | depending on whether i
likes j...

® Seeley argues that the rank of a child should be
the sum of the ranks of the children that like him...

® ..and here we are! Seeley computes the dominant
left eigenvector of M (normalised by row)
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® We normalise M by row, getting P

® P express the probability that we try to meet child
j after meeting child i...

® ..or, if you want, that we visit page j after visiting
page I.

® The dominant left eigenvector is the stable state or
stationary distribution
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If M is nonnegative, the spectral radius is a
dominant eigenvalue and there’s a nonnegative
dominant eigenvector

If M is irreducible iff it is unique and strictly positive

If M is unichain iff it is unique

Otherwise, many possible solutions (Markovianly
speaking, depending on the initial distribution)
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Given M containing 0, 1/2 or | depending on whether i
defeated j, i tied with j, or i lost with j...

WVei argues that t
of the scores of t
of the scores of t

ne score of a team should be the sum
ne teams it defeated, plus half the sum

ne teams with which there was a tie...

...and here we are! Wei computes the dominant right
eigenvector of M

(no normalisation!)
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® Given a matrix M with a real, positive, strictly
dominant eigenvalue

® The (left) spectral ranking of M is its (left) dominant
eigenvector

® | eft eigenvectors are good for endorsement; right
eigenvectors for “better than” relationships (or you
can just transpose your matrix, of course)
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In 1953, Leo Katz introduces his famous index

Given M containing 0 or | depending on whether i
chooses/endorses/votes for j...

Katz claims that the importance of i depends not
only on the number of the voters, but on the nhumber

of the voters’ voters, etc., with suitable attenuation X

He computes 1 Z oM™ =1(1 — aM)

n=0
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In 1965, Hubbell discusses clique identification

(sociologists’s clustering) on a relationship matrix M
using | +M+M2+M3+:--

He comes up with the equationr=rM +v

v is called a ““border condition”

He proposes the status index

vy M"=o(1l-M)"
n=0
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® We can perturb M to obtain a better separation

between the first two eigenvalues using Brauer’s
results (1952)

® We consider M + (I — x)x'v, where x' is a right
dominant eigenvector (0 < & < |) and vx'= Ao

® This matrix has the same dominant eigenvalue of M,
but the separation is at least X
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® |f we impose rx'= I/\o ...
® _.andlookatAor=r(cM + (I — x)x'v)

o _.we getr= (I-0)v(I-0M/No)~' = (I-AoB)v(I-BM)"!

e Katz—Hubbell’s index! It’s the spectral ranking of a
perturbed matrix
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® We can ask what happens when & goes to Ag in (our
version of) Katz—Hubbell’s index

® Functional analysis (resolvent theory) has the

answer: it goes to V(M/A\o)*, where X* denotes
Cesaro’s limit of X"

® But v(M/Ao)*M/No = v(M/No)*, so v(M/o)* is a left
dominant eigenvector of M. Spectral ranking, again!
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We started with an arbitrary dominant eigenvector

We now get a specific eigenvector v(M/Ao)*
depending on a border condition

The border condition is of course irrelevant if Ao was
already strictly dominant

However, it is always relevant in the damped case
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The (left) spectral ranking of M with border condition v
is V(M/No)* [Wei]

The damped spectral ranking of M with border condition
vis (I — AoX)v(l — aM)~! [Katz; Hubbell]

Let S be the row-normalised (stochastic) version of M

The Markovian spectral ranking of M with border
condition v is v§* [Seeley]

The damped Markovian spectral ranking of M with border
condition v is (I — &)v(l — aS)~! [PageRank]
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® These ideas have re-emerged frequently in several
different areas

® Pinski and Narin [1976] use spectral ranking on the
journal citation matrix (with weird normalisation)

® Saaty [/0s] uses right spectral ranking on a matrix

indexed by alternative decisions to identify the best
alternatives
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® Bonacich [1972] proposes left spectral ranking to
identify best individuals in a group given its O-|
relationship matrix

® Bonacich [1987] proposes to extend Katz’s index to
negative X’s

® Kandola et al. [2003] propose a von Neumann kernel
for learning semantic similarity; given an original

kernel matrix K, the new kernel is K(| — O(K)‘I
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On one side, we have linear algebra (no damping)
On the other side, we have weighted walks (damping)

The fact that the two beasts are really the same
beast seem to have eluded people studying social

networks (first proof for symmetric matrices case in
[Bonacich & Lloyd 20011])

(maybe also a few computer scientists...)

See Spectral Ranking [V.] (at vigna.dsi.unimi.it)



http://vigna.dsi.unimi.it
http://vigna.dsi.unimi.it
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® We can derive gazillions of small variants
® Which ones are meaningful?
® Justify your existence!

® But nobody does :(

® Note: the same happens for the web




