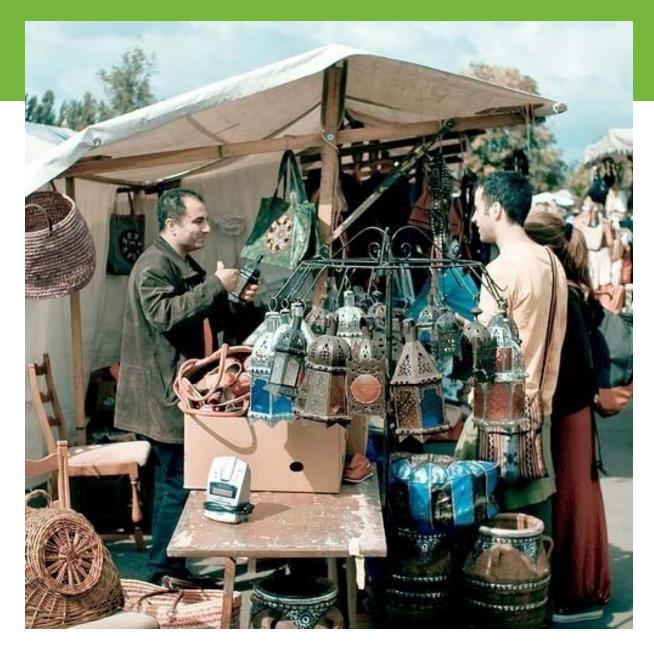
Large Data Problems at the Long Tail: The eBay Story

Challenges and Opportunities

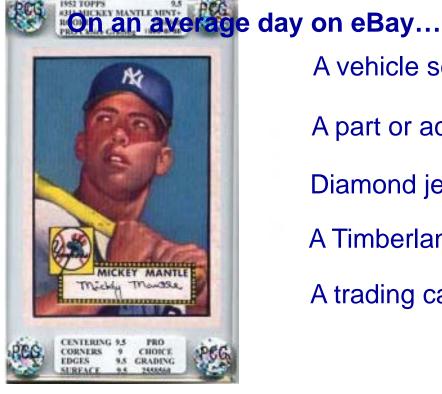
Neel Sundaresan

http://labs.ebay.com



What wags the Tail?

eBay users trade about \$1,400 worth of goods on the site every second.



A vehicle sells every 2 minutes

A part or accessory sells every 3 seconds

Diamond jewelry sells every 83 seconds

A Timberland shoe sells every 10 minutes

A trading card sells every 6 seconds

Then There was One...

When asked if he understood that the laser pointer was broken, the buyer said "Of course, I'm a collector of broken laser pointers"

Divine Reward!

The Long Tail Nature

- Buyers outnumber sellers 5:1
- Seller-items sold has a power law distribution
- Seller-revenue has a power law distribution
- Buyer-items bought has a power law distribution
 For a sample period over 1 month mean is 3 and median is 1
- Buyer-spent money has a power law distribution
 For a sample period of 1 month mean is 98\$ and median was 45\$
- Categories browsed mean 10.5, median 5
- ~10M new items a day, most items eventually sell, items last from a day to 30 days, most items not cataloged, some auction-some fixed price

Opportunities at the Tail

- Vast majority of products appeal to small number of users
- Vast majority of products of this nature can only be carried by small number of sellers
- These account for sizable consumption
- "Selling less of more" becomes important

Algorithm vs Data

Search Challenge

Near similar titles

"Apple IPOD Nano 4GB Black NEW! Great Deal!"

"Apple IPOD Nano 4GB Black NEW! Skin Great Deal!"

What does someone querying for "ipod nano" look for?

What's in a word

Spelling corrections for Swarowski?
 64 of them!

swarvoski,swaroski,swarovsky,swarski,swarowski,swarvorski,swarofski, swarvski,sworovski,swarovksi,swarovsk

Research Labs

What's That in English?

Avon SSS 5 OZ Shave Gel NIB FS GWP

SKIN SO SOFT NEW IN BOX Free Shipping Gift With Purchase

Output

Output

Description

Output

Description

Output

Description

Description

Description

Output

Description

Output

Description

Description

Output

Description

Description

Output

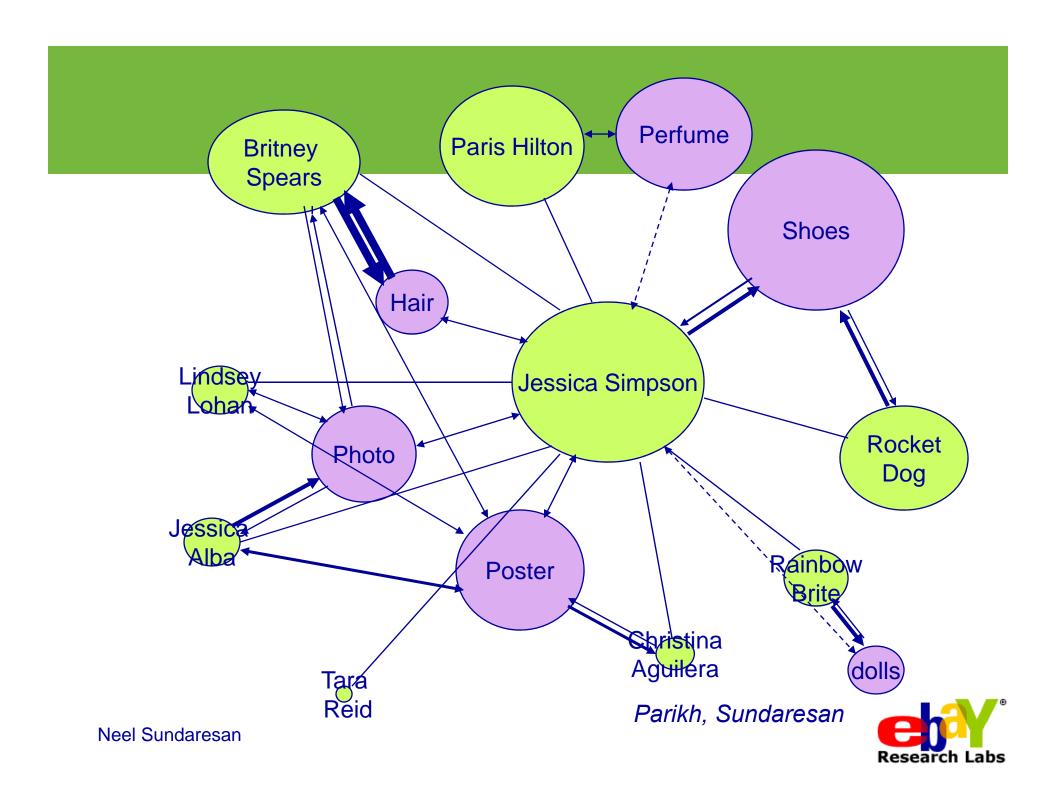
Description

Description

Output

Description

Des



Evolution of Jessica Simpson



JS (contd)

JS (contd)



Recommender Systems – At Scale

- MovieLens 10M ratings, 10K movies, 70K users
- Netflix Prize Challenge 100M ratings, 10K movies, 500K users
- eBay Challenge 2+M txns/day, 10M+ new items, 200+M buyers and sellers

Recommender Systems – Known Ways

Collaborative Filtering

Neighborhood models

- compute relationships between items or users

Latent Factor Models

- Use Matrix Factorization. Work well with large users, item factors

Matrix Factorization

- Users and items are mapped as a latent factor space (of dimensionality σ)
- User-item interactions are modeled as inner products

Each item v is represented by a vector q_v in R^{σ} representing the extent to which the <u>item has the different features</u> in R^{σ}

Each user u is represented by a vector p_u in R^{σ} representing the extent to which the <u>user is interested in different features</u> in R^{σ}

Preference for item v by user $u r_{uv}$ is computed as the dot-product $q_v^T p_u$

The major task is computing the mapping of each item and user to the corresponding factor vectors in R^{σ}

Ref. Koren et al. IEEE 09

Matrix Factorization (contd.)

SVD raises difficulties due to high sparsity

In Netflix sparsity is 1:100, eBay sparsity is even higher (1:10K) Instead of SVD, directly modeling on the observed data is preferred

To learn the factor vectors q_v and p_u

We minimize the regularized square error on the known observations:

$$\min_{q,p} \sum_{(u,v) \in \kappa} (r_{uv} - q_v^T p_u)^2 + \lambda (\|q_v\|^2 + \|p_u\|^2)$$

where r_{uv} is known for κ

This minimization equation is solved using for e.g. Stochastic Gradient Descent or Alternating Least Squares

Ref. Koren et al. IEEE 09

Matrix Factorization – the eBay Challenge

 The q space of items is extremely large and volatile.

There's very little overlap between buyer interests/purchases and actual items

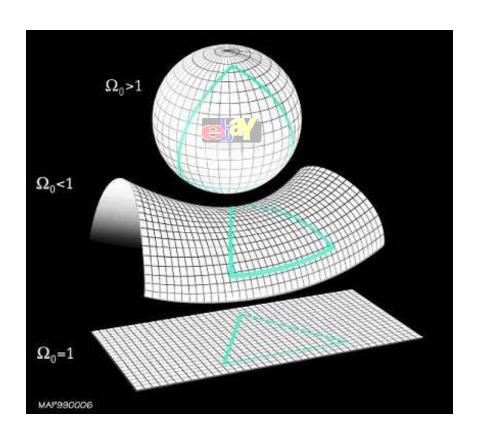
 However, the query space is fairly static (even though in the millions)

The user space can be mapped to queries and the item space can be mapped to queries

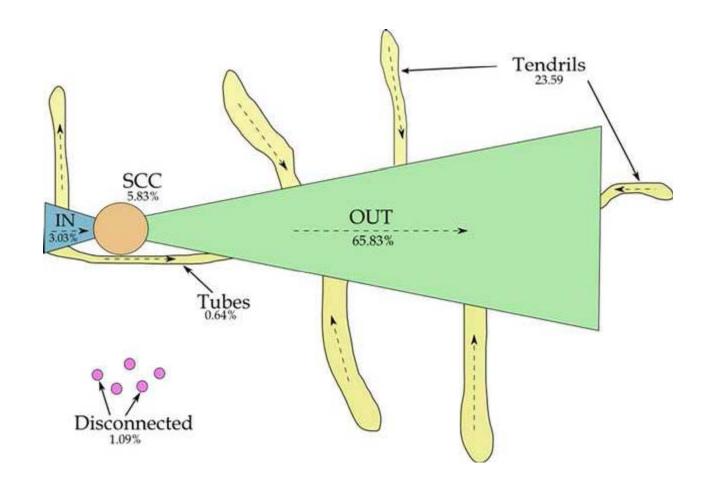
One could use explicit feature vectors on the user and item space $q_v p_u$ then optimizing to discover a weight matrix W in $q_v W p_u$

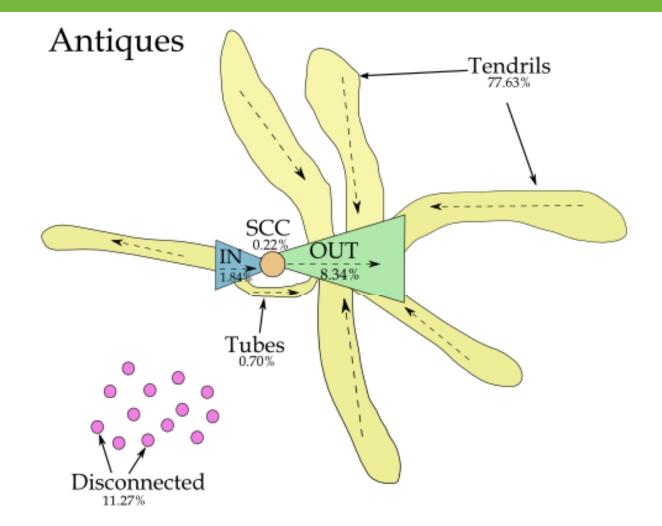
Alternatively, Latent Topic Models (e.g. Latent Dirichlet Allocation - LDA) can be used to map users to latent topics, and latent topics to search queries

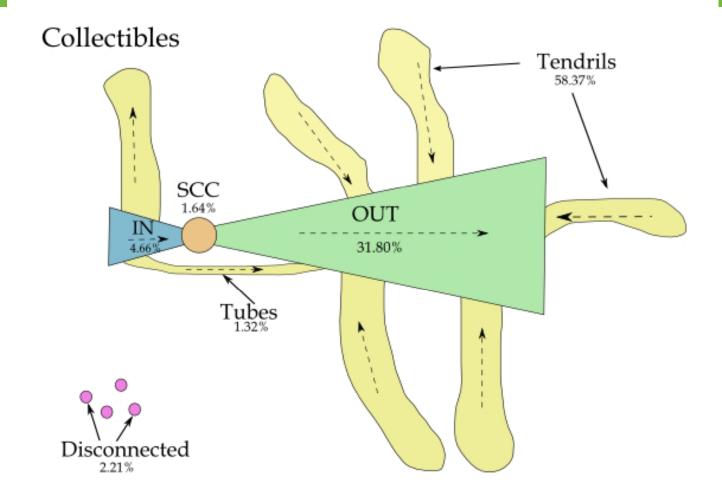
What Shape is the Universe of eBay?



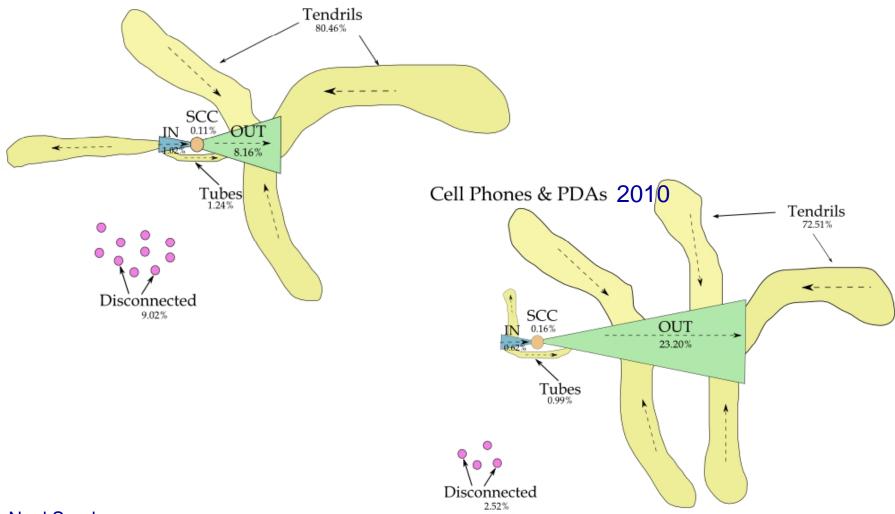
eBay - The Neck-Tie



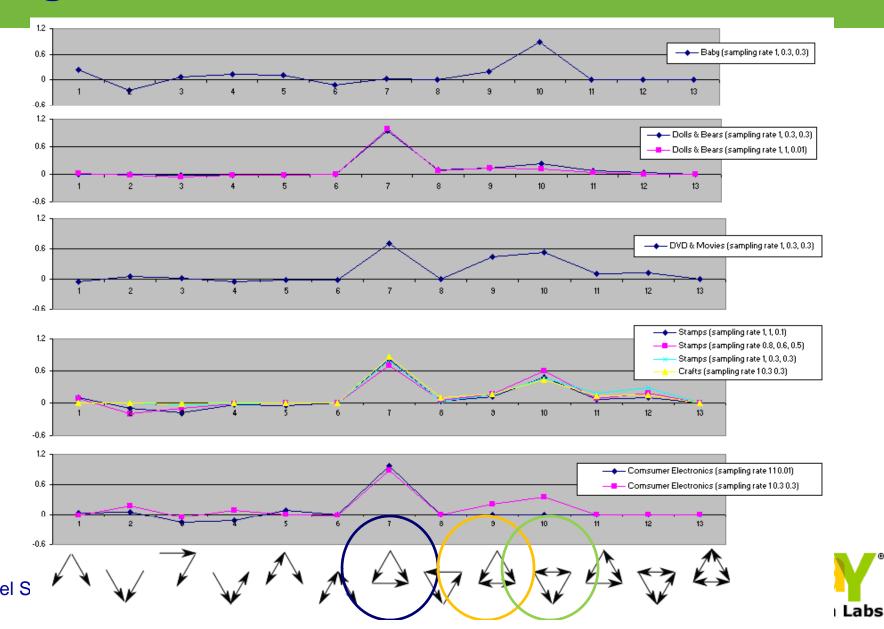




Cell Phones & PDAs 2005



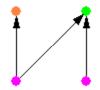
Significance Profiles



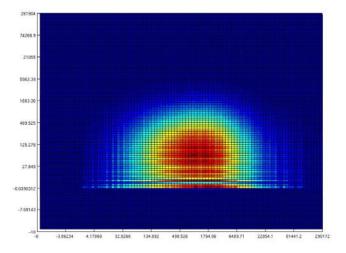
Motifs: Feedback Enhanced Triad Distribution Across Categories

Stamps

Antiques



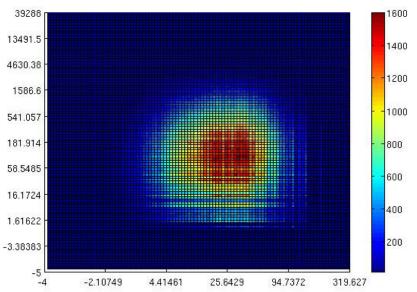
Assortative Mining – Auroral Diagrams to Measure Preferential Attachment

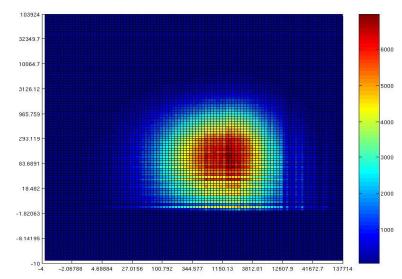


Global

Arts and Crafts

Collectibles





Neel Sundaresan

Shen, Sundaresan

Questions?

ArtAmnesia

