Fast Pseudo-Random Fingerprints

Yoram Bachrach, Microsoft Research Cambridge

Ely Porat – Bar Ilan-University

Agenda

- Massive Data Sets
- Fingerprinting / Sketching
- Previous techniques
- Contribution
- –Computation time
- -Fingerprint size
- Pseudo-Random fingerprints
- Key components of the analysis
- Conclusions

Massive Data Sets

- Huge increase in volumes of data
- -Numbers of users
- Data users produce
- Burst of research of techniques that deal with massive data sets
- -Impossible to store all data
- -Cannot examine the data more than once
- Or more than few times

Example: Recommender Systems

- Recommend items to users
- -Content like books, music, videos and web pages
- Content based approach
- -Examine content consumed by target user in the past
- -Measure **content similarity** to available items
- -Recommend item with high similarity to past content
- Collaborative filtering approach
- -Many users rank items they consume
- -Find users who have similar tastes to target user
- -Recommend items similar users liked
- •And that the target user never examined
- –E.g. the Netflix challenge

Massive Recommender Systems

- Consider designing recommender system for web pages
- -Time a user examines a page is an implicit rating
- -Millions of users
- –Each user examines thousands of pages throughout the year
- -Hard to store and process the information
- Solution approach: fingerprints
- -Do not store the full data for each user
- -Keep a fingerprint of the user tastes
- Allow finding out user similarity

Fingerprint Based Approach

Fingerprint Based Approach

Fingerprint Based Approach

Min wise hash function

$$\forall Y \subset U, c \in YPr_h[argmin_{x \in Y}h(x) = c] = \frac{1}{|Y|}$$

 $\operatorname{argmin}_{x \in A} h(x) = \operatorname{argmin}_{x \in B} h(x)$

 $= argmin_{x \in A \cap B} h(x)$

 $= argmin_{x \in A \cup B} h(x)$

$$\operatorname{argmin}_{x \in A \cup B} h(x) \in A \cap B$$

Min wise hash function

$$\forall Y \subset U, c \in YPr_h[argmin_{x \in Y}h(x) = c] = \frac{1}{|Y|}$$

$$\Pr_{h}[argmin_{x \in A}h(x) = argmin_{x \in B}h(x)] =$$

$$\Pr_{h}[argmin_{x \in A \cup B}h(x) \in A \cap B] = \frac{|A \cap B|}{|A \cup B|}$$

Similarity

 h_1 h_2 $h_{O(\frac{1}{\varepsilon^2}log_{\overline{\delta}}^1)}$ Min wise independent

We get $\pm \epsilon$ approximation with probability 1- δ

First problem

•Min-wise independent require $\Omega(U)$ space

Use almost min wise independent [Indyk99]

•Require O(log1/€) independent function

- •O(log1/∈ log U) bits space
- •O(log1/€) time for evaluation.

Hash independence

Definition 1. H is min-wise independent (MWIF), if for all $C \subseteq X$, for any $x \in C$, $Pr_{h \in H}[h(x) = min_{a \in C}h(a)] = \frac{1}{|C|}$

Definition 2. H is a γ -approximately min-wise independent (γ -MWIF), if for all $C \subseteq X$, for any $x \in C$, $\left| Pr_{h \in H}[h(x) = min_{a \in C}h(a)] - \frac{1}{|C|} \right| \leq \frac{\gamma}{|C|}$

Definition 3. H is k-wise independent, if for all $x_1, x_2, \ldots, x_k, y_1, y_2, \ldots, y_k \subseteq X$, $Pr_{h \in H}[(h(x_1) = y_1) \land \ldots \land (h(x_k) = y_k)] = \frac{1}{|X|^k}$

Block Structure

xb **x1** x2 х3 x4 hO(X)=f(X)h0(x1) h0(x2) h0(x3) h0(x4) h0(xb) m0 h1(X)=f(X)+g(X)h1(x1) h1(x2) h1(x4) h1(xb) h1(x3) m1 h2(X)=f(X)+2g(X)h2(xb) h2(x1) h2(x2) h2(x3) h2(x4) m2 h3(xb) h3(X)=f(X)+3g(X)h3(x1) h3(x2) h3(x3) h3(x4) m3

. . .

hk(X)=f(X)+kg(X) hk(x1) hk(x2) hk(x3) hk(x4) ... hk(xb) ... mk

Minimal elements under block hash

Required Computation

Space analysis

 h_1 h_2 $h_{O(\frac{1}{\varepsilon^2}log_{\overline{\delta}}^1)}$ Min wise independent functions

Sketch size:
$$O(\frac{1}{\varepsilon^2} log \frac{1}{\delta}) \cdot log$$

Hashes required: $O\left(\frac{1}{\varepsilon^2}\log\frac{1}{\delta}\right) \cdot O\left(\log\frac{1}{\varepsilon}\log U\right) = O\left(\frac{1}{\varepsilon^2}\log\frac{1}{\delta}\log\frac{1}{\varepsilon}\log U\right)$

Time analysis

$$h_1$$
 h_2 $h_{O(\frac{1}{\varepsilon^2}log_{\overline{\delta}}^1)}$ Min wise independent

Time:
$$0\left(\frac{1}{\varepsilon^2}log\frac{1}{\delta}\right)\cdot 0\left(log\frac{1}{\varepsilon}\right) = 0\left(\frac{1}{\varepsilon^2}log\frac{1}{\delta}log\frac{1}{\varepsilon}\right)$$

We are going to reduce it to: $O(log \frac{1}{\varepsilon} log \frac{1}{\delta})$

Contribution

- Fingerprint computation time
- -Time depends on accuracy and confidence
- -Previous methods
- •Each item requires time of k
- -k is quadratic in accuracy, logarithmic in confidence
- –Current approach
- Each item requires time of log(k)
- Exponential speedup over previous approaches
- Fingerprint size (per universe size u)
- -Previous approaches require log(u) bits per item
- -Each items requires a single bit per item
- General/generic method
- Applicable to many previous fingerprints

Pair wise independent

Chebyshev
For getting good approximation

Pair wise independent

Min-wise or Pair-wise?

 In our case, every function by itself is (almost) min-wise independent

- Can construct simpler hashes
 - -Almost min-wise independent
 - -Only pair wise independent between themselves

Pseudo-Random Fingerprints

- Specific family of pseudo-random hashes
- -Shown to be approximately min-wise independent
- -Can quickly locate hashes resulting in small values
- Members are only pair-wise independent

Min-wise or Pair wise

•We choose f,g randomly from a family of O(log1/€) independent functions.

- •Define $h_i(x)=f(x)+i*g(x)$
- •Hash h_i behaves as a hash chosen randomly from a family of O(log1/ε) independent functions
 - -Therefore almost min wise independent.

Min-wise or Pair wise

•Define $h_i(x)=f(x)+i*g(x)$

•For any i and j h_i is independent of h_j

Properties

Lemma 1 (Uniform Minimal Values). Let f, g be constructed using the base random construction, using $d = O(\log \frac{1}{\gamma})$. For any $z \in [u]$, any $X \subseteq [u]$ and any value i used to compose $h(x) = f(x) + i \cdot g(x)$: $Pr_h[h(z) < min_{y \in X}(h(y)] = (1 \pm \gamma) \frac{1}{|X|}$.

Lemma 2 (Pairwise Interaction). Let f, g be constructed using the base random construction, using $d = O(\log \frac{1}{\gamma})$. For all $x_1, x_2 \in [u]$ and all $X_1, X_2 \subseteq [u]$, and all $i \neq j$ used to compose $h_i(x) = f(x) + i \cdot g(x)$ and $h_j(x) = f(x) + j \cdot g(x)$:

$$Pr_{f,g \in F_d}[(h_i(x_1) < min_{y \in X_1}h_i(y)) \land (h_j(x_2) < min_{y \in X_2}h_i(y))] = (1 \pm \gamma)^2 \frac{1}{|X_1| \cdot |X_2|}$$

What we got so far

Pair wise independent

Wa

$$O\left(\frac{1}{\varepsilon^2}\log\frac{1}{\delta}\log\frac{1}{\varepsilon}\right)$$

Now
$$O(log \frac{1}{\delta} log \frac{1}{\varepsilon} + \frac{1}{\varepsilon^2} log \frac{1}{\delta})$$

Space

$$O\left(\frac{1}{\varepsilon^2}\log\frac{1}{\delta}\log\frac{1}{\varepsilon}\log U\right)$$

$$O\left(log\frac{1}{\delta}log\frac{1}{\varepsilon}logU\right)$$

Fast computational element

Finding Small Elements

- Can find all elements are smaller then a threshold in time: $O(log \frac{1}{\varepsilon} + Occ)$
 - Similar to an idea used by Pavan and Tirthapura

The idea

$$f(x)=18$$
 $g(x)=21$ $p=53$ $i=0,1,...,14$

18,39,7,28,49,17,38,6,27,48,16,37,5,26,47

18,39,**7**,28,49,**17**,38,**6**,27,48,**16**,37,**5**,26,47

$$f(x)=7 g(x)=10 p=21$$

 $i=0,1,2,3,4$

Algorithm

Maintain a bound on minimal row element Update by iterating the columns

Find small elements (may trigger "missing" updates)

Update the rows where the y occur

```
block - update((x_1, \ldots, x_b), f(x), g(x), k, t):
1. \text{ Let } m_i = \infty \text{ for } i \in [k]
2. \text{ Let } p_i = 0 \text{ for } i \in [k]
3. \text{ For } j = 1 \text{ to } b:
(a) \text{ Let } I_t = pr - small - val(f(x), g(x), k, x_j, t))
(b) \text{ Let } V_t = pr - small - loc(f(x), g(x), k, x_j, t))
(c) \text{ For } y \in I_t: // \text{ Indices of the small elements}
i. \text{ If } m_{I_t[y]} > V_t[y] // \text{ Update to row } x \text{ required}
A. \text{ } m_{I_t[y]} = V_t[y]
B. \text{ } p_{I_t[y]} = x_j
```

Heart of the technique

Required threshold and runtime

Column procedure time $o(log \frac{1}{\varepsilon} + occ)$

Threshold choice affects the runtime

But also the probability an error (missing updates)

Space analysis

 h_1 h_2 $h_{O(\frac{1}{\varepsilon^2}log_{\overline{\delta}}^1)}$ Min wise independent

Sketch size: $O(\frac{1}{\varepsilon^2} log \frac{1}{\delta}) \cdot log$

Hashes required: $O\left(\frac{1}{\varepsilon^2}\log\frac{1}{\delta}\right) \cdot O\left(\log\frac{1}{\varepsilon}\log U\right) = O\left(\frac{1}{\varepsilon^2}\log\frac{1}{\delta}\log\frac{1}{\varepsilon}\log U\right)$

Reducing Sketching Space

$$h_1$$
 h_2 $h_{O(\frac{1}{\varepsilon^2}log_{\overline{\delta}}^1)}$ Min wise independent

Sketch size:
$$O(\frac{1}{\varepsilon^2} log \frac{1}{\delta}) \cdot log$$

We hash each point to one bit

Reducing sketching space

Instead of

$$\Pr_{h_i}[\min_{x \in A} h_i(x) = \min_{x \in B} h_i(x)] = \frac{|A \cap B|}{|A \cup B|}$$

Additional pairwise independent hash

$$\Pr_{h,h_i}[h(\mathit{min}_{x\in A}h_i(x)) = h(\mathit{min}_{x\in B}h_i(x))] =$$

$$\frac{\mid A \cap B \mid}{\mid A \cup B \mid} + \left(1 - \frac{\mid A \cap B \mid}{\mid A \cup B \mid}\right) \cdot \frac{1}{2} =$$

$$\frac{1}{2} + \frac{1}{2} \frac{|A \cap B|}{|A \cup B|} = p$$

Reducing sketching space

$$p = \frac{1}{2} + \frac{1}{2} \frac{|A \cap B|}{|A \cup B|}$$

Our algorithm estimates

$$p'=p\pm\epsilon$$

$$2p'-1=\frac{|A\cap B|}{|A\cup B|}\pm 2\epsilon$$

Conclusion

Fast fingerprinting for massive datasets

General technique applicable to many fingerprints

Using pseudo-random hashes

Exponential speedup of computation

Future research

Speeding up computation even further

Similar techniques to fingerprints not based on minimal elements under the hash

