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Massive Data Sets

*Huge Increase In volumes of data

—Numbers of users
—Data users produce

*Burst of research of techniques that deal
with massive data sets
—Impossible to store all data

—Cannot examine the data more than once
*Or more than few times




Example: Recommender Systems

*Recommend items to users
—Content like books, music, videos and web pages

*Content based approach

—Examine content consumed by target user in the past
—Measure content similarity to available items
—Recommend item with high similarity to past content
*Collaborative filtering approach
—Many users rank items they consume
—Find users who have similar tastes to target user

—Recommend items similar users liked e
L T | T(x)-< s
*And that the target user never examined MoiesFort.

—E.g. the Netflix challenge




Massive Recommender Systems

eConsider designing recommender system for
web pages

—Time a user examines a page Is an implicit rating
—Millions of users

—Each user examines thousands of pages throughout
the year

—Hard to store and process the information

«Solution approach: fingerprints
—Do not store the full data for each user

—Keep a fingerprint of the user tastes
Allow finding out user similarity




Fingerprint Based Approach
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First problem

*Min-wise independent require QQ(U) space
*Use almost min wise independent [Indyk99]
*Require O(logl/e) independent function

*O(logl/e log U) bits space
*O(logl/e) time for evaluation.



Hash independence

Definition 1. H is min-wise independent (MWIF), if for all C C X, for any x € C,
Prycph(z) = mingech(a)] = ﬁ
Definition 2. H is a ~v-approximately min-wise independent (v-MWIF), if for all C' C

X, forany x € C, ‘F".‘r';i.;_;,r;[h{.r} = mingech(a)] — L < =




ho(X)=F(X)

h1(X)=f(X)+g(X)

h2(X)=f(X)+2g(X)

h3(X)=f(X)+3g(X)

hk(X)=f(X)+kg(X)

ho(x1)

Block Structure

ho(x2) ho(x3) ho(x4)

h1(x2) h1(x3) h1(x4)

h2(x2) h2(x3) h2(x4)

h3(x2) h3(x3) h3(x4)

hk(x2) hk(x3) hk(x4)

hO(xb)

h1(xb)

h2(xb)

h3(xb)
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Minimal elem
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h1(X)=F(X)+g(X) h1(x1) h1(x2) h1(x3) -
h2(X)=F(X)+2g(X) h2(x1) h2(x2) h2(x3) - h2(xb)

h3(X)=F(X)+3g(X) h3(x1) h3(x2) h3(x3) h3(x4)

hk(X)=f(X)+kg(X) hk(x1) hk(x2)

m

hk(x3) N hk(xb)



Required Computation
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Space analysis
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Time analysis

1 M2 Poiogy  Min wise independent

Time: 0(z/og%) 0 (log) =0 (;logy log_

We are going to reduce it to: 0 (fog_log



Contribution

*Fingerprint computation time
—Time depends on accuracy and confidence

—Previous methods

sEach item requires time of k
—k is quadratic in accuracy, logarithmic in confidence

—Current approach

*Each item requires time of log(k)
*Exponential speedup over previous approaches

*Fingerprint size (per universe size u)

—Previous approaches require log(u) bits per item
—Each items requires a single bit per item
*General/generic method

—Applicable to many previous fingerprints




Pair wise
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Min-wise or Pair-wise?

 In our case, every function by itself is (almost)
min-wise independent

e Can construct simpler hashes
—Almost min-wise independent
—Only pair wise independent between themselves



Pseudo-Random Fingerprints

*Specific family of pseudo-random hashes
—Shown to be approximately min-wise independent
—Can quickly locate hashes resulting in small values

Members are only pair-wise independent



Min-wise or Pair wise

*\We choose f,g randomly from a family of
O(logl/e) iIndependent functions.

«Define h(x)=f(x)+i*g(x)

*Hash h; behaves as a hash chosen
randomly from a family of O(log1/e)
Independent functions

—Therefore almost min wise independent.



Min-wise or Pair wise

«Define h(x)=f(x)+i*g(x)

For any I and J h; Is independent of h;



Properties

Lemma 1 (Uniform Minimal Ealues) Let f. g be constructed using the base random
construction, using d = O(lﬂg -). For any 2 € [u], any X C |u| and any value i used

to compose h(zx) = f(z) +1- g( : Pry[h(2) < minyex (h(y)| = (lﬂf)m

Lemma 2 (Pairwise Interaction). Let f, g be constructed using the base random con-
struction, using d = O(lﬂg ). Forall 21,9 € [u] and all X1, X C [u), and all i # j

used to compose h;(z) = f( ) +1i-g(z) and hi(z) = f(z) + - glz):

;

Prpaer|(e1) < minyex, iy (h(a2) < mingexchy)] = (1) e



What we got so far

Pair wise independent
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Fast computational element

Small elements (threshold t)




Finding Small Elements

. Can find all elements are smaller then a
threshold in time: o s +0co

. Similar to an idea used by Pavan and Tirthapura



The idea

f(x)=18  g(x)=21 p=53 i=0,1,...,14

18,39,7,28,49,17,38,6,27,48,16,37,5,26,47
18,39,7,28,49,17,38,6,27,48,16,37,5,26,47

f(x)=7 g(x)=10 p=21
1=0,1,2,3,4



Algorithm

Maintain a bound on minimal row element

Update by iterating the columns
Find small elements (may trigger “missing” updates)

Update the rows where the y occur
block — update((xq,...,xp), f(x), g(x), k, 1) :

. Let m; = oo fori € [£]
Let p; = 0 for i € [k]
Forj =1tob:
(@) Let I; = pr — small — val(f(x),g9(x),k,x;,t)
(b) Let Vi = pr — small — loc(f(x), g(x), k, x;,t)
(¢) Fory € I;: // Indices of the small elements
i. If my, ) > Vily] // Update to row . required
A. myp, iy = Vi|y]
B. Priy =7

D =



Heart of the technique




Required threshold and runtime

Column procedure time o (iog%%— 0cc)
Threshold choice affects the runtime

But also the probability an error (missing updates)




Space analysis
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Reducing Sketching Space

1 he o Modiogy Min wise independent

We are going to

Sketch size: 90 (Gzlog3) %‘(

We hash each point to one bit



Reducing sketching space

Instead of
|ANnB |
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Reducing sketching space

_1 11AnB]
P =" 2140UB |

Our algorithm estimates




Conclusion

Fast fingerprinting for massive datasets
General technique applicable to many fingerprints
Using pseudo-random hashes

Exponential speedup of computation
Future research

Speeding up computation even further

Similar techniques to fingerprints not based on minimal elements under the
hash




