
Fast Pseudo-Random Fingerprints

Yoram Bachrach, Microsoft Research Cambridge
Ely Porat – Bar Ilan-University

Agenda
•Massive Data Sets
•Fingerprinting / Sketching
•Previous techniques
•Contribution
–Computation time
–Fingerprint size
•Pseudo-Random fingerprints
•Key components of the analysis
•Conclusions

Massive Data Sets

•Huge increase in volumes of data
–Numbers of users
–Data users produce
•Burst of research of techniques that deal
with massive data sets
–Impossible to store all data
–Cannot examine the data more than once
•Or more than few times

Example: Recommender Systems

•Recommend items to users
–Content like books, music, videos and web pages
•Content based approach
–Examine content consumed by target user in the past
–Measure content similarity to available items
–Recommend item with high similarity to past content
•Collaborative filtering approach
–Many users rank items they consume
–Find users who have similar tastes to target user
–Recommend items similar users liked
•And that the target user never examined

–E.g. the Netflix challenge

Massive Recommender Systems

•Consider designing recommender system for
web pages
–Time a user examines a page is an implicit rating
–Millions of users
–Each user examines thousands of pages throughout
the year
–Hard to store and process the information
•Solution approach: fingerprints
–Do not store the full data for each user
–Keep a fingerprint of the user tastes
•Allow finding out user similarity

Fingerprint Based Approach

F1

a1 C1

F2

a2 C2

Fn

an Cn

Similarity (ai,aj)
...

Fingerprint Based Approach

c,l,t

a1 C1

a,c,d,f,h,l,m,n,p,r,s,t

f,m,s

a2 C2

a,b,c,f,h,l,m,n,o,p,r,s

Fingerprint Based Approach

h

a1

a,c,d,f,h,l,m,n,p,r,s,t

h

a2

a,b,c,f,h,l,m,n,o,p,r,s

h(x) 5,3, 7,9,2,8

h(x) 5,4, 3,7,2,8

Min wise hash function

A B

Min wise hash function

A B

Similarity

A B

We get ±є approximation with probability 1-δ

Min wise independent

First problem

•Min-wise independent require Ω(U) space

•Use almost min wise independent [Indyk99]

•Require O(log1/є) independent function

•O(log1/є log U) bits space
•O(log1/є) time for evaluation.

Hash independence

Block Structure

Minimal elements under block hash

Required Computation

Space analysis

A B

Min wise independent functions

Hashes required:

Sketch size:

We are going to:

Time analysis

A B

Min wise independent

Time:

We are going to reduce it to:

Contribution
•Fingerprint computation time
–Time depends on accuracy and confidence
–Previous methods
•Each item requires time of k
–k is quadratic in accuracy, logarithmic in confidence

–Current approach
•Each item requires time of log(k)
•Exponential speedup over previous approaches

•Fingerprint size (per universe size u)
–Previous approaches require log(u) bits per item
–Each items requires a single bit per item
•General/generic method
–Applicable to many previous fingerprints

Pair wise independent

Pair wise independent

Full independent

Chernoff / hoeffding
For getting w.h.p

Chebyshev
For getting good approximation

Min-wise or Pair-wise?

• In our case, every function by itself is (almost)
min-wise independent

• Can construct simpler hashes
–Almost min-wise independent
–Only pair wise independent between themselves

Pseudo-Random Fingerprints

•Specific family of pseudo-random hashes
–Shown to be approximately min-wise independent
–Can quickly locate hashes resulting in small values
•Members are only pair-wise independent

Min-wise or Pair wise

•We choose f,g randomly from a family of
O(log1/є) independent functions.

•Define hi(x)=f(x)+i*g(x)

•Hash hi behaves as a hash chosen
randomly from a family of O(log1/є)
independent functions

–Therefore almost min wise independent.

Min-wise or Pair wise

•Define hi(x)=f(x)+i*g(x)

•For any i and j hi is independent of hj

Properties

What we got so far
Pair wise independent

Full independent

Time

Wa
s

Now

Space

Fast computational element
x1 x2 x3 x4 xb

h0(X)=f(X)

h1(X)=f(X)+g(X)

h2(X)=f(X)+2g(X)

h3(X)=f(X)+3g(X)

hk(X)=f(X)+kg(X)

…

h0(x1) h0(x2) h0(x3) h0(x4) h0(xb) m0

h1(x1) h1(x2) h1(x3) h1(x4) h1(xb) m1

h2(x1) h2(x2) h2(x3) h2(x4) h2(xb) m2

h3(x1) h3(x2) h3(x3) h3(x4) h3(xb) m3

hk(x1) hk(x2) hk(x3) hk(x4) hk(xb) mk

…

…

…

…

…

…

…

…

…

…

…

Small elements (threshold t)a

Finding Small Elements

● Can find all elements are smaller then a
threshold in time:
● Similar to an idea used by Pavan and Tirthapura

The idea

18,39,7,28,49,17,38,6,27,48,16,37,5,26,47

f(x)=18 g(x)=21 p=53 i=0,1,...,14

18,39,7,28,49,17,38,6,27,48,16,37,5,26,47

f(x)=7 g(x)=10 p=21
i=0,1,2,3,4

Algorithm

Maintain a bound on minimal row element

Update by iterating the columns

Find small elements (may trigger “missing” updates)

Update the rows where the y occur

Heart of the technique

Required threshold and runtime

Column procedure time

Threshold choice affects the runtime

But also the probability an error (missing updates)

Space analysis

A B

Min wise independent

Hashes required:

Sketch size:

We are going to:

Reducing Sketching Space

A B

Min wise independent

Sketch size:

We are going to:

We hash each point to one bit

Reducing sketching space
Instead of

Additional pairwise
independent hash

Reducing sketching space

Our algorithm estimates

Conclusion
Fast fingerprinting for massive datasets

General technique applicable to many fingerprints

Using pseudo-random hashes

Exponential speedup of computation

Future research

Speeding up computation even further

Similar techniques to fingerprints not based on minimal elements under the
hash

