Fast Pseudo-Random Fingerprints

Yoram Bachrach, Microsoft Research Cambridge
Ely Porat — Bar llan-University

Agenda

Massive Data Sets
*Fingerprinting / Sketching
*Previous technigues

«Contribution

—Computation time

—Fingerprint size

*Pseudo-Random fingerprints
*Key components of the analysis

Conclusions

Massive Data Sets

*Huge Increase In volumes of data

—Numbers of users
—Data users produce

*Burst of research of techniques that deal
with massive data sets
—Impossible to store all data

—Cannot examine the data more than once
*Or more than few times

Example: Recommender Systems

*Recommend items to users
—Content like books, music, videos and web pages

*Content based approach

—Examine content consumed by target user in the past
—Measure content similarity to available items
—Recommend item with high similarity to past content
*Collaborative filtering approach
—Many users rank items they consume
—Find users who have similar tastes to target user

—Recommend items similar users liked e
L T | T(x)-< s
*And that the target user never examined MoiesFort.

—E.g. the Netflix challenge

Massive Recommender Systems

eConsider designing recommender system for
web pages

—Time a user examines a page Is an implicit rating
—Millions of users

—Each user examines thousands of pages throughout
the year

—Hard to store and process the information

«Solution approach: fingerprints
—Do not store the full data for each user

—Keep a fingerprint of the user tastes
Allow finding out user similarity

Fingerprint Based Approach

al C1
a2 C2

44
an Cn

> e

> >3

Y

|ANB |
| AUB |

|

> S

Fingerprint Based Approach

© [acathimnpas) P e
O [avsinimnopss — €imen

Fingerprint Based Approach
%

2

10N

hash functi

N wise

M

1
| Y |

VY c U,c € Y Pry|argmin,cyh(x)= c|

h(x)

= dargmiilycanpg

h(x)= argmin,cg

argmin,.cg

h(x)

h(x)

= argnmilycayp

h(x)eE ANB

argminyecaup

10N

hash functi

N wise

M

1
| Y |

VY c U,c € Y Pry|argmin,cyh(x)= c|

h(x)] =

IIyep

h(x)= argm
h(x)E ANB] =

argminy,.c

Prh[
Pry|

|ANB |
|AUB |

argmiilyeoup

larity

Imi

S

Independent

In wise

M

hy

hy

th probability 1-6

10N wi

We get +e approximat

First problem

*Min-wise independent require QQ(U) space
*Use almost min wise independent [Indyk99]
*Require O(logl/e) independent function

*O(logl/e log U) bits space
*O(logl/e) time for evaluation.

Hash independence

Definition 1. H is min-wise independent (MWIF), if for all C C X, for any x € C,
Prycph(z) = mingech(a)] = ﬁ
Definition 2. H is a ~v-approximately min-wise independent (v-MWIF), if for all C' C

X, forany x € C, ‘F".‘r';i.;_;,r;[h{.r} = mingech(a)] — L < =

ho(X)=F(X)

h1(X)=f(X)+g(X)

h2(X)=f(X)+2g(X)

h3(X)=f(X)+3g(X)

hk(X)=f(X)+kg(X)

ho(x1)

Block Structure

ho(x2) ho(x3) ho(x4)

h1(x2) h1(x3) h1(x4)

h2(x2) h2(x3) h2(x4)

h3(x2) h3(x3) h3(x4)

hk(x2) hk(x3) hk(x4)

hO(xb)

h1(xb)

h2(xb)

h3(xb)

1

2

m3

Minimal elem

e

>

ts under block hash

Min

h1(X)=F(X)+g(X) h1(x1) h1(x2) h1(x3) -
h2(X)=F(X)+2g(X) h2(x1) h2(x2) h2(x3) - h2(xb)

h3(X)=F(X)+3g(X) h3(x1) h3(x2) h3(x3) h3(x4)

hk(X)=f(X)+kg(X) hk(x1) hk(x2)

m

hk(x3) N hk(xb)

Required Computation
HEEEE D

Space analysis

10NS

Independent functi

In wise

M

h
0(3—210 <)

h2 nmn

hy

)

gU

—Jo

1
£

1
log 5 log

X

1

-0 (logglogi]) =0

P
1
log=)

%
[aN |
T
~ -
— _28
N
O ..
S
<5
| -
L >
N o
7 L
= wn
O D
D 5
4 lqe;
N 1

Time analysis

1 M2 Poiogy Min wise independent

Time: 0(z/og%) 0 (log) =0 (;logy log_

We are going to reduce it to: 0 (fog_log

Contribution

*Fingerprint computation time
—Time depends on accuracy and confidence

—Previous methods

sEach item requires time of k
—k is quadratic in accuracy, logarithmic in confidence

—Current approach

*Each item requires time of log(k)
*Exponential speedup over previous approaches

*Fingerprint size (per universe size u)

—Previous approaches require log(u) bits per item
—Each items requires a single bit per item
*General/generic method

—Applicable to many previous fingerprints

Pair wise

Full independent
Chernoff / hoeffding

Independent

Chebyshev
For getting good approximation

Pair wise independent

" — _
| L hor . hO(giz) 1
h,2 o2 0(3),2
[] 82
hft,]’o,_.g%E 2,10g% h 1
T T 0(3) log%

For getting w.h.p

Min-wise or Pair-wise?

 In our case, every function by itself is (almost)
min-wise independent

e Can construct simpler hashes
—Almost min-wise independent
—Only pair wise independent between themselves

Pseudo-Random Fingerprints

*Specific family of pseudo-random hashes
—Shown to be approximately min-wise independent
—Can quickly locate hashes resulting in small values

Members are only pair-wise independent

Min-wise or Pair wise

*\We choose f,g randomly from a family of
O(logl/e) iIndependent functions.

«Define h(x)=f(x)+i*g(x)

*Hash h; behaves as a hash chosen
randomly from a family of O(log1/e)
Independent functions

—Therefore almost min wise independent.

Min-wise or Pair wise

«Define h(x)=f(x)+i*g(x)

For any I and J h; Is independent of h;

Properties

Lemma 1 (Uniform Minimal Ealues) Let f. g be constructed using the base random
construction, using d = O(lﬂg -). For any 2 € [u], any X C |u| and any value i used

to compose h(zx) = f(z) +1- g(: Pry[h(2) < minyex (h(y)| = (lﬂf)m

Lemma 2 (Pairwise Interaction). Let f, g be constructed using the base random con-
struction, using d = O(lﬂg). Forall 21,9 € [u] and all X1, X C [u), and all i # j

used to compose h;(z) = f() +1i-g(z) and hi(z) = f(z) + - glz):

;

Prpaer|(e1) < minyex, iy (h(a2) < mingexchy)] = (1) e

What we got so far

Pair wise independent

. — v
(, h h h
1,91 1,1 2,1 0(812),1
f2,92 h h
1,2 2.2 ha(é),z

Full independent

iogh910gt Miogt’ Mgt h

1
| 0(z5),logs
Time Space
0 ! / 1] ! 0 . / 11 1l
Wa (g—z 085 C’gg) (52 085 1og— ogU)
S
Now 1 1

1 1 1 1
0 (lagg lagg + pe) logg) 0 (logg logg logU)

Fast computational element

Small elements (threshold t)

Finding Small Elements

. Can find all elements are smaller then a
threshold in time: o s +0co

. Similar to an idea used by Pavan and Tirthapura

The idea

f(x)=18 g(x)=21 p=53 i=0,1,...,14

18,39,7,28,49,17,38,6,27,48,16,37,5,26,47
18,39,7,28,49,17,38,6,27,48,16,37,5,26,47

f(x)=7 g(x)=10 p=21
1=0,1,2,3,4

Algorithm

Maintain a bound on minimal row element

Update by iterating the columns
Find small elements (may trigger “missing” updates)

Update the rows where the y occur
block — update((xq,...,xp), f(x), g(x), k, 1) :

. Let m; = oo fori € [£]
Let p; = 0 for i € [k]
Forj =1tob:
(@) Let I; = pr — small — val(f(x),g9(x),k,x;,t)
(b) Let Vi = pr — small — loc(f(x), g(x), k, x;,t)
(¢) Fory € I;: // Indices of the small elements
i. If my,) > Vily] // Update to row . required
A. myp, iy = Vi|y]
B. Priy =7

D =

Heart of the technique

Required threshold and runtime

Column procedure time o (iog%%— 0cc)
Threshold choice affects the runtime

But also the probability an error (missing updates)

Space analysis

Independent

In wise

M

hy

hy

Sketch size

)

gU

—lo

1
€

1
log 5 log

X

-0 (log—1logU) = 0 (

1
£

1
log 5)

1
0(8_2

Hashes required

Reducing Sketching Space

1 he o Modiogy Min wise independent

We are going to

Sketch size: 90 (Gzlog3) %‘(

We hash each point to one bit

Reducing sketching space

Instead of
|ANnB |

Pry, [minye hi(x)= minyeghi(x)] = | AUB |

Additional pairwise Pri, . [h(min.c,h;(x)) = h(min,cgh;(x))] =
independent hash o
|ANB | |AnB| 1
+(1-) 5=
| AUB | |AUB | 2
1 11AnB]|

2 21auB P

Reducing sketching space

_1 11AnB]
P =" 2140UB |

Our algorithm estimates

Conclusion

Fast fingerprinting for massive datasets
General technique applicable to many fingerprints
Using pseudo-random hashes

Exponential speedup of computation
Future research

Speeding up computation even further

Similar techniques to fingerprints not based on minimal elements under the
hash

