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define: Internet Scale
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e Data center scale

S L ) IO

e Warehouse scale
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Types of Data

e Feature vectors: Data =
{xlal’ x1929 °°* ) xlan
X115, X125 «ee y X1,n

9

xm719 xmaz’ °°* ) 'xman}

e Also, data = graphs, images, text, ...
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Internet Scale Data

e m = Billions to trillions of examples
e n = Millions to billions of features

e Hundreds to thousands of CPUs

e Data is noisy
e Data streams in
e Unpredictable query demand
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Sample Hierarchy

e Server
16GB DRAM; 160 GB SSD; 5 x 1TB disk

e Rack
40 servers
48 port Gigabit Ethernet switch

e Warehouse

10,000 servers (250 racks)
2K port Gigabit Ethernet switch
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Storage hierarchy — single server
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Storage hierarchy — one rack
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Storage hierarchy — WSC

=¢-Latency (us) <®Bandwith (MB/sec) Capacity (GB)
100000000

10000000

1000000

100000
10000
N
100 /
10 /
1
0.1 /

DRAMlFLASH DISK DRAM FLASH DISK DRAM FLASH DISK

Server Rack Datacenter

Google

Monday, June 21, 2010 8




Challenges

e New programming models:
- Parallel; Flash (SSD); GPUs?

e Use energy efficiently
- Hardware, software, warehouse

e Encode/compress/transmit data well

e Fault Recovery

- Deal with stragglers

- Harware/software faults
- Heavy tail
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Distributed Program Design

e Failure is always an option

e Minimize network traffic

e Experiments/back-of-envelope

e Caching and replication

e Minimize average latency

e Minimize variance (long tail) of latency
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The Eight Fallacies (Peter Deutsch)

e The network is reliable

e Latency is zero

e Bandwidth is infinite

e The network is secure

e Topology doesn’t change

e There is one administrator

e Transport cost is zero

e The network is homogeneous
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Map-reduce model

e Distributed, stateless computation
e Built-in failure recovery

e Built-in load balancing

e Network and storage optimizations
e Built-in sort of intermediate values
e Various interfaces (file system, etc.)
e Protocol buffers for structured data
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MapReduce Input
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MapReduce: Granularity

Fine granularity tasks: many more map tasks than machines

* Minimizes time for fault recovery
« Can pipeline shuffling with map execution
» Better dynamic load balancing

Process Time =

User Program |MapReduce() owait ...

Master Assign tasks to worker machines...

Worker | Map 1| Map 3

Worker 2 Map 2
Worker 3
Worlker 4

Except as otherwise noted, this presentation is released
under the Creative Commons Attribution 2.5 License.

Reduce |

Reduce 2

Google
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Mapreduce

// word count
map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, "1");

reduce(String key, Iterator values):

// key: a word

// values: a list of counts

int result = 0;

for each v in values:
result += ParseInt(v);

Emit (AsString(result));
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ABSTRACT

There is currently considerable enthusiasm around the MapReduce
(MR) paradigm for large-scale data analysis [17]. Although the
basic control flow of this framework has existed in parallel SQL
database management systems (DBMS) for over 20 years, some
have called MR a dramatically new computing model [8, 17]. In
this paper, we describe and compare both paradigms. Furthermore,

model through which users can express relatively sophisticated dis-
tributed programs, leading to significant interest in the educational
community. For example, IBM and Google have announced plans
to make a 1000 processor MapReduce cluster available to teach stu-
dents distributed programming.

Given this interest in MapReduce, it is natural to ask “Why not
use a parallel DBMS instead?” Parallel database systems (which

=M b e e AL e AL A\ b b a2z

“A major step backwards”
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Claims

» MapReduce cannot use indices and
implies a full scan of the input data

 MapReduce input and outputs are always
simple files 1n a file system

* MapReduce requires using inefficient
textual data formats
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Bigtable

e Sparse, distributed, multi-dimensional
sorted map

e Column oriented (roughly, columns for
OLAP, rows for OLTP)

e Heavy use of compression

e Has locks, but designed for many
queries, not for transactions
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Pregel & o.e.g
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e Graph processing

e Bulk synchronous parallel model

e Message passing to vertexes

e Billions of vertexes,
e “Think like a vertex”
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Supply (US Electricity Output)
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Doubling every ~30 years

source: http://eia.doe.gov
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Demand (aggregate energy usage of servers)

...........................................................................................................................................................................................................................

World average growth rate

Asia Pacific
(excluding Japan)

Western Europe

Rest of World
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s |
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Average annual growth rate 2000 to 2005

Doubling every 6 — 8 years

source: J. Koomey,”Worldwide electricity used in data centers”,
Environmental Research Letters 3, Jul-Sep 2008 Goggle
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Net IT Carbon Footprint: Strongly Negative!

The carbon footprint of information pays for itself...and then some

'\» ICT Footprint & Enabling Effect, GtCO2e*

2007 Emissions

2020 Emissions

Industry KPower \ Buildings —\ Transport \

N e
V

Reduction is 5x direct emissions

2020 Abatements

2020 Net Impact

*source: GeSl/The Climate Group: SMART 2020: Enabling the low carbon economy in the information age

Google
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Efficiency of warehouse-scale computing: carbon

0.2g Answering one Google query

20g
759
1739
2099
2809
2329

Using a Laptop for one hour
Using a PC & monitor for one hour

One weekday newspaper (physical copy)

Producing a single glass of orange juice
Washing one load of laundry in an efficient machine

One beer

Google
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Dramatic reduction of overheads

Typical* PUE = 2.0 Google PUE = 1.16

2%

4%

m|T mCooling  ®=Power Distributionand Backup  ®mLighting, etc.

*Reference: Silicon Valley Leadership Group, Data Center Energy Forecast, Final Report July, 2008 GO 0816
Google E Data Center energy-weighted average PUE results from Q2-Q1°09 (to 3/15/09)

Monday, June 21, 2010 25




Fault Recovery

e 99.9% uptime = 9 hours down/year

e A 10,000 server warehouse can expect
- 0.25 cooling/power failure (all down; day)
- 1 PDU failure (500 down; 6 hours)
- 20 rack failures (40 down; 1 hour)
- 3 router failures (1 hour)

- 1000 server failure
- 1000s disk failures
- etc., etc., etc.
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Stuff happens ...
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Stuff happens ...

e Power failures
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Stuff happens ...

e Power failures
e Cosmic rays
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Stuff happens ...

e Power failures
e Cosmic rays
e Software bugs
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Stuff happens ...

e Power failures
e Cosmic rays

e Software bugs
e Thieves
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Stuff happens ...

e Power failures

e Cosmic rays

e Software bugs

e Thieves

e Drunken hunters
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Understanding downtime behavior matters
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Planning for Recovery

e Replication

e Sharding

e Checkpoints

e Monitors / Heartbeats

e If possible:
- Loose consistency
- Approximate answers
- Incomplete answers
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Essentially,
all models are wrong,
but some are useful.

George Box (1919-)

Monday, June 21, 2010 30
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Explore flu trends - United States

We've found that certain search terms are good indicators of flu activity. Google Flu Trends uses
aggregated Google search data to estimate flu activity. Learn more »

National @ 2009-2010 ® Past years ¥
|I"utense
|Fgﬁ
' Moderate
-Low

Minima

ENEEEEEEEEEN
Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun
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Image Models
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Cavepaining; Lascaux. France; 15000 1o 10,000 B.C:
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James Hays, Alexei Efros, CMU:
Scene Completion

e

Il v . "4
: ‘*_""" FREES A e L,
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James Hays, Alexei Efros, CMU:
Scene Completion
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James Hays, Alexei Efros CMU:

Scene Completion
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James Hays, Alexei Efros CMU:
Scene Completion
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INPUT

* PROGRAM

OUTPUT

-
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INPUT

OUTPUT

* PROGRAM

V3 ".j;p
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Data Threshold

Solution Quality

low

threshold

Amount of Data

high
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Jing, Baluja, Rowley, Google:
Finding Canonical Images

Web Images Maps MNews Shopping Gmail Sign in
GO thgle mona lisa [(Searchimages | [ Searchthe Web | S2ete=dineas Ssarch
Strict SafeSearch is on New! Google Image Labeler
Images Showing: | Allimage sizes A Results 1 - 21 of about 343,000 for mona lisa with Safesearch on. (0.04 seconds)
Word has it that Mona Lisa wasn't a da Vinci: Mona Lisa Mona Lisa We have examined the Mona Lisa right Image:MonaLisa sfumato jpag Image:Mona Lisa.jpg
340 % 472 - 10k - gif topic ... 282 x 795 - 59k - jpg 468 x 296 - 67k - jpg 350 x 400 - 26k - jpeg 743 x 1155 - 156k - jpg
320 x 366 - 21k - Jpg www._enchantedlearmning.com 379 x589 - 63k - pg www.museumldv.com www._pinktentacle.com commans.wikimedia.org commans.wikimedia.org
uk.gizmodo_com thesituationist. wordpress.com

mona lisa

Monalisa jpg Study Page: Mona Lisa in Book "~ MonalLisa lMona Lisa cartoon 3 - catalog ...  Mona Lisa cartoon 4 - catalog ... lMona Lisa

435 x 644 - 43k - jpg Cover ... 406 x 302 - 46k - jpg 400 x 612 - 48k - jpg 400 % 395 - 81k - jpg 400 x 400 - 87k - jpg 8002 600 -97k - jpg
www.mentalfloss.com 360 x 595 - 85k - gif www._sunrise-divers.com www.whytraveltofrance.com www.cartoonstock.com www._cartoonstock.com www.viadstudio.com
www_studiolo.org

Mona Lisa - Joint Poster "Mona Lisa" lMona Lisa is Lisa Gherardini  Click here if your browser does not ... Sir Joshua's Mona Lisa Complete history of Mena Lisa  Mona Lisa Magnet by Leonardo da
299 x 450 - 42k - jpg 507 % 694 - 22k - jpg 334 %520 - 17k - jpg 605 % 790 - 187k - jpg 502 % 502 - 50k - pg 450 % 328 - 22k - pg
www_allposters.com www_oregoncoastradio.com yedda.com WWW_paris_org Www.maoviespring.com www_simplonpc.co.uk 348 x 450 - 29k - jpg

www.allposters.com

Go000000000g e B

123456788310 Next

Mew! Want to help improve Google Image Search? Try Google Image Labeler.

~
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Compare low-level features
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SIFT Features
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Doug Lenat (1950-) Ed Feigenbaum (1936-)
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Lenat and Feigenbaum, 1991.:

Each of us has a vast storehouse of general knowledge, though
we rarely talk about any of it explicitly to one another; we just
assume that other people already know these things. If they are

included in a conversation, or an article, they confuse more
than they clarify. Some examples are:

—Water flows downhill
— Living things get diseases

7
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1-10 of about 16,600 for "water flows downhill”. (0.29 seconds)

Water Flows Downbhill:: Lesson Plan, Activity, or Teaching Idea ...

Children will experiment with different containers to see if water flows up or down.
www.atozteacherstuff.com/pages/515.shtml - 32k - Cached - Similar pages
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Word Sense Disambiguation

bank ! |ba nc k|

noun
1 the land alongside or sloping down to a
river or lake : wnllows lined the riverbank.

bank 2 |bonk| |banpk|

noun

a financial establishment that invests money
deposited by customers, pays it out when
required, makes loans at interest, and
exchanges currency . / paid the money straight
into my bank.
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More Data vs. Better Algorithms

Test Accuracy Banko & Br|II, 2001
s
: -'-'--»m;ﬁg
: v )
a " '
: X = "
: I
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Z —%— Leamer 2
AL 3
080 o] Learr:4
—3— Leamer 5
0.75 4 ' ' '
1 10 ; ‘I(ID

Size of Trainng Corpus (Miions of Words)

Figure 2. Learning Curves for Confusable Disambiguation
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More Data vs. Better Algorithms

Banko & Brill, 2001

Test Accuracy
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Figure 2. Learning Curves for Confusable Disambiguation
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More Data vs. Better Algorithms

Banko & Brill, 2001
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More Data vs. Better Algorithms

Banko & Brill, 2001
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Figure 2. Learning Curves for Confusable Disambiguation
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Spelling

Mehran Sahami

Monday, June 21, 2010

56




Spelling

e Dictionary Based:

Mehran Sahami
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Spelling

e Dictionary Based:

Tehran Salami

Monday, June 21, 2010 56



Spelling

e Dictionary Based:

Tehran Salami

e Corpus Based:

Mehran Sahami: ok
Mehron Sahami
Did you mean: Mehran Sahami
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Spelling
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Spelling

best = argmax. P(c | w)
= argmax. P(w | ¢) P(c)
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Spelling

best = argmax. P(c | w)
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Spelling

best = argmax. P(c | w)
= argmax. P(w | ¢) P(c)

P(c) ~ estimated from word counts
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Spelling

best = argmax. P(c | w)
= argmax. P(w | ¢) P(c)

P(c) ~ estimated from word counts
P(w | ¢) ~ proportional to edit distance
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import string, collections
def train(filename):
P = collections.defaultdict(lambda: 1)
for line in file(filename):
word, count = line.split()
P[word] = int(count)
return P
P = train(‘en100k.txt’)
def edits1(word):
n = len(word)
return set([word[0:i]l+word[i+1:] for i in range(n)] + # deletion
[word[O:i]+word[i+1]+word[i]+word[i+2:] for i in range(n-1)] + # transposition
[word[0:i]+c+word[i+1:] for i in range(n) for c in string.lowercase] + # alteration
[word[O:i]+c+wordl[i:] for i in range(n+1) for c in string.lowercase]) # insertion
def known_edits2(word):
return set(e2 for el in edits1(word) for e2 in edits1(el) if e2 in P)
def known(words):
return set(w for w in words if w in P)
def correct(word):
candidates = known([word]) or known(edits1(word)) or known_edits2(word) or [word]
return argmax(candidates, P)
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http//www.htdig.org/ files/ htdig-3.2.0b5.tar.bz2/ htdig-3.2.0b5/ htfuzzy/

Files | Outlingtew! Metaphone.cc

. M 145 for (; *n && key.length() < MAXPHONEMELEN; mn++)
- 146 {

Accents.cc 147 /* Drop duplicates except for CC =/
Accents.h 148 if (*(n = 1) == *n && *n = 'C')

Endings.cc 149 continue;

y 150 /* Check for FJL M N R or first letter vowel =/
mﬂs—'h 151 if (same(*n) || *(n = 1) == '\0' && vowel(*n))
EndingsDB.cc
ENdingsUb.c 152 key << *n;:

Exact.cc 153 else
Exact.h 154 {

155 switch (*n)
Fuzzy.cc 156 {
Fuzzy.h 157 case 'B":
Makefile.am 158 /*
Makefile.in 159 * B unless in -MB
Makefile.win32 160 ./
Metaphone.cc e i€ (rin v 1) orm = 1) 2= M)

- 162 key << *n;

Metaphone.h 163 break;

164 case 'C":
poguss .
——— 166 * ¥ if in -CIA-, -CH- else 5 if in
Regexp.cc 167 * _CI-, -CE-, -CY- else dropped if
Regexp.h 168 * in =-5CI-, -5CE-, -5CY¥- else K
Soundex.cc 169 */
Soundex.h 170 if (*(n - 1) I= 's' || 1frontv(*(n + 1)))
Speling.cc 172 if (*(n + 1) == "I' && *(n + 2) == 'A')
Speling.h 173 key << 'X';:
Substring.ceo 174 else if (fromntwv(*(n + 1)})
Substingh 175 key << 'S
SLDSITING.N 176 else if (*(n + 1) == 'H")
SuffixEntry.cc 177 key << {{H{n - 1) == "\0' && lvowel(*(n + 2)))
SuffixEntry.h 178 *(n - 1) == '§")
oIV — 179 ? 'K : "X'):
_?_LS h W 180 else
hﬂumnngm. <1181 key << 'K';

Zzy.cc ~ 182 }
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Google LDC N-Gram Corpus

Number of tokens: 1,024,908,267,229
Number of sentences: 95,119,665,584

Number of unigrams: 13,588,391
Number of bigrams: 314,843,401
Number of trigrams: 977,069,902

Number of fourgrams: 1,313,818,354
Number of fivegrams: 1,176,470,663
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Google LDC N-Gram Corpus

serve as the independent 794
serve as the index 223

serve as the indication 72
serve as the indicator 120
serve as the indicators 45
serve as the indispensable 111
serve as the indispensible 40
serve as the individual 234
serve as the industrial 52
serve as the industry 607
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Wordnet Dictionary
Verb

e S: (v) serve, function (serve a purpose, role, or function) "The tree stump serves as a table"; "The femal
serve very well"; "His freedom served him well"; "The table functions as a desk"
e S: (v) serve (do duty or hold offices; serve in a specific function) "He served as head of the department |

e S: (v) serve (contribute or conduce to) "The scandal served to increase his popularity"

e S: (v) service, serve (be used by; as of a utility) "The sewage plant served the neighboring communities’
e S:(v) serve, help (help to some food; help with food or drink) “7 served him three times, and after that h
e S: (v) serve, serve up, dish out, dish up, dish (provide (usually but not necessarily food)) "We serve mea

P.M."; "The entertainers served up a lively show"

e S: (v) serve (devote (part of) one's life or efforts to, as of countries, institutions, or ideas) "She served the
country"

e S:(v) serve, serve well (promote, benefit, or be useful or beneficial to) "Art serves commerce"; "Their ir
President's wisdom has served the country well"

e S:(v)serve, do (spend time in prison or in a labor camp) "He did six years for embezzlement"

e S:(v) serve, attend to, wait on, attend, assist (work for or be a servant to) "May I serve you?"; "She atter
our table, please?"; "Is a salesperson assisting you?"; "The minister served the King for many years"

e S:(v) serve, process, swear out (deliver a warrant or summons to someone) "He was processed by the s}

e S: (v) suffice, do, answer, serve (be sufficient; be adequate, either in quality or quantity) "A few words w
$100 do?"; "A 'B' grade doesn't suffice to get me into medical school"; "Nothing else will serve"

e S:(v) serve (do military service) "She served in Vietnam"; "My sons never served, because they are sho

e S:(v) serve, service (mate with) "male animals serve the females for breeding purposes"

e S: (v) serve (put the ball into play) "It was Agassi's turn to serve"

WordNet home page
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