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define: Internet Scale

• Data center scale

• Warehouse scale
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Types of Data

• Feature vectors: Data =
{x1,1,  x1,2, ... , x1, n

   x1,1,  x1,2, ... , x1, n

   ...

   xm,1,  xm,2, ... , xm, n }

• Also, data = graphs, images, text, ...
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Internet Scale Data

• m = Billions to trillions of examples
• n = Millions to billions of features

• Hundreds to thousands of CPUs

• Data is noisy
• Data streams in
• Unpredictable query demand
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Sample Hierarchy

• Server
16GB DRAM; 160 GB SSD; 5 x 1TB disk

• Rack
40 servers
48 port Gigabit Ethernet switch

• Warehouse
10,000 servers (250 racks)
2K port Gigabit Ethernet switch
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Storage hierarchy – single server 
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Storage hierarchy – one rack 
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Storage hierarchy – WSC 
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Challenges

• New programming models:
– Parallel; Flash (SSD); GPUs? 

• Use energy efficiently
– Hardware, software, warehouse

• Encode/compress/transmit data well
• Fault Recovery

– Deal with stragglers
– Harware/software faults
– Heavy tail
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Distributed Program Design

• Failure is always an option
• Minimize network traffic
• Experiments/back-of-envelope
• Caching and replication
• Minimize average latency
• Minimize variance (long tail) of latency
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The Eight Fallacies (Peter Deutsch)

• The network is reliable
• Latency is zero
• Bandwidth is infinite
• The network is secure
• Topology doesn’t change
• There is one administrator
• Transport cost is zero
• The network is homogeneous
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Map-reduce model

• Distributed, stateless computation
• Built-in failure recovery
• Built-in load balancing
• Network and storage optimizations
• Built-in sort of intermediate values
• Various interfaces (file system, etc.)
• Protocol buffers for structured data
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Except as otherwise noted, this presentation is released 
under the Creative Commons Attribution 2.5 License.
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Except as otherwise noted, this presentation is released 
under the Creative Commons Attribution 2.5 License.

MapReduce: Granularity

Fine granularity tasks: many more map tasks than machines

• Minimizes time for fault recovery

• Can pipeline shuffling with map execution

• Better dynamic load balancing
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Mapreduce

// word count
map(String key, String value):
    // key: document name
    // value: document contents
    for each word w in value:
      EmitIntermediate(w, "1");

reduce(String key, Iterator values):
    // key: a word
    // values: a list of counts
    int result = 0;
    for each v in values:
      result += ParseInt(v);
    Emit(AsString(result));
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“A major step backwards”
16Monday, June 21, 2010



17Monday, June 21, 2010



Claims

• MapReduce cannot use indices and 
implies a full scan of the input data

• MapReduce input and outputs are always 
simple files in a file system

• MapReduce requires using inefficient 
textual data formats
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Bigtable

• Sparse, distributed, multi-dimensional
sorted map

• Column oriented (roughly, columns for 
OLAP, rows for OLTP)

• Heavy use of compression
• Has locks, but designed for many 

queries, not for transactions
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Pregel

• Graph processing
• Bulk synchronous parallel model
• Message passing to vertexes
• Billions of vertexes, edges
• “Think like a vertex”
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Supply (US Electricity Output) 

30 years 

2x 

source: http://eia.doe.gov 

Doubling every ~30 years 
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Demand (aggregate energy usage of servers) 

source: J. Koomey,”Worldwide electricity used in data centers”, 
Environmental Research Letters 3, Jul-Sep 2008 

Doubling every 6 – 8 years 
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Net IT Carbon Footprint: Strongly Negative! 

The carbon footprint of information pays for itself...and then some 

Reduction is 5x direct emissions 

*source: GeSI/The Climate Group: SMART 2020: Enabling the low carbon economy in the information age 

ICT Footprint & Enabling Effect, GtCO2e* 

2007 Emissions 

2020 Emissions 

2020 Abatements 

2020 Net Impact 
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Efficiency of warehouse-scale computing: carbon 

0.2g    Answering one Google query                    

20g     Using a Laptop for one hour 

75g     Using a PC & monitor for one hour                             

173g   One weekday newspaper (physical copy) 

209g   Producing a single glass of orange juice                   

280g   Washing one load of laundry in an efficient machine  

532g   One beer 
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*Reference: Silicon Valley Leadership Group, Data Center Energy Forecast, Final Report July, 2008 
Google E Data Center energy-weighted average PUE results from Q2-Q1’09 (to 3/15/09) 

Typical* PUE = 2.0 Google PUE = 1.16 

Dramatic reduction of overheads 

25Monday, June 21, 2010



Fault Recovery

• 99.9% uptime = 9 hours down/year
• A 10,000 server warehouse can expect

– 0.25 cooling/power failure (all down; day)
– 1 PDU failure (500 down; 6 hours)
– 20 rack failures (40 down; 1 hour)
– 3 router failures (1 hour)
– 1000 server failure
– 1000s disk failures
– etc., etc., etc.
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Stuff happens ...
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Stuff happens ...

• Power failures
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Stuff happens ...

• Power failures
• Cosmic rays
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Stuff happens ...

• Power failures
• Cosmic rays
• Software bugs
• Thieves
• Drunken hunters
• Sharks
• Blasphemy
• ...
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Understanding downtime behavior matters 
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Planning for Recovery

• Replication
• Sharding
• Checkpoints
• Monitors / Heartbeats
• If possible:

– Loose consistency
– Approximate answers
– Incomplete answers
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Essentially, 
all models are wrong, 
but some are useful.

George Box (1919-)
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Image Models

33Monday, June 21, 2010



34Monday, June 21, 2010



35Monday, June 21, 2010



36Monday, June 21, 2010



37Monday, June 21, 2010



37Monday, June 21, 2010



James Hays, Alexei Efros, CMU:
Scene Completion
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James Hays, Alexei Efros, CMU:
Scene Completion
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James Hays, Alexei Efros CMU:
Scene Completion
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James Hays, Alexei Efros CMU:
Scene Completion
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PROGRAM

DATA

INPUT OUTPUT
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Jing, Baluja, Rowley, Google:
Finding Canonical Images
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Compare low-level features
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Induced Graph
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SIFT Features
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Text Models
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Doug Lenat (1950-) Ed Feigenbaum (1936-)
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Lenat and Feigenbaum, 1991:
   Each of us has a vast storehouse of general knowledge, though 

we rarely talk about any of it explicitly to one another; we just 
assume that other people already know these things. If they are 
included in a conversation, or an article, they confuse more 
than they clarify. Some examples are:

– Water flows downhill 
– Living things get diseases
– …”  
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Word Sense Disambiguation
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Banko & Brill, 2001

More Data vs. Better Algorithms
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Banko & Brill, 2001

More Data vs. Better Algorithms
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Spelling

56Monday, June 21, 2010



Spelling

• Dictionary Based:
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Spelling

• Dictionary Based:

Tehran Salami
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Spelling

• Dictionary Based:

• Corpus Based:

Mehran Sahami: ok
Mehron Sahami
Did you mean: Mehran Sahami

Tehran Salami
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Spelling
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Spelling
best = argmaxc P(c | w) 

    = argmaxc P(w | c) P(c)
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Spelling
best = argmaxc P(c | w) 

    = argmaxc P(w | c) P(c)

P(c) ~ estimated from word counts
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Spelling
best = argmaxc P(c | w) 

    = argmaxc P(w | c) P(c)

P(c) ~ estimated from word counts
P(w | c) ~ proportional to edit distance
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import string, collections
def train(filename):
    P = collections.defaultdict(lambda: 1)
    for line in file(filename):
        word, count = line.split()
        P[word] = int(count)
    return P
P = train(‘en100k.txt’)
def edits1(word):
    n = len(word)
    return set([word[0:i]+word[i+1:] for i in range(n)] + # deletion
               [word[0:i]+word[i+1]+word[i]+word[i+2:] for i in range(n-1)] + # transposition
               [word[0:i]+c+word[i+1:] for i in range(n) for c in string.lowercase] + # alteration
               [word[0:i]+c+word[i:] for i in range(n+1) for c in string.lowercase]) # insertion
def known_edits2(word):
    return set(e2 for e1 in edits1(word) for e2 in edits1(e1) if e2 in P)
def known(words): 
    return set(w for w in words if w in P)
def correct(word):
    candidates = known([word]) or known(edits1(word)) or known_edits2(word) or [word]
    return argmax(candidates, P)
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Google LDC N-Gram Corpus

   Number of tokens:    1,024,908,267,229
Number of sentences:    95,119,665,584
Number of unigrams:            13,588,391
Number of bigrams:            314,843,401
Number of trigrams:            977,069,902
Number of fourgrams:      1,313,818,354
Number of fivegrams:        1,176,470,663 

60Monday, June 21, 2010



Google LDC N-Gram Corpus

   serve as the independent 794
serve as the index 223
serve as the indication 72
serve as the indicator 120
serve as the indicators 45
serve as the indispensable 111
serve as the indispensible 40
serve as the individual 234
serve as the industrial 52
serve as the industry 607 
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Wordnet Dictionary

62Monday, June 21, 2010


