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I. WHY?
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Assume: there exists a multiparameter deterministic
model for the dynamics  f: ;X x A — X (X is compact)

Phase Space Parameter Space

i) =f(,A): X — X Iterations define the dynamics
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Assume: there exists a multiparameter deterministic
model for the dynamics  f: ;X x A — X (X is compact)

Phase Space Parameter Space

i) =f(,A): X — X Iterations define the dynamics

Objects of Interest: Invariant sets
Bounded subsets Sy C X such that f(Sy) = S

Invariant sets are associated to asymptotic dynamics

Example: If f(z) = 2 then S = {0}

Saturday, July 3, 2010



Three Problems associated with Invariant Sets.
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Three Problems associated with Invariant Sets.

|. Time series data is transient.
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|. Time series data is transient.
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|. Time series data is transient.

2. Nonlinear
systems exhibit
chaos: for each
parameter value
there can be
uncountably many
topologically
distinct orbits.
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Three Problems associated with Invariant Sets.

|. Time series data is transient.

2. Nonlinear
systems exhibit
chaos: for each
parameter value
there can be
uncountably many
topologically
distinct orbits.

3. Bifurcations can occur on Cantor sets of
positive measure
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I1. Rigorous Computational Results
for
Multiparameter Systems




Fundamental Decomposition:

Recurrent Dynamics vs. Gradient-like Dynamics
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Fundamental Decomposition:

Recurrent Dynamics vs. Gradient-like Dynamics

A Morse decomposition M of X consists of a finite poset
(P, <) that labels a collection of compact disjoint invariant
sets of M(p) C S, called Morse sets, such that for every
x & UJ,cp M(p) there are indices ¢ < p in P such that the
forward orbit of x limits to M(gq) and the backward orbit
of x limits to M(p)
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Fundamental Decomposition:

Recurrent Dynamics vs. Gradient-like Dynamics

A Morse decomposition M of X consists of a finite poset
(P, <) that labels a collection of compact disjoint invariant
sets of M(p) C S, called Morse sets, such that for every
x & UJ,cp M(p) there are indices ¢ < p in P such that the
forward orbit of x limits to M(gq) and the backward orbit
of x limits to M(p)

The labelling by P implies that a @
Morse decomposition can be rep-

resented as an acyclic directed graph ®
MG called the Morse graph.
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Fundamental Decomposition:

Recurrent Dynamics vs. Gradient-like Dynamics

A Morse decomposition M of X consists of a finite poset
(P, <) that labels a collection of compact disjoint invariant
sets of M(p) C S, called Morse sets, such that for every
x & UJ,cp M(p) there are indices ¢ < p in P such that the
forward orbit of x limits to M(gq) and the backward orbit
of x limits to M(p)

__——

The labelling by P implies that a S

Morse decomposition can be rep- \
@

resented as an acyclic directed graph

MG called the Morse graph. é
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sets of M(p) C S, called Morse sets, such that for every
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Morse decomposition can be rep- \
resented as an acyclic directed graph ®

MG called the Morse graph.
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Fundamental Decomposition:

Recurrent Dynamics vs. Gradient-like Dynamics

A Morse decomposition M of X consists of a ﬁnite(poset)
(P, <) that labels a collection of compact disjoint invariant
sets of M(p) C S, called Morse sets, such that for every
x & UJ,cp M(p) there are indices ¢ < p in P such that the
forward orbit of x limits to M(gq) and the backward orbit
of x limits to M(p)

— recurrent
The labelling by P implies that a — O {gynamics
Morse decomposition can be rep- \
resented as an acyclic directed graph ®

MG called the Morse graph.
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An Example
A density dependent Leslie model:

1st year pop. { T } . { (612 + Ooy)e 01 (x+y) f:R?xR* — R?
2nd year pop. | ¥ 0.7z (z,y;61,02)
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An Example
A density dependent Leslie model:

1st year pop. { 4 } . { (017 + Ooy)e=0-1(@+Y) FR2xR?2 — R?
2nd year pop. | ¥ 0.7 (z,y; 01, 02)

We can construct a mathematically rigorous,

queryable database for the global dynamics on the

hase space
PR 0,0) [0, 00)

and for all parameters
0 = (61,6,) € [8,37] x [3,50]
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An Example
A density dependent Leslie model:

1st year pop. { 4 } . { (017 + Ooy)e=0-1(@+Y) FR2xR?2 — R?
2nd year pop. 0.7z (@, y; 61, 02)

We can construct a mathematically rigorous,

queryable database for the global dynamics on the

hase space
PR 0,0) [0, 00)

and for all parameters
0 = (61,6,) € [8,37] x [3,50]

Input: Nonllnear map, Phase space, Parameter space
'Resolution in phase space

Resolution in parameter space
. J
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The Data Base

Class 17 Class 10 Class 7
11 box] [43 boxes] [66 boxes]
Class 9
“ [50 boxes]
‘ Class 8
65 boxes
Class 16 <1890 boses Class 3 [ !
[1 box] [251 boxes]
‘ Class 4
[196 boxes]
Class 15 Class 6 Ciats)s 13
[1 box] [759 boxes] [73 boxes] [1box]
AN (
Class 14 Class 5 Class 11 Class 12
[1 box] [88 boxes] [12 boxes] [2 boxes]

The Continuation Graph
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The Data Base

Class 17 Class 10 Class 7
11 box] [43 boxes] [66 boxes]
Class 9
“‘ [50 boxes]
Class 8

Class 1 "
Class 16 890 boxes] ' Class 3 [65 boxes]
[1 box] [251 boxes]
‘ Class 4
[196 boxes]
Class 13

Class 15 Class 2 Class 6 0h
[1 box] [759 boxes] [73 boxes] [1 box]
’ v

Class 14 Class 5 Class 11 Class 12
[1 box] [88 boxes] [12 boxes] [2 boxes]

The Continuation Graph

Nodes represent Conley-Morse Graphs
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'

p0 : NO ISOLATION

p2 : origin

pl:2 — {1}

NS

po: 1 — {1},

0 — {I}

pl : origin

p3 : origin p2:2 — {1}

N/

pl:1 — {-0.5-0.8661, -0.5+0.866i, 1}

) /
p0:0 — {-0.5-0.8661, -0.5+0.8661, 1}

p2 : origin

'

pl:1 — {-0.5-0.866i,-0.5+0.866i}

'

p0:0 — {-0.5-0.866i,-0.5+0.866i, 1}

Conley-Morse Graphs

pl : origin

'

p2 : origin

'

D
/

p2 : origin

'

pl:1 — {-1}

'

p0:0 — {-1,1}

p3 : origin

p2 : origin

p3 : origin

'

p2:1 — {-0.5-0.8661, -0.5+0.8661, 1}

e

pl:0 — {-0.5-0.8661, -0.5+0.8661, 1}

p2:0
pl:0
p0:0 — {1}
p4 : origin
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The Data Base

Class 17 Class 10 Class 7
11 box] [43 boxes] [66 boxes]
Class 9
“‘ [50 boxes]
Class 8

Class 1 "
Class 16 890 boxes] ' Class 3 [65 boxes]
[1 box] [251 boxes]
‘ Class 4
[196 boxes]
Class 13

Class 15 Class 2 Class 6 0h
[1 box] [759 boxes] [73 boxes] [1 box]
’ v

Class 14 Class 5 Class 11 Class 12
[1 box] [88 boxes] [12 boxes] [2 boxes]

The Continuation Graph

Nodes represent Conley-Morse Graphs
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Class 7

The Data Base
Class 10
(ﬁaf,s 1]7 [43 boxes] [66 boxes]
OX ‘ Class 9
\ ‘ [50 boxes]
Class 1 " 6?[2;88 8
Class 16 [890 boxes] [65 boxes]
1 b Class 3
L1 box] (251 boxes]
‘ Class 4
[196 boxes]
Class 15 Class 2 Class 6 Cialzs)s 13
[1 box] [759 boxes] [73 boxes] [1 box]
; 7
Class 14 Class 5 Class 11 Class 12
[1 box] [88 boxes] [12 boxes] [2 boxes]

The Continuation Graph

Nodes represent Conley-Morse Graphs
Edges indicate connectivity in parameter space
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Database results are never wrong,
BUT they depend on the resolution!

finer resolution

Appropriate resolution is problem dependent!
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Querying the Database:

Class 17
[1 box]

Class 10 Class 7
[43 boxes] [66 boxes]

-/

Class 9

Class 16
[1 box]

Class 15
[1 box]

N

Class 2 Class 6
[759 boxes] [73 boxes] ‘
Class 14 Class 5 lass 12
[88 boxes]

Class 11
[1 box] [12 boxes] [2 boxes]

Class 8

/] [50 boxes]
Class 1 ‘
890 boxes] ’ s ’ [65 boxes]
"’ [251 boxes]
‘ Class 4
[196 boxes]

Are there multiple basins of attraction?
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Querying the Database: Are there multiple basins of attraction?

Query the gradient-like structure:
. Is there a Morse graph with multiple
. “H minimal elements?

SVACE

Class 2 Class 6
[759 boxes] [73 boxes]
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Querying the Database: Are there multiple basins of attraction?

Query the gradient-like structure:

ere a

.. Is there a Morse graph with multiple
o . minimal elements?

Class 15 Class 2 Class 6
[1 box] [759 boxes] [73 boxes]

b ‘
Class 14 Class 5 Class 11 Class 12 p3 c Origin
[1 box] [88 boxes] [12 boxes] [2 boxes]

p2:1 — {-0.5-0.8661,-0.5+0.8661, 1}

N

pl:0 — {-0.5-0.866i,-0.5+0.866i, 1}
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Querying the Database: Are there multiple basins of attraction?

Query the gradient-like structure:

)4 8

s Is there a Morse graph with multiple
s 1 [ " minimal elements?
%a;z;f\%a}i.;;fmx] —

p2:1 — {-0.5-0.8661,-0.5+0.8661, 1}

N

pl:0 — {-0.5-0.866i,-0.5+0.866i, 1}

Class 17 Class 10 Class 7
[1 box] [43 boxes] [66 boxes] ‘
Class 9
‘ [50 boxes]
‘ Class 8

2 observable basins of attraction
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Querying the Database: Are there multiple basins of attraction?

Query the gradient-like structure:

Class 7
[66 boxes

Class 10

Class 17

Is there a Morse graph with multiple

minimal elements?

/

s]

[43 boxe

[1 box]

Class 9
[50 boxes]
I Class 8
Class 4
[196 b 1

—
ox’is]

| ,' ass
Class 2
[759 b ]

/]
s

Class 1
890 boxes

]

[65 boxes

[1 box]

Class 16

[73 boxes]

0Xxes
Class 5
[88 boxes]

Class 6

[1 box]

Class 15

N

Class 14

[1 box]

-0.5+0.8661, 1}

p2:1 — {-0.5-0.8661,

p0:0 — {1}

pl:0 — {-0.5-0.866i,-0.5+0.866i, 1}

2 observable basins of attraction
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Querying the Database: Are there multiple basins of attraction?

Is there a Morse graph with multiple

Query the gradient-like structure:
minimal elements?

s]

box |

Class 9
[50b ]
I Class 8
Class 4
[196 boxes]
ass
0Xes
.
Class 12
ofc [2 boxes]

[65 boxe
Class 13

ass
g
3
]

Class 7
[66 boxes

boxes

Class 10
[43 boxes]
Class 1 “
890 ] ' Class
"’ [251 boxes
Class 2 Class 6
[759 b ] [73b ]

Class 17

[1 box]
[1 box]
Class 15

[1 box]

Class 16

0Xxes
Class 5
[88 boxes]

[1 box]

Class 14

N

-0.5+0.8661, 1}

p2:1 — {-0.5-0.8661,

p0:0 — {1}

pl:0 — {-0.5-0.866i,-0.5+0.866i, 1}

2 observable basins of attraction

Can we characterize the attracting dynamics?

Q)
D
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Querying the Database: Are there multiple basins of attraction?

Is there a Morse graph with multiple

Query the gradient-like structure:
minimal elements?

s]

box |

Class 9
[50b ]
I Class 8
Class 4
[196 boxes]
ass
0Xes
.
Class 12
ofc [2 boxes]

[65 boxe
Class 13

ass
g
3
]

Class 7
[66 boxes

boxes

Class 10
[43 boxes]
Class 1 “
890 ] ' Class
"’ [251 boxes
Class 2 Class 6
[759 b ] [73b ]

Class 17

[1 box]
[1 box]
Class 15

[1 box]

Class 16

0Xxes
Class 5
[88 boxes]

[1 box]

Class 14

N

-0.5+0.8661, 1}

p2:1 — {-0.5-0.8661,

p0:0 — {1}

pl:0 — {-0.5-0.866i,-0.5+0.866i, 1}

2 observable basins of attraction

Can we characterize the attracting dynamics?

Query the Conley index:

Q)
D
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Querying the Database: Are there multiple basins of attraction?

Is there a Morse graph with multiple

Query the gradient-like structure:
minimal elements?

s]

[65 boxe
Class 13
box |

Class 9
[50b ]
I Class 8
Class 4
[196 boxes]
Ss
0Xes ’
lass 12
[2 boxes]

4
<

Class 7
[66 boxes

boxes

Class 10

[43 b ]
Class 1 “

"’ [251 boxes

Class 2 Class 6

[759 boxes] [73 boxes]

Class 5
[1 box] [88 boxes]

AN
Class 14

Class 17

[1 box]
Class 16

[1 box]
Class 15

[1 box]

-0.5+0.8661, 1}

p2:1 — {-0.5-0.8661,

)

\ 4
“1 cycle”

p0:0

“3 cycle”

pl:0 — {—0.5—0.866i,—0.5+O.866i,b

2 observablie basins of attiraction

Can we characterize the attracting dynamics?

Query the Corley index:

Q)
D
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“Critical
transition

Dynamics”

\ 4
“1 cycle”

)

-0.5+0.8661, 1}
p0:0

p2:1 — {-0.5-0.8661,

Is there a Morse graph with multiple

Query the gradient-like structure:
minimal elements?

s]

[65 boxe
Class 13
box |

Class 12
oxes|

/e

o

Class 4
[196 boxes]

Class 9
[50 boxes]
Class 8

e

s]

]

3

el

Class 6
[73 boxes]

Class 7
[66 boxes
Class
[251 boxe

=

/

-/

s]

Class 5
[88 boxes]

>

Class 2
[759 boxes]

s]
box

Class 1
[890

X

D

Class 10
[43 boxe

[1 box]

AN
Class 14

Class 17

[1 box]
Class 16

[1 box]
Class 15

[1 box]

Querying the Database: Are there multiple basins of attraction?

pl:0 — {—0.5—0.866i,—0.5+O.866i,b

2 observablie basins of attiraction

Can we characterize the attracting dynamics?

Query the Corley index:

Q)
D

“3 cycle”
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III. Theoretical Framework




What is geometrically observable!?

We assume existence (not knowledge) of a model f: X x A — X
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What is geometrically observable!?

We assume existence (not knowledge) of a model f: X x A — X

Attractor block: A compact subset N C X such that

f>\0 (N) C int(N)
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What is geometrically observable!?

We assume existence (not knowledge) of a model f: X x A — X

Attractor block: A compact subset N C X such that

Fro (V) fao (V) C int(N)

&

N
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What is geometrically observable!?

We assume existence (not knowledge) of a model f: X x A — X

Attractor block: A compact subset N C X such that

Fro (V) fao (V) C int(N)

Robust with respect to:
|. Measurement error

N
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N
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What is geometrically observable!?

We assume existence (not knowledge) of a model f: X x A — X

Attractor block: A compact subset N C X such that

oo (N) C int(N)
f>\0 (N) ’
Robust with respect to:
I |. Measurement error

N
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What is geometrically observable!?

We assume existence (not knowledge) of a model f: X x A — X

Attractor block: A compact subset N C X such that

Fro (V) fao (V) C int(N)

e Robust with respect to:
¢ - |. Measurement error

N 2. Model error
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What is geometrically observable!?

We assume existence (not knowledge) of a model f: X x A — X

Attractor block: A compact subset N C X such that

Fro (V) fao (V) C int(N)

e Robust with respect to:
¢ - |. Measurement error

N 2. Model error )\ = )\,

Saturday, July 3, 2010



What is geometrically observable!?

We assume existence (not knowledge) of a model f: X x A — X

Attractor block: A compact subset N C X such that

f>\0 (N) C int(N)

Robust with respect to:

|. Measurement error

)

2. Model error )\ = )\,
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What is geometrically observable!?

We assume existence (not knowledge) of a model f: X x A — X

Attractor block: A compact subset N C X such that

f>\0 (N) C iIlt(N)

Robust with respect to:

|. Measurement error

f>\1 (N)
N 2. Model error )\ = )\,

Remarks: |.The set of attractor blocks defines a
(large) lattice under n and u.
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What is geometrically observable!?

We assume existence (not knowledge) of a model f: X x A — X

Attractor block: A compact subset N C X such that

f>\0 (N) C int(N)

Robust with respect to:

|. Measurement error

f>\1 (N)
N 2. Model error )\ = )\,

Remarks: |.The set of attractor blocks defines a
(large) lattice under n and u.

2. The separatrix dynamics is not explicit in the lattice
of attractor blocks.
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What about the dynamics?
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What about the dynamics?

The Omega limit set  w(NV, fy,) : ﬂ cl (U Fag (N )

IS @ compact invariant set:
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What about the dynamics?

The Omega limit set  w(NV, fy,) : ﬂ cl (U Fag (N )

IS @ compact invariant set:

Attractor
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What about the dynamics?

The Omega limit set  w(NV, fy,) : ﬂ cl (U Fag (N )

IS @ compact invariant set:

U

The maximal invariant set Inv (N, Fp,) in N

Attractor
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What about the dynamics?

The Omega limit set  w(V, fy,) : ﬂ cl (U Fao (N )

IS @ compact invariant set:

Attractor

U

The maximal invariant set Inv(V, F)y,) in W

int(/V)
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What about the dynamics?

The Omega limit set  w(V, fy,) : ﬂ cl (U Fao (N )

IS @ compact invariant set:

Attractor

U

The maximal invariant set Inv(V, F)y,) in W

int(/V)

We can generalize this.

A compact set N C X is an iso-
lating neighborhood for f), if the
maximal invariant set in /V lies in
the interior of V.

S =1Inv(N, fy,) C int(N)
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What about the dynamics!?

The Omega limit set  w(N, fy,) := ﬂ cl (U Fao (N )

IS @ compact invariant set:

Attractor

U

The maximal invariant set Inv(V, F)y,) in W

int(V)

We can generalize this.

A compact set N C X is an iso- N
lating neighborhood for f), if the MaximaT
maximal invariant set in /V lies in Invggla”t

the interior of V.

S =1Inv(N, fy,) C int(N)
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What about the dynamics!?

The Omega limit set  w(N, fy,) := ﬂ cl (U Fao (N )

IS @ compact invariant set:

Attractor

U

The maximal invariant set Inv(V, F)y,) in W

int(V)

We can generalize this.

A compact set N C X is an iso- N
lating neighborhood for f), if the Maximal

) ) i . . . 10 @ Invariant
maximal invariant set in /V lies in Set
the interior of V.

S =1Inv(N, fy,) C int(N)
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What about the dynamics!?

The Omega limit set  w(N, fy,) := ﬂ cl (U Fao (N )

IS @ compact invariant set:

Attractor

U

The maximal invariant set Inv(V, F)y,) in W

int(V)

We can generalize this.

A compact set N C X is an iso- N
lating neighborhood for f), if the Maximal

) ) i . . . 10 @ Invariant
maximal invariant set in /V lies in Set
the interior of V.

Il @

o @

S =Inv(N, fy,) C int(NV) e
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What about the dynamics!?

The Omega limit set  w(N, fy,) := ﬂ cl (U Fao (N )

IS @ compact invariant set:

Attractor

U

The maximal invariant set Inv(V, F)y,) in W

int(V)

We can generalize this. T3
A compact set N C X is an iso- x_l: N
lating neighborhood for f), if the Maximal

10 o Invariant

maximal invariant set in /V lies in Set

the interior of V.

S =Inv(N, fy,) C int(NV) e
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A Morse covering of X consists of a finite poset (P, <) that
labels a collection of disjoint non-empty isolating neigh-
borhoods B = {B(p) | p € (P, <)} with the property that
given an orbit v:={x, € X |n € Z,x,.1 = f(x,)} either

e there exists p € P such that v C B(p), or

e there exists q,p € P and ?,,¢, € Z such that ¢ < p
and ¢, > t, for which

{zn [n<t,} C B(p)
{z, |n>t,} C B(q)
{zn |ty <n <ty N (B(p)UB(q) =10
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A Morse covering of X consists of a finite poset (P, <) that
labels a collection of disjoint non-empty isolating neigh-

borhoods B = {B(p) | p € (P, <)} with the property that
given an orbit v:={x, € X |n € Z,x,.1 = f(x,)} either

e there exists p € P such that v C B(p), or

e there exists q,p € P and ?,,¢, € Z such that ¢ < p
and ¢, > t, for which

{zn [n<t,} C B(p)
{z, |n>t,} C B(q)
{zn |ty <n <ty N (B(p)UB(q) =10

Prop: M :={(p, M(p)) | p € (P, <), M(p) = Inv(B(p))} is
a Morse decomposition
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A Discrete Representation of the Dynamics
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A Discrete Representation of the Dynamics

Choose a compact region in parameter space: () C A
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A Discrete Representation of the Dynamics

Choose a compact region in parameter space: () C A
Choose a (cubical) grid X that covers X
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A Discrete Representation of the Dynamics

Choose a compact region in parameter space: () C A

Choose a (cubical) grid X that covers X

Define a multivalued
map. .7:Q: X 3 X
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A Discrete Representation of the Dynamics

Choose a compact region in parameter space: () C A

Choose a (cubical) grid X that covers X

Define a multivalued
map. .7:Q: X 3 X
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A Discrete Representation of the Dynamics

Choose a compact region in parameter space: () C A

Choose a (cubical) grid X that covers X

Define a multivalued
map. .7:Q: X 3 X

(O
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A Discrete Representation of the Dynamics

Choose a compact region in parameter space: () C A

Choose a (cubical) grid X that covers X

Define a multivalued
map. .7:Q: X 3 X

Numerical/Experimental Error

Saturday, July 3, 2010



A Discrete Representation of the Dynamics

Choose a compact region in parameter space: () C A

Choose a (cubical) grid X that covers X

Define a multivalued
map. .7:Q: X 3 X

Numerical/Experimental Error
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A Discrete Representation of the Dynamics

Choose a compact region in parameter space: () C A
Choose a (cubical) grid X that covers X

Define a multivalued

f(G, Q) C int(|Fo(@))) map: Fo: X=X
'@ Numerical/Experimental Error
L (N
G VAN =Y,
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A Discrete Representation of the Dynamics

Choose a compact region in parameter space: () C A
Choose a (cubical) grid X that covers X

Define a multivalued

f(G,Q) C int(|Fo(G)]) map: Fo: X =X

Numerical/Experimental Error

Ldah 1 Fq 1s a directed graph:

vy (Q
Vertices G € X

Edges H € Fo(G) = G — H
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A Discrete Representation of the Dynamics

Choose a compact region in parameter space: () C A

Choose a (cubica.

) grid X that covers X

Define a multivalued

f(G,Q) C int(|Fo(G)]) map: Fo: X =X

Numerical/Experimental Error

Ldah 1 Fq 1s a directed graph:

vy (Q
Vertices G € X

Edges H € Fo(G) = G — H

Recurrence in a Directed Graph

)

Strongly Connected Path Components
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A Discrete Representation of the Dynamics

Choose a compact region in parameter space: () C A

Choose a (cubica.

) grid X that covers X

Define a multivalued

f(G,Q) C int(|Fo(G)]) map: Fo: X =X

Numerical/Experimental Error

Fo 1s a directed graph:

Vertices G € X

Edges H € Fo(G) = G — H

Recurrence in a Directed Graph

)

Strongly Connected Path Components

|. Can be computed in linear time

2. Define

a Morse Cover
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Birkhoff’s Representation Theorem
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Birkhoff’s Representation Theorem

Finite Poset P

%
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Birkhoff’s Representation Theorem

Category
Finite Poset P Posets
O
\ 4
O(P)
J\/
Y
JV (0(P))

%
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Birkhoff’s Representation Theorem

Finite Poset

construct the collection
of lower sets

%

Category

Posets
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Birkhoff’s Representation Theorem

Finite Poset

construct the collection
of lower sets

Y

Finite Distributive Lattice O(P)

(U;n)

Category

Posets
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Birkhoff’s Representation Theorem

Category
Finite Poset P Posets
const:)ﬁ:) \fl‘leer CSZL':Ction O 1 contravariant
functor
Y
Finite Distributive Lattice O(P) Lattices
(U,n)
J\/
Y
JV (O(P))
Y
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Birkhoff’s Representation Theorem

Category
Finite Poset P Posets
construct the collection 0 contravariant
of lower sets functor
Y
Finite Distributive Lattice O(P) Lattices
(U,n)
choose the join IV
irreducible elements
Y
JV (O(P))
\ 4
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Birkhoff’s Representation Theorem

Category
Finite Poset P Posets
construct the collection 0 contravariant
of lower sets functor
Y
Finite Distributive Lattice O(P) Lattices
(U,n)
choose the join IV
irreducible elements
Y
Finite Poset JV (O(P))
\ 4
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Birkhoff’s Representation Theorem
Category

Finite Poset

construct the collection
of lower sets

Finite Distributive Lattice O(P)

(U,n)
choose the join
irreducible elements
Finite Poset

Y

Posets

|

Lattices

|

Posets

contravariant
functor

contravariant
functor
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Birkhoff’s Representation Theorem
Category

Finite Poset

construct the collection
of lower sets

P Posets

° |

Finite Distributive Lattice O(P) Lattices

(U;n)

choose the join
irreducible elements

J\/

Finite Poset JV (O(P)) Posets

Birkhoff proved the existence
of a poset isomorphism

| |
| |
P Posets

contravariant
functor

contravariant
functor

poset
isomorphism
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Birkhoff’s Representation Theorem

Finite Poset

construct the collection
of lower sets

Finite Distributive Lattice

(U;n)

choose the join
irreducible elements

Finite Poset

Birkhoff proved the existence
of a poset isomorphism

Y

O(P)

J\/

Y

Y

P

M

\

O(M)

J\/

1%

Y

\

M

Category

Posets

contravariant
functor

Lattices

contravariant
functor

JY(O(P)) JY (O(M)) Posets

poset
isomorphism

Posets

Morse Decomposition
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Combinatorial
Theory

Morse
Decomposition

Y

J7 (O(M))

Birkhoff

Y

M
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In the Computer Combinatorial Structures of
Theory Nonlinear Dynamics

Morse
Decomposition

Y

J7 (O(M))

Birkhoft

Y

M
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In the Computer Combinatorial Structures of
Theory Nonlinear Dynamics

Morse Morse

Covering I Decomposition
nv

B > M

Y

J7 (O(M))

Birkhoft

Y

M
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In the Computer

Combinatorial

Structures of

Theory Nonlinear Dynamics
Morse Morse Nonempty
Covering I Decomposition L Morse sets
B nv . M < M pl\/l
O
\
O(M)
JV
\
J7 (O(M))
Birkhoft

Y

M
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In the Computer Combinatorial Structures of

Theory Nonlinear Dynamics
Morse Morse Nonempty
Covering I Decomposition L Morse sets
B nv . M < M pl\/l
O
O
! O(um)
O(M) ~ O(pM)
Y
JV A(pM) ldpI\/I
J\/
\ \
J7(O(M)) ~—— J" (A(pM))
Birkhoft
7
Y Y

M - - pM
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In the Computer Combinatorial Structures of

Theory Nonlinear Dynamics
Morse Morse Nonempty
Covering I Decomposition Morse sets
nv M
B - M pM
O
O
: O(tm)
M
O(M) ~ O(pM)
Y
5 A(pM) id
Finite Lattice
v of Attractors
\ \
J7(O(M)) ~—— J" (A(pM))
Birkhoff
7
Y ) Y
M - - pM
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In the Computer

Combinatorial

Theory Nonlinear Dynamics
Morse Morse Nonempty
Covering I Decomposition Morse sets
nv M
B - M pM
O
O
: O (i)
M
O(M) ~ O(pM)
Add Unstable
“| Manifolds
Y
5 A(pM) id
Finite Lattice
v of Attractors
Y \
J7(O(M)) =—— JY (A(pM))
Birkhoft
7
Y ) \
M - - pM

Structures of
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In the Computer

Combinatorial Structures of

Theory Nonlinear Dynamics
Morse Morse Nonempty
Covering I Decomposition L Morse sets
B nv . M < M pl\/l
O
O
: O (i)
M
O(M) ~ O(pM)
Add Unstable
“| Manifolds
Y
5 A(pM) id
Finite Lattice
v of Attractors
Y Y
J7(O(M)) =—— JY (A(pM))
Birkhoff Remove
Orbits *
Y " Y
M - pM

Saturday, July 3, 2010



In the Computer

Theory Nonlinear Dynamics
Morse Morse
Covering I Decomposition L
B nv . M < M
O O
O
O(Inv) ' O(im)
O(B) ~ O(M) ~ O(pM)
Move Forward Add Unstable
o by paths in “|  Manifolds
\ F \
idg A(B) JV A(pM) idpm
Finite Lattice
v v of Attractors
\ \ \
JV (A(B)) —— J" (O(M)) =—— JY (A(pM))
Remove Birkhoff Remove
“I o Paths Orbits *
' Inv ' LM
B - [\ -

Combinatorial

Structures of

Nonempty
Morse sets
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In the Computer

Theory Nonlinear Dynamics
Morse Morse Nonempty
Covering : Decomposition Morse sets
nv LM
O O
O
O(Inv) O(tm)

Move Forward Add Unstable

. by paths in “l Manifolds
\ F

idg A(B) JV A(pM) idpm
Finite Lattice

v Y of Attractors

J J
\ \ Y

JV (A(B)) —— JY (O(M)) ~—— JV (A(pM))
Remove Birkhoff Remove
“I o Paths Orbits *
' Inv ' LM !
B - V] - pM

Combinatorial

Structures of
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|n the Computer Combinatorial Stl"uctur’es of

Theory Nonlinear Dynamics
Morse Morse Nonempty
Covering Decomposition Morse sets

B Inv ) M LM p|\/|

<Conley Index provides

0 Jd 2 lower bound on image
O(Inv) O(tm)
O(B) - O(M) ey O (pM )
Move Forward Add Unstable
. by paths in “l Manifolds
\ F
idg A(B) JV A(pM) idpm
Finite Lattice
v y of Attractors
J J
\ \ \
JV(A(B)) —— J7 (O(M)) =—— J¥ (A(pM))
Remove Birkhoff Remove
K1 Paths Orbits *
' Inv ' LM !
B - V] - pM
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