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 Many times it is hard to directly observe the 
underlying social network
 Hidden/hard-to-reach populations:
 Drug  injection users

 Implicit connections:
 Network of information sharing in online media

 But it is often easier to observe results of the 
processes taking place on such (invisible) 
networks:
 Virus propagation: 
 People get sick, they see the doctor

 Information networks: 
 Blogs mention information
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 Information diffuses through the network

 We only see the mention but not the source
 Can we reconstruct (hidden) diffusion network?
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 Virus propagation:
 Viruses propagate through the network
 We only observe times when people get sick
 But NOT who infected them

 Word of mouth & Viral marketing:
 Recommendations and influence propagate
 We only observe when people buy products
 But Not who influenced them to purchase

4

Can we infer the underlying social network?



 There is a hidden directed network:

 We only see times when nodes get infected:
 Cascade c1: (a,1), (c,2), (b,3), (e,4)
 Cascade c2: (c,1), (a,4), (b,5), (d,6)

 Want to infer who-infects-whom network
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 The plan:
 Define a continuous time model of diffusion
 Define the likelihood of the observed data 

given a graph
 Show how to efficiently compute the likelihood
 Show how to efficiently optimize the likelihood
 Find a graph G that maximizes the likelihood
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 Cascade generation model:
 Cascade reaches u at time tu, 

and spreads to u’s neighbors v:
 With prob. β cascade propagates 

along (u,v) and tv = tu+Δ, where Δ~f(Θ)

 Transmission probability:
Pc(i,j) ∝ P(∆) if tj>ti, else ε

 Prob. that cascade c propagates in a tree T
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 There are many possible transmission trees:
 c: (a,1), (c,2), (b,3), (e,4)

 Heed to consider all possible directed 
spanning trees T supported by G:
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 Then simply:

 Want to find:

 Good news: computing P(C|G) is tractable
 Need to consider all possible transmission trees of G
 There are O(nn) such spanning trees!

 The Matrix tree theorem 
 Can compute this sum in O(n3)

 Bad news:
 We actually want to find arg maxG P(C|G)
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 Consider only the most likely tree
 Log-likelihood of a cascade c in graph G:

 Log-likelihood of G given a set of cascades C:
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The problem is NP-hard: 
MAX-k-COVER [KDD ’10]

Our algorithm can do it 
near-optimally in O(N2)



Given a cascade c
 What is the most likely propagation tree?

 A maximum directed spanning tree
 Edge (i,j) in G has weight w(i,j)=log Pc(i,j)
 To compute the maximum spanning tree:

Each node just picks an in-edge of max weight
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 Theorem: 
FC(G) is monotonic, and submodular

 Proof: 
 Single cascade c, edge e of wgt. x
 Let w be max weight in-edge of s in A
 Let w’ be max weight in-edge of s in B
 We know: w≤w’ and x=x’
 Now: Fc(A∪{e}) - Fc(A) = max(w, x) - w

≥ max(w’, x) - w’ = Fc(B∪{e}) - Fc(B)
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Gain of adding an edge to a “small” graph Gain of adding an edge to a “large“ graph

FC(A ∪ {e}) – FC (A)   ≥  FC (B ∪ {e}) – FC (B)

A ⊆ B ⊆ VxV
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 Use the greedy hill-climbing to maximize FC(G):

 At every step pick the edge that maximizes the 
marginal improvement

 Benefits:
 Approximation guarantee (~0.63 of OPT)
 Tight online bounds on the solution quality
 Speed-ups:
 Lazy evaluation
 Localized update
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 Synthetic data:
 Generate a graph G on 

k edges
 Generate cascades
 Record node infection times
 Reconstruct G

 Evaluation:
 How many edges of G 

can we find?
 Precision-Recall
 Break even point
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 Small synthetic network:

True network Baseline network Our method

Pick strongest edges
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 Greedy hill-climbing gets inside 90% of OPT
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 With twice as many infections as edges 
the break-even point is at 0.8-0.9
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 Memetracker dataset:
 172m news articles 
 Aug ‘08 – Sept ‘09
 343m textual phrases
 Times tc(w) when site 

w mentions phrase c

 Given times when sites mention phrases
 Infer the network of information diffusion:
 Who tends to copy (repeat after) whom
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http://memetracker.org



 5,000 news sites:
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Blogs
Mainstream media

[w/ Gomez-Krause, ‘10]



Blogs
Mainstream media
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 Inferring hidden networks based on 
diffusion data

 Problem formulation in a maximum 
likelihood framework
 Problem NP-hard in general
 Developed an approximation algorithm 

that runs O(N2)
 Future work: 
 Learn both the network and the diffusion model
 Extensions to other processes taking place on 

networks
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