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Networks and Processes on Them

Drug injection users

Network of information sharing in online media

People get sick, they see the doctor

Blogs mention information
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Information Diffusion Network

We only see the mention but not the source



More examples

Viruses propagate through the network

We only observe times when people get sick
But NOT who infected them

Recommendations and influence propagate

We only observe when people buy products
But Not who influenced them to purchase



Inferring the Network

There is a directed network:
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We only see when nodes get infected:

Cascade c,: (a,1), (c,2), (b,3), (e,4)
Cascade c,: (c,1), (a,4), (b,5), (d,6)



Plan for the Talk

Define a continuous time model of diffusion

Define the likelihood of the observed data
given a graph
Show how to efficiently compute the likelihood

Show how to efficiently optimize the likelihood
Find a graph G that maximizes the likelihood



Cascade generation model
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Cascade generation model

c: (a,1), (c,2), (b,3), (e,4)

Heed to consider

P(c|G)= Y PET)P(T|G)ex » ] Pli.j)

TET(G) TET(G) (i,5)ET



Finding the Diffusion network

P(C|G) = 1] P(dG)
ceC
G = argmax P(C|G)

G| <k

computing P(C|G) is tractable

Need to consider all possible transmission trees of G
There are O(n") such spanning trees!

The Matrix tree theorem
Can compute this sum in O(n3)

We actually want to find arg maxg P(C|G)



An alternative formulation

Log-likelihood of a cascade c in graph G:

The problem is NP-hard:
MAX-k-COVER [KDD "10]

Our algorithm can doit
near-optimally in O(N?)

G = argmax Fo(G)
Gl<k



Good News

F.(G) = max we (2, )
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F(G) is ,and
F(A U{e})—F.(A) 2 F.(B u{e})—F.-(B)

Gain of adding an edge to a "small” graph  Gain of adding an edge to a “large" graph

Ac Bc VxV
Single cascade c, edge e of wgt. x |
Let w be max weight in-edge of sin A Q’ .
Let w’ be max weight in-edge of s in B J

Now: F_(Aude}) - F(A) = max(w, x) - w
> max(w’, x) - w’ = F_(BU{e}) - F.(B)



Finding the graph

Use the to maximize F.(G):
e, = argmax Fc(Gi—1U{e}) — Fo(Gi—1)
At every step pick the

Approximation guarantee (~0.63 of OPT)
Tight online bounds on the solution quality
Speed-ups:

Lazy evaluation

Localized update
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Experimental setup
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Small example

True network
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Baseline network

Pick strongest edges
w(u,v) =3 e Pe(u,v)

Our method
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How well do we optimize F(G)
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How many cascades do we need?
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With twice as many infections as edges
the break-even point is at 0.8-0.9



Runtime
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Experiments: Real data

our entire economy

is in danger

e to help me \
effort to protect the american
. economy must not fail

nunity \
iliti .
Hugs the most serious
vho financial crisis since
H the great depression

172m news articles
Aug ‘08 — Sept ‘09
343m textual phrases

Times t (w) when site
w mentions phrase ¢

lipstick on a pig

fundamentals of

Qur economy are

strong
president's
job to deal
with more
than one
thing at \\‘
once

29 9/5 9/12 9/19 9/26

[KDD, ‘o9]

decent person and a person
that you do not have to be
scared of as president of
the united states

this is something that all of us will
swallow hard and go forward with

i think when you s
the wealth around
good for everybod

who is the real
barack obama

he's palling around iam not

with terrorists president
bush
hey can she is a diva
i call you takes no adh
joe from anyone

10/3 10/10 1017 10/24

http://memetracker.org

Who tends to copy (repeat after) whom
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Diffusion network (small part)
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Conclusion

Problem NP-hard in general

Developed an approximation algorithm
that runs O(N?)

Learn both the network and the diffusion model

Extensions to other processes taking place on
networks
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THANKS!

N - Data + Code:
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