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My Personal Supercomputer

A RCV1 derived binary classification task:

1 424MB Gzip compressed

2 781K examples

3 60M (nonunique) features

How long does it take to learn a good predictor?

20 seconds (1.2 seconds on desktop) = 3 M features/second
Other systems:

1 AD-LDA (2000 topics) (KDD 2008): 205K features/second
using 1000 nodes.

2 PSVM (2007): 23K features/second using 500 nodes (on
RCV1)

3 PLANET (depth 10 tree) (VLDB2009): 3M features/second
using 200 nodes
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How does Vowpal Wabbit work?

Start with ∀i : wi = 0, Repeatedly:

1 Get example x ∈ R∗.

2 Make prediction ŷ =
P

i wixi√
|{i :xi 6=0}|

clipped to interval [0, 1].

3 Learn truth y ∈ [0, 1] with importance I or goto (1).

4 Update wi ← wi + η2(y−ŷ)Ixi√
|{i :xi 6=0}|

and go to (1).

This is routine, but with old and new optimization tricks like
hashing.
This is open source @ http://hunch.net/~vw
Also reimplemented in Torch, Streams, and Mahout projects.

http://hunch.net/~vw
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Why I’m dissatisfied, and What I’ve learned so far.

1 Ghz processor should imply 1B features/second. And it’s easy to
imagine datasets with 1P features. How can we deal with such
large datasets?

Core Problem for Learning on much data = Bandwidth limits
1 Gb/s ethernet = 450GB/hour ⇒ 1T features is reasonable.

Outline

1 Multicore parallelization

2 Multinode parallelization
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How do we paralellize across multiple cores?

Answer 1: It’s no use because it doesn’t address the bandwidth
problem.
But there’s a trick. Sometimes you care about the interaction of
two sets of features—queries with results for example. Tweak the
algorithm so as to specify (query features, result features), then
use a fast hash to compute the outer product in the core.
Possibilities:

1 Example Sharding: Each core handles an example subset.

2 Feature Sharding: Each core handles a feature subset.

Empirically: Feature Sharding > Example Sharding. Both work on
two cores, but Example Sharding doesn’t scale. Feature sharding
provides about x3 speedup on 4 cores.
But, again, this is just for a special case. Need multinode
parallelization to address data scaling.
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Algorithms for Speed

1 Multicore parallelization

2 Multinode parallelization



Multinode = inevitable delay

Ethernet latency = 0.1 milliseconds = 105 cycles = many
examples.

1 Example Sharding ⇒ weights out of sync by delay factor.

2 Feature Sharding ⇒ global predictions delayed by delay factor.

How bad is delay?

Theorem: (Mesterharm 2005) Delayed updates reduce convergence
by delay factor in worst case for expert algorithms.
Theorem: (LSZ NIPS 2009) Same for linear predictors.
(Caveat: there are some special cases where you can do better.)
Empirically: Delay can hurt substantially when examples are
structured.
What do we do?
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How can we avoid delay?
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Observations about Feed Forward

1 No longer the same algorithm—it’s designed for parallel
environments.

2 Bandwidth = few bytes per example, per node ⇒
Tera-example feasible with single master, arbitrarily more with
hierarchical structure.

3 No delay.

4 Feature Shard is stateless ⇒ parallelizable & cachable.



Bad News: Feed Forward can’t compete with general linear
predictors

Probability y x1 x2 x3

0.25 1 1 1 0

0.125 1 1 0 1

0.125 1 0 1 1

0.25 0 0 0 1

0.125 0 1 0 0

0.125 0 0 1 0
Features 1&2 are imperfect predictors. Feature 3 is uncorrelated
with truth. Optimal predictor = majority vote on all 3 features.



Good news

If Naive Bayes holds P(x1|y)P(x2|y) = P(x1, x2|y), you win.
Better news: x1 = first shard, x2 = second shard
Even better: There are more complex problem classes for which
this also works.



Initial experiments on a medium size text Ad dataset @ Yahoo!

1 ∼100GB when gzip compressed.

2 ∼10M examples.

3 ∼125G nonzero features

4 Uses outerproduct features

Relative progressive validation (BKL COLT 1999) squared loss &
relative wall-clock time reported.
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Final thoughts

About x6 speedup achieved over sequential system so far.
This general approach, unlike averaging approaches, is fully
applicable to nonlinear systems.
Code at: http://github.com/JohnLangford/vowpal wabbit
Patches welcome. Much more work needs to be done.
Some further discussion @ http://hunch.net


