A Method for Parallel Online Learning

John Langford, Yahoo! Research

(on joint work with Daniel Hsu & Alex Smola & Martin Zinkevich & others)

MMDS 2010

A RCV1 derived binary classification task:

- 424MB Gzip compressed
- 2 781K examples
- **3** 60M (nonunique) features

How long does it take to learn a good predictor?

A RCV1 derived binary classification task:

- 424MB Gzip compressed
- 2 781K examples
- **60M** (nonunique) features

How long does it take to learn a good predictor? 20 seconds (1.2 seconds on desktop) = 3 M features/second

A RCV1 derived binary classification task:

- 424MB Gzip compressed
- 2 781K examples
- 60M (nonunique) features

How long does it take to learn a good predictor? 20 seconds (1.2 seconds on desktop) = 3 M features/second Other systems:

AD-LDA (2000 topics) (KDD 2008): 205K features/second using 1000 nodes.

A RCV1 derived binary classification task:

- 424MB Gzip compressed
- 781K examples
- 60M (nonunique) features

How long does it take to learn a good predictor? 20 seconds (1.2 seconds on desktop) = 3 M features/second Other systems:

- AD-LDA (2000 topics) (KDD 2008): 205K features/second using 1000 nodes.
- PSVM (2007): 23K features/second using 500 nodes (on RCV1)

A RCV1 derived binary classification task:

- 424MB Gzip compressed
- 781K examples
- 3 60M (nonunique) features

How long does it take to learn a good predictor? 20 seconds (1.2 seconds on desktop) = 3 M features/second Other systems:

- AD-LDA (2000 topics) (KDD 2008): 205K features/second using 1000 nodes.
- PSVM (2007): 23K features/second using 500 nodes (on RCV1)
- PLANET (depth 10 tree) (VLDB2009): 3M features/second using 200 nodes

How does Vowpal Wabbit work?

Start with $\forall i$: $w_i = 0$, Repeatedly:

- Get example $x \in R^*$.
- **2** Make prediction $\hat{y} = \frac{\sum_{i} w_{i} x_{i}}{\sqrt{|\{i: x_{i} \neq 0\}|}}$ clipped to interval [0, 1].
- **3** Learn truth $y \in [0,1]$ with importance I or goto (1).
- **1** Update $w_i \leftarrow w_i + \frac{\eta 2(y \hat{y})lx_i}{\sqrt{|\{i:x_i \neq 0\}|}}$ and go to (1).

How does Vowpal Wabbit work?

Start with $\forall i$: $w_i = 0$, Repeatedly:

- Get example $x \in R^*$.
- **2** Make prediction $\hat{y} = \frac{\sum_{i} w_{i} x_{i}}{\sqrt{|\{i: x_{i} \neq 0\}|}}$ clipped to interval [0, 1].
- **3** Learn truth $y \in [0,1]$ with importance I or goto (1).
- **1** Update $w_i \leftarrow w_i + \frac{\eta 2(y \hat{y})lx_i}{\sqrt{|\{i:x_i \neq 0\}|}}$ and go to (1).

This is routine, but with old and new optimization tricks like hashing.

This is open source @ http://hunch.net/~vw Also reimplemented in Torch, Streams, and Mahout projects.

1 Ghz processor should imply 1B features/second. And it's easy to imagine datasets with 1P features. How can we deal with such large datasets?

1 Ghz processor should imply 1B features/second. And it's easy to imagine datasets with 1P features. How can we deal with such large datasets?

Core Problem for Learning on much data = Bandwidth limits 1 Gb/s ethernet = $450 \text{GB/hour} \Rightarrow 1 \text{T}$ features is reasonable.

1 Ghz processor should imply 1B features/second. And it's easy to imagine datasets with 1P features. How can we deal with such large datasets?

Core Problem for Learning on much data = Bandwidth limits 1 Gb/s ethernet = $450 \text{GB/hour} \Rightarrow 1 \text{T}$ features is reasonable.

Outline

- Multicore parallelization
- Multinode parallelization

Answer 1: It's no use because it doesn't address the bandwidth problem.

Answer 1: It's no use because it doesn't address the bandwidth problem.

But there's a trick. Sometimes you care about the interaction of two sets of features—queries with results for example. Tweak the algorithm so as to specify (query features, result features), then use a fast hash to compute the outer product in the core.

Answer 1: It's no use because it doesn't address the bandwidth problem.

But there's a trick. Sometimes you care about the interaction of two sets of features—queries with results for example. Tweak the algorithm so as to specify (query features, result features), then use a fast hash to compute the outer product in the core.

Possibilities:

- Example Sharding: Each core handles an example subset.
- Peature Sharding: Each core handles a feature subset.

Answer 1: It's no use because it doesn't address the bandwidth problem.

But there's a trick. Sometimes you care about the interaction of two sets of features—queries with results for example. Tweak the algorithm so as to specify (query features, result features), then use a fast hash to compute the outer product in the core.

Possibilities:

- Example Sharding: Each core handles an example subset.
- Peature Sharding: Each core handles a feature subset.

Empirically: Feature Sharding > Example Sharding. Both work on two cores, but Example Sharding doesn't scale. Feature sharding provides about x3 speedup on 4 cores.

Answer 1: It's no use because it doesn't address the bandwidth problem.

But there's a trick. Sometimes you care about the interaction of two sets of features—queries with results for example. Tweak the algorithm so as to specify (query features, result features), then use a fast hash to compute the outer product in the core.

Possibilities:

- Example Sharding: Each core handles an example subset.
- Peature Sharding: Each core handles a feature subset.

Empirically: Feature Sharding > Example Sharding. Both work on two cores, but Example Sharding doesn't scale. Feature sharding provides about x3 speedup on 4 cores.

But, again, this is just for a special case. Need multinode parallelization to address data scaling.

Algorithms for Speed

- Multicore parallelization
- Multinode parallelization

Multinode = inevitable delay

Ethernet latency = 0.1 milliseconds = 10^5 cycles = many examples.

- **①** Example Sharding \Rightarrow weights out of sync by delay factor.
- **②** Feature Sharding \Rightarrow global predictions delayed by delay factor.

How bad is delay?

Multinode = inevitable delay

Ethernet latency = 0.1 milliseconds = 10^5 cycles = many examples.

- **1** Example Sharding \Rightarrow weights out of sync by delay factor.
- **②** Feature Sharding \Rightarrow global predictions delayed by delay factor.

How bad is delay?

Theorem: (Mesterharm 2005) Delayed updates reduce convergence by delay factor in worst case for expert algorithms.

Theorem: (LSZ NIPS 2009) Same for linear predictors.

(Caveat: there are some special cases where you can do better.)

Empirically: Delay can hurt substantially when examples are structured.

Multinode = inevitable delay

Ethernet latency = 0.1 milliseconds = 10^5 cycles = many examples.

- **1** Example Sharding \Rightarrow weights out of sync by delay factor.
- ${\color{red} \bullet}$ Feature Sharding \Rightarrow global predictions delayed by delay factor.

How bad is delay?

Theorem: (Mesterharm 2005) Delayed updates reduce convergence by delay factor in worst case for expert algorithms.

Theorem: (LSZ NIPS 2009) Same for linear predictors.

(Caveat: there are some special cases where you can do better.)

Empirically: Delay can hurt substantially when examples are structured.

What do we do?

Observations about Feed Forward

- No longer the same algorithm—it's designed for parallel environments.
- ② Bandwidth = few bytes per example, per node ⇒ Tera-example feasible with single master, arbitrarily more with hierarchical structure.
- No delay.
- Feature Shard is stateless \Rightarrow parallelizable & cachable.

Bad News: Feed Forward can't compete with general linear predictors

Probability	у	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃
0.25	1	1	1	0
0.125	1	1	0	1
0.125	1	0	1	1
0.25	0	0	0	1
0.125	0	1	0	0
0.125	0	0	1	0

Features 1&2 are imperfect predictors. Feature 3 is uncorrelated with truth. Optimal predictor = majority vote on all 3 features.

Good news

If Naive Bayes holds $P(x_1|y)P(x_2|y) = P(x_1,x_2|y)$, you win. Better news: x_1 = first shard, x_2 = second shard Even better: There are more complex problem classes for which this also works.

Initial experiments on a medium size text Ad dataset @ Yahoo!

- \bullet \sim 100GB when gzip compressed.

- Uses outerproduct features

Relative progressive validation (BKL COLT 1999) squared loss & relative wall-clock time reported.

Final thoughts

About x6 speedup achieved over sequential system so far. This general approach, unlike averaging approaches, is fully applicable to nonlinear systems.

Code at: http://github.com/JohnLangford/vowpal_wabbit Patches welcome. Much more work needs to be done. Some further discussion @ http://hunch.net