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My Personal Supercomputer

A RCV1 derived binary classification task:
O 424MB Gzip compressed
@ 781K examples
@ 60M (nonunique) features
How long does it take to learn a good predictor?

20 seconds (1.2 seconds on desktop) = 3 M features/second
Other systems:

@ AD-LDA (2000 topics) (KDD 2008): 205K features/second
using 1000 nodes.

@ PSVM (2007): 23K features/second using 500 nodes (on
RCV1)

© PLANET (depth 10 tree) (VLDB2009): 3M features/second
using 200 nodes
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© Learn truth y € [0, 1] with importance / or goto (1).
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O Update w; — w; + Ty and go to (1).
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How does Vowpal Wabbit work?

Start with Vi : w; = 0, Repeatedly:

O Get example x € R*.
2 WiXi
[{i:xi#0}|
© Learn truth y € [0, 1] with importance / or goto (1).
O Update w; — w; + % and go to (1).
This is routine, but with old and new optimization tricks like
hashing.
This is open source @ http://hunch.net/~vw
Also reimplemented in Torch, Streams, and Mahout projects.

@ Make prediction y = clipped to interval [0, 1].
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1 Ghz processor should imply 1B features/second. And it's easy to
imagine datasets with 1P features. How can we deal with such
large datasets?

Core Problem for Learning on much data = Bandwidth limits
1 Gb/s ethernet = 450GB/hour = 1T features is reasonable.

Outline

@ Multicore parallelization

@ Multinode parallelization
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Answer 1: It's no use because it doesn’t address the bandwidth
problem.
But there's a trick. Sometimes you care about the interaction of
two sets of features—queries with results for example. Tweak the
algorithm so as to specify (query features, result features), then
use a fast hash to compute the outer product in the core.
Possibilities:

© Example Sharding: Each core handles an example subset.

@ Feature Sharding: Each core handles a feature subset.

Empirically: Feature Sharding > Example Sharding. Both work on
two cores, but Example Sharding doesn’t scale. Feature sharding
provides about x3 speedup on 4 cores.

But, again, this is just for a special case. Need multinode
parallelization to address data scaling.



Algorithms for Speed

@ Multicore parallelization

© Multinode parallelization
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@ Example Sharding = weights out of sync by delay factor.
@ Feature Sharding = global predictions delayed by delay factor.

How bad is delay?

Theorem: (Mesterharm 2005) Delayed updates reduce convergence
by delay factor in worst case for expert algorithms.

Theorem: (LSZ NIPS 2009) Same for linear predictors.

(Caveat: there are some special cases where you can do better.)
Empirically: Delay can hurt substantially when examples are
structured.

What do we do?
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Observations about Feed Forward

@ No longer the same algorithm—it’s designed for parallel
environments.

@ Bandwidth = few bytes per example, per node =
Tera-example feasible with single master, arbitrarily more with
hierarchical structure.

© No delay.
@ Feature Shard is stateless = parallelizable & cachable.



Bad News: Feed Forward can't compete with general linear

predictors

Probability ‘ y ‘ ‘ X0 ‘ X3 ‘
0.25 111110
0.125 11101
0.125 11011
0.25 0,001
0.125 0/1(0]0
0.125 0/,0(1]0

Features 1&2 are imperfect predictors. Feature 3 is uncorrelated
with truth. Optimal predictor = majority vote on all 3 features.



Good news

If Naive Bayes holds P(xi|y)P(x2|y) = P(x1, x2|y), you win.
Better news: x; = first shard, x» = second shard

Even better: There are more complex problem classes for which
this also works.



Initial experiments on a medium size text Ad dataset @ Yahoo!

@ ~100GB when gzip compressed.
Q@ ~10M examples.

© ~125G nonzero features

@ Uses outerproduct features

Relative progressive validation (BKL COLT 1999) squared loss &
relative wall-clock time reported.
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Initial Experiments, Training & Combining
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Final thoughts

About x6 speedup achieved over sequential system so far.
This general approach, unlike averaging approaches, is fully
applicable to nonlinear systems.

Code at: http://github.com/JohnLangford /vowpal_wabbit
Patches welcome. Much more work needs to be done.
Some further discussion @ http://hunch.net



