Hyperbolic mapping of complex networks

Dmitri Krioukov CAIDA/UCSD F. Papadopoulos, M. Kitsak, A. Vahdat, M. Boguñá

> MMDS 2010 Stanford, June 2010

Node density

Node degree

Degree distribution

Clustering

Connection probability as the Fermi-Dirac distribution

$$p(x) = \frac{1}{e^{\frac{\zeta}{2}\left(\frac{x-R}{T}\right)} + 1} \xrightarrow{T \to 0} \Theta(R - x)$$

- connection probability p(x) Fermi-Dirac distribution
- hyperbolic distance x energy of links/fermions
- disk radius R chemical potential
- two times inverse sqrt of curvature $2/\zeta$ Boltzmann constant
- parameter T temperature

Chemical potential *R* is a solution of

$$M = \binom{N}{2} \int g(x)p(x) dx$$

- number of links M number of particles
- number of node pairs N(N-1)/2 number of energy states
- distance distribution g(x) degeneracy of state x
- connection probability p(x) Fermi-Dirac distribution

Cold regime 0≤T<1

- Chemical potential $R=(2/\zeta)\ln(N/v)$
 - Constant ν controls the average node degree
- Clustering decreases from its maximum at T=0 to zero at T=1
- Power law exponent γ does not depend on T, $\gamma = (2/\zeta) + 1$

Phase transition T=1

• Chemical potential R diverges as $-\ln(|T-I|)$

Hot regime T>1

- Chemical potential $R = T(2/\zeta) \ln(N/v)$
- Clustering is zero
- Power law exponent γ does depend on T, $\gamma = T(2/\zeta) + 1$

Two famous limits at $T \rightarrow \infty$

• Classical random graphs (random graphs with given average degree):

$$T \rightarrow \infty$$
; ζ fixed

Configuration model

(random graphs with given expected degrees):

$$T \rightarrow \infty$$
; $\zeta \rightarrow \infty$; T/ζ fixed

Navigation efficiency $(\gamma=2.1; T=0)$

- Percentage of successful greedy paths 99.99%
- Percentage of shortest greedy paths 100%
- Percentage of successful greedy paths after removal of x% of links or nodes

$$-x=10\% \rightarrow 99\%$$

$$-x=30\% \rightarrow 95\%$$

Mapping the real Internet using statistical inference methods

- Measure the Internet topology properties
 - $-N, \langle k \rangle, \gamma, c$
- Map them to model parameters
 - $-R, \nu, \zeta, T$
- Place nodes at hyperbolic coordinates (r,θ)
 - $-k \sim e^{\zeta(R-r)/2}$
 - $-\theta$'s are uniformly distributed on $[0,2\pi]$
- Apply the Metropolis-Hastings algorithm to find θ 's maximizing the likelihood that Internet is produced by the model

Metropolis-Hastings

$$L = \prod_{i < j} p(x_{ij})^{a_{ij}} [1 - p(x_{ij})]^{1 - a_{ij}}$$

- Compute current likelihood L_c
- Select a random node
- Move it to a new random angular coordinate
- Compute new likelihood L_n
- If $L_n > L_c$, accept the move
- If not, accept it with probability L_n/L_c
- Repeat

Navigation efficiency $(\gamma=2.1; T=0.69)$

- Percentage of successful greedy paths
 97%
- Average stretch

1.1

• Percentage of successful greedy paths after removal of x% of links or nodes:

Conclusions

- We have discovered a new geometric framework to study the structure and function of complex networks
- The framework provides a natural (no "enforcement" on our side)
 explanation of two basic structural properties of complex networks
 (scale-free degree distribution and strong clustering) as
 consequences of underlying hyperbolic geometry
- The framework subsumes the configuration model and classical random graphs as two limiting cases with degenerate geometric structures
- The framework explains how the hierarchical structure of complex networks ensures the maximum efficiency of their function – efficient navigation without global information
- The framework provides a basis for mapping real complex networks to their hidden/underlying hyperbolic spaces

Applications of network mapping

Internet

- optimal (maximally efficient/most scalable) routing
- routing table sizes, stretch, and communication overhead approach their theoretical lower bounds

Other networks

- discover hidden distances between nodes (e.g., similarity distances between people in social networks)
 - "soft" communities become areas in the underlying space with higher node densities
- tell what drives signaling in networks, and what network perturbations drive it to failures (e.g., in the brain, regulatory, or metabolic networks)

- D. Krioukov, F. Papadopoulos, A. Vahdat, and M. Boguñá, Curvature and Temperature of Complex Networks, Physical Review E, v.80, 035101(R), 2009
- F. Papadopoulos, D. Krioukov, M. Boguñá, and A. Vahdat, Greedy Forwarding in Dynamic Scale-Free Networks Embedded in Hyperbolic Metric Spaces, INFOCOM 2010
- M. Boguñá, F. Papadopoulos, and D. Krioukov, Sustaining the Internet with Hyperbolic Mapping, Nature Communications (to appear), 2010
- M. Boguñá, D. Krioukov, and kc claffy, Navigability of Complex Networks, Nature Physics, v.5, p.74-80, 2009
- M. Boguñá and D. Krioukov,
 Navigating Ultrasmall Worlds in Ultrashort Time,
 Physical Review Letters, v.102, 058701, 2009
- M. Ángeles Serrano, D. Krioukov, and M. Boguñá, Self-Similarity of Complex Networks and Hidden Metric Spaces, Physical Review Letters, v.100, 078701, 2008