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Connection probability
as the Fermi-Dirac distribution

• connection probability p(x) – Fermi-Dirac distribution

• hyperbolic distance x – energy of links/fermions

• disk radius R – chemical potential

• two times inverse sqrt of curvature 2/ζ – Boltzmann constant

• parameter T – temperature
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Chemical potential R
is a solution of

• number of links M – number of particles
• number of node pairs N(N−1)/2 – number of energy states
• distance distribution g(x) – degeneracy of state x
• connection probability p(x) – Fermi-Dirac distribution
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Cold regime 0≤T<1

• Chemical potential R=(2/ζ)ln(N/ν)
– Constant ν controls the average node degree

• Clustering decreases from its maximum at T=0
to zero at T=1

• Power law exponent γ does not depend on T,
γ=(2/ζ)+1



Phase transition T=1

• Chemical potential R diverges as −ln(|T−1|)



Hot regime T>1

• Chemical potential R=T(2/ζ)ln(N/ν)

• Clustering is zero

• Power law exponent γ does depend on T,
γ=T(2/ζ)+1



Two famous limits at T→∞

• Classical random graphs
(random graphs with given average degree):

T→∞; ζ fixed

• Configuration model
(random graphs with given expected degrees):

T→∞; ζ →∞; T/ζ fixed







From structure
To function



















































Navigation efficiency
(γ=2.1; T=0)

• Percentage of successful greedy paths
                                99.99%

• Percentage of shortest greedy paths
                                100%

• Percentage of successful greedy paths after
removal of x% of links or nodes
– x=10% →                  99%

– x=30% →                  95%



Mapping the real Internet
using statistical inference methods

• Measure the Internet topology properties
– N, 〈k〉, γ, c

• Map them to model parameters
– R, ν, ζ, T

• Place nodes at hyperbolic coordinates (r,θ)
– k ~ eζ(R−r)/2

– θ’s are uniformly distributed on [0,2π]

• Apply the Metropolis-Hastings algorithm to
find θ’s maximizing the likelihood that
Internet is produced by the model



Metropolis-Hastings

• Compute current likelihood Lc

• Select a random node

• Move it to a new random angular coordinate

• Compute new likelihood Ln

• If Ln > Lc, accept the move

• If not, accept it with probability Ln / Lc

• Repeat
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Navigation efficiency
 (γ=2.1; T=0.69)

• Percentage of successful greedy paths
                                 97%

• Average stretch
                                 1.1

• Percentage of successful greedy paths after
removal of x% of links or nodes:





Conclusions
• We have discovered a new geometric framework to study the

structure and function of complex networks

• The framework provides a natural (no “enforcement” on our side)
explanation of two basic structural properties of complex networks
(scale-free degree distribution and strong clustering) as
consequences of underlying hyperbolic geometry

• The framework explains how the hierarchical structure of complex
networks ensures the maximum efficiency of their function – efficient
navigation without global information

• The framework subsumes the configuration model and classical
random graphs as two limiting cases with degenerate geometric
structures

• The framework provides a basis for mapping real complex networks
to their hidden/underlying hyperbolic spaces



Applications of network mapping

• Other networks
– discover hidden distances between nodes (e.g.,

similarity distances between people in social networks)
• “soft” communities become areas in the underlying space

with higher node densities

– tell what drives signaling in networks, and what
network perturbations drive it to failures (e.g., in the
brain, regulatory, or metabolic networks)

• Internet
– optimal (maximally efficient/most scalable) routing

– routing table sizes, stretch, and communication
overhead approach their theoretical lower bounds
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