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Connection probability
as the Fermi-Dirac distribution

p(x) = z;(le = >0O(R - x)

(7,

e

connection probability p(x) — Fermi-Dirac distribution
hyperbolic distance x — energy of links/fermions

disk radius R — chemical potential

two times inverse sqrt of curvature 2/C — Boltzmann constant

parameter 7' — temperature



Chemical potential R
IS a solution of

(N

M =1, |Jex)p(x)dx
\

number of links M — number of particles

number of node pairs N(N-1)/2 —number of energy states
distance distribution g(x) — degeneracy of state x
connection probability p(x) — Fermi-Dirac distribution



Cold regime 0<T<1

* Chemical potential R=(2/C)In(N/v)

— Constant v controls the average node degree

* Clustering decreases from its maximum at 7=0
to zero at 7=1

* Power law exponent y does not depend on 7,
Y=(2/C)+1



Phase transition 7T=1

* Chemical potential R diverges as —In(|7-1|)



Hot regime 7>1

* Chemical potential R=T7(2/C)In(N/v)
e Clustering is zero

* Power law exponent y does depend on 7,
v=T(2/C)+1



Two famous limits at T—x

 (Classical random graphs
(random graphs with given average degree):

T—o0; C fixed

* Configuration model
(random graphs with given expected degrees):

T—00; C —00; T/C fixed
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Network topology

C




S

j \v{i\\ '\ 7
RN N i
«';-'4;.._\\\}\ \\\\\\\‘]//’/"‘ 2

=
\

N
N



















A

NN

N
o




A

NN

N
o


































A

NN

N
o



















Navigation efficiency
(v=2.1; T=0)

» Percentage of successful greedy paths
99.99%

* Percentage of shortest greedy paths
100%

* Percentage of successful greedy paths after
removal of x% of links or nodes
—x=10% — 99%
— x=30% — 95%



Mapping the real Internet
using statistical inference methods

* Measure the Internet topology properties
— N, k), v, ¢
* Map them to model parameters
—R,v,C, T
* Place nodes at hyperbolic coordinates (7,0)
_ Jr ~ gC@R-1)2
— 0’s are uniformly distributed on [0,27]
* Apply the Metropolis-Hastings algorithm to

find 0’s maximizing the likelihood that
Internet 1s produced by the model



Metropolis-Hastings
L=]TpG)" 1= plx) ™

Compute current likelihood L

Select a random node

Move it to a new random angular coordinate
Compute new likelthood L,

It L > L. accept the move

If not, accept 1t with probability L/ L.

Repeat
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Navigation efficiency
(y=2.1: T=0.69)
* Percentage of successtul greedy paths
97%

* Average stretch
1.1

* Percentage of successful greedy paths after
removal of x% of links or nodes:
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Conclusions

We have discovered a new geometric framework to study the
structure and function of complex networks

The framework provides a natural (no “enforcement” on our side)
explanation of two basic structural properties of complex networks
(scale-free degree distribution and strong clustering) as
consequences of underlying hyperbolic geometry

The framework subsumes the configuration model and classical
random graphs as two limiting cases with degenerate geometric
structures

The framework explains how the hierarchical structure of complex
networks ensures the maximum efficiency of their function — efficient
navigation without global information

The framework provides a basis for mapping real complex networks
to their hidden/underlying hyperbolic spaces



Applications of network mapping

* Internet
— optimal (maximally efficient/most scalable) routing

— routing table sizes, stretch, and communication
overhead approach their theoretical lower bounds

e Other networks

— discover hidden distances between nodes (e.g.,
similarity distances between people in social networks)
« “soft” communities become areas in the underlying space
with higher node densities
— tell what drives signaling in networks, and what
network perturbations drive it to failures (e.g., in the
brain, regulatory, or metabolic networks)
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